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Abstract: This paper introduces a new formulated control scheme for enhancing the dynamic perfor-
mance of a wind driven surface permanent magnet synchronous generator. The designed control
scheme is based on predictive control theory, in which the shortcomings of previous predictive con-
trollers are avoided. To visualize the effectiveness of the proposed control scheme, the performance of
the generator was dynamically evaluated under two different operating regimes: grid connection and
standalone operation in which a battery storage system was used to enhance the power delivery to
the isolated loads. In addition, a detailed performance comparison between the proposed controller
and traditional predictive controllers was carried out. The traditional control topologies used for
comparison were the model predictive direct power control, model predictive direct torque control,
and model predictive current control. A detailed description of each control scheme is introduced
illustrating how it is configured to manage the generator operation. Furthermore, to achieve the
optimal exploitation of the wind energy and limit the power in case of exceeding the nominal wind
speed, maximum power point tracking and blade pitch angle controls were adopted. A detailed per-
formance comparison effectively outlined the features of each controller, confirming the superiority
of the proposed control scheme over other predictive controllers. This fact is illustrated through its
simple structure, low ripples, low computation burdens and low current harmonics obtained with
the proposed control scheme.

Keywords: PMSG; predictive control; wind power; MPPT; battery storage; ripples; computation
burden; standalone operation

1. Introduction

Currently, searching for alternative renewable energy sources to compensate for the
depletion of usual energy sources has become a vital requirement [1–3]. Among the
different forms of renewable energy systems, wind generation systems are considered
among the most significant units [4,5]. This fact motivated us to investigate more about
the most effective way to exploit and extract naturally stored energy using various control
theories [6]. Concerning wind energy, the most significant part of the system to be managed
is the generation unit, which is responsible for handling the electric power either to the
utility grid or to isolated loads. The generation unit is an electric machine driven by a shaft
coupling mechanical system rotated by the wind power [7,8]. The coupling mechanical
system should be managed using a specific control scheme to prevent damage to the
generator/turbine shafts. Important are blade pitch angle (β) control and the maximum
power point tracking (MPPT) algorithm [9,10]. Furthermore, the suitable selection of wind
turbine systems to fulfill the increasing load demands in rural area has become a vital
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requirement. The researchers in [11] proposed a detailed design for a horizontal axis wind
turbine system according to the available wind speed statistics to ensure optimal wind
power exploitation. In [12], a compromise between the capacity factor and annual power
production was adopted to optimally exploit wind energy. Other researchers have been
concerned with searching for suitable approaches to design a compact wind turbine nacelle
to reduce maintenance costs [13].

Different machine types are used in wind generation systems, starting with a self-
excited induction generator suitable for parallel operation, but the need for an external
reactive power source for excitation is the greatest challenge [14,15]. Another promising
machine is the doubly fed induction generator (DFIG), which has the ability to operate at
fixed and variable speeds with reduced scale power converters that reduce costs [16,17].
The DFIG also has the ability to provide reactive power to the utility grid. The DFIG has
the advantage of fault-tolerant operation. However, the fault tolerant operation cannot be
realized easily without affecting system complexity, in addition to regular maintenance of
the slip rings and windings. Synchronous generators have started to play an important role
due to their high efficiency, ease of maintenance and rugged structure [18,19]. For these
reasons, the current study is concerned with analyzing SPMSG performance for different
operating regimes and using several control approaches.

Whatever the used generator type, the implemented control algorithm for the genera-
tion unit is the most important point to be considered in achieving different requirements,
such as low ripples, fast dynamics and proper steady-state operation [20]. Searching for
a unique control algorithm that can achieve all or at most of these requirements is the
main target of control designers. Investigations started with vector control theory and
field orientation control (FOC) [21,22]. FOC achieved promising steady-state dynamics in
addition to low current total harmonic distortion (THD), but suffered from high complexity
and the requirement for a modulation mechanism (i.e., PWM or SVPWM), in addition to a
significant response delay [23]. The direct torque control (DTC) appeared as an alternative
to the FOC, with the merits of simple structure, faster response and no requirement for
using a modulation stage [24,25]. The DTC achieved its targets effectively, but noticeable
ripples and variable switching frequency were its most significant shortcomings. A direct
power control (DPC) is a transposition, or mirror, of the DTC technique, in which two hys-
teresis active and reactive power controllers are used in addition to a look-up table [26–28].
The main difference is the used control loops; for example, in the DPC, there is no need for
estimating the torque or flux using machine model parameters, as power can be directly
measured using stator voltages and currents, which is an advantage of the DPC over the
DTC in terms of robustness.

Recently, advanced control techniques for the SPMSG have replaced former techniques,
such as sliding mode control [29], backstepping control [30], fuzzy control [31] and model
predictive control (MPC) [32,33]. Among these algorithms, MPC has caught the attention
of control designers. MPC comes with different configurations, such as hysteresis-based,
trajectory-based, continuous control set, and finite control set (FCS) MPC [34,35]. Among
these categories, the FCS MPC shows the most promising behavior, as it utilizes the
switching states and not PWM. In addition, it identifies voltage vectors from a definite set
of eight vectors [35,36].

For these reasons, the FCS principle is used with different predictive controllers for
the SPMSG. For example, the model predictive direct power control (MP DPC) used in [37],
utilized the same principle of a classic look-up table-based DPC, except for replacing
the hysteresis controllers and look up tables with a single cost function combining the
normalized absolute errors of active and reactive powers. The FCS predictive control
principle was adopted when considering the torque and flux control as stated in [38], in
which the cost function combined the normalized absolute errors of torque and flux, which
finally constituted the MP DTC algorithm. The performance of SPMSG was improved
after considering the MP DPC and MP DTC in comparison with the classic DPC and DTC,
respectively. This has been noticed through the ripple reduction. However, the computation
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burdens of both predictive controllers (MP DPC and MP DTC) are noticeable. In addition,
both controllers require the use of a weighting value (wf) in the cost function, which has
to be precisely selected to balance the importance/weight of each control variable with
respect to the others. Attempts have been made to develop online tuning to obtain optimal
wf [39,40], which have helped significantly in enhancing the steady state performance;
however, the computation burden is negatively affected.

To avoid the risk of wrong wf selection, an orientation towards a weighting-free MPC
has aroused great interest. This has been achieved through selecting terms of cost function
of the same type; for example, the FCS principle has been used to formulate the model
predictive current control (MP CC) technique as stated in [41]. The MP CC has showed its
superiority over the FOC in terms of faster dynamic response and reduced complexity rate,
in addition to not using a weighting value in comparison with the MP DTC and MP DPC.
However, the computation burden is still challenging.

Furthermore, the three predictive controllers: MP DPC, MP DTC and MP CC are based
on using one voltage vector per sampling interval [42], and this is not a precise action as
absolute error deviation within the sampling interval may occur, resulting in increased
ripples. Some attempts have been made use more than one voltage vector in the same
interval [43,44]. In [45,46], one active and zero voltage vectors were utilized within the one
interval: An improved performance was achieved especially at low operating frequencies,
but the variable switching frequency and torque ripples were still present. Multi-vector
MPC techniques are considered in [47,48], in which several vectors are applied within
one switching interval, resulting in reduced current/torque ripples. However, the main
drawback of multi-vector MPCs is that the duration time of one or two of the selected
vectors result in negative values, causing the removal of such vectors. In [49,50], an MPC
scheme which considered four vectors per one interval was presented to achieve lower
ripples and fix switching frequency, in addition to solving the issue of negative duration
times. However, the computation burdens remain the most challenging task in these
schemes. The deadbeat principle has also been incorporated with the MPC as proposed
by [51,52] in an attempt to limit the ripples at different operating frequencies; however, the
controller was highly sensitive to parameter mismatch, as the deadbeat principle usually
utilized the machine model. To avoid the issue of parameter sensitivity, [53] considered a
model-free predictive control principle which utilized sampled current differences. How-
ever, this technique mainly depended on the precision of signal measurement, which is
not guaranteed.

In order to avoid the dependency of the cost function on the machine model, and
keeping the computation burdens within the acceptable rates, the current paper proposes a
form of cost function, which consists of two similar terms enabling the elimination of the
weighting factor and, at the same time, the controlled cost function terms are not estimated
variables such as those used in MP DPC, MP DTC and MP CC controllers. This enhances
robustness and limits computation time. The formulated cost function is used by what is
titled predictive voltage control, as the terms of the function are the normalized absolute
errors of the d-q components of the stator voltage of the SPMSG. The error terms of the
cost function are obtained using the reference and actual voltages. The actual voltages are
obtained with the help of the FCS principle using switching states without incorporating
the PWM tool, meanwhile the reference voltages are obtained through by designing torque
and flux regulators. Thus, the derivation of reference voltages is not dependent on the
model parameters as in the deadbeat strategy, which enhances control robustness.

To investigate generator dynamics using the designed PVC and validate its effec-
tiveness compared to other predictive algorithms, the performance is tested using the
designed PVC and three other predictive controllers: MP DPC, MP DTC and MP CC. The
wind driven generation system is tested for two operating conditions: grid connected and
stand-alone operations. As the purpose of this study is to investigate the dynamics of the
SPMSG generator, in the grid connection case the four designed controllers are mainly
used to control the machine side converter while the grid side converter is controlled solely
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using the MP CC scheme. Alternatively, for the stand-alone operation, the generation
system feeds a DC average load, and is connected in parallel to a battery storage system.
A model of the battery and its storage system management are described in detail. Two
different wind speed profiles are used with the two operating conditions to investigate the
effectiveness of MPPT and pitch angle control strategies.

Contributions of the paper can be summarized as follows,

• The paper proposes a new predictive voltage control scheme (PVC) to enhance the
performance of a wind-driven surface permanent magnet synchronous generator
under grid connection and stand-alone operating conditions.

• The paper introduces a systematic design for the overall wind generation system
starting with the wind turbine and its power management system, then the generation
unit, followed by the power converters and its control, and finally with the grid model,
the battery storage system and isolated load.

• To confirm the validity of the proposed predictive controller, a wind driven genera-
tor performance is also evaluated using different classical control algorithms and a
detailed comparison is carried out.

• The proposed control algorithm proved its validity in enhancing generator dynamics
by achieving low computational burdens, low ripples, a simple structure and low
current harmonics compared to classic techniques.

• The proposed control algorithm can be used to manage the operation of other types of
wind-based generators considering the theory of operation and structure of each type.

The paper is organized as follows. In Section 2, the modeling of SPMSG and its wind
turbine power management system is introduced. Section 2 also presents a model of the
battery and its energy storage management system. In Section 3, the designs of the used
control algorithms are introduced in a systematic manner. In Section 4, the test results are
presented for each control algorithm and a comparison is carried out. In Section 5, the
conclusions and research outputs are summarized.

2. Wind Energy Conversion System
2.1. Wind Turbine Model

The aerodynamic model of the wind turbine is illustrated in Figure 1, which provides
a detailed view of the turbine and its power management system. As shown, the system
involves the MPPT and blade pitch angle control. The MPPT is concerned with extracting
the maximum available power from the wind for operating speeds lower than nominal.
This can be achieved by assigning the optimal tip speed ratio [10,20]. Meanwhile, the pitch
angle control is concerned with limiting power in case the wind speed exceeds its rated
value. This is achieved by observing the wind speed and assigning a relevant pitch angle
for each speed value utilizing the Vw–β curve data and pitch servo system. The ratio µ can
be evaluated by

µ =
rωt

Vw
(1)

where ωt is the turbine speed and r is the blade radius.
Knowing µ and β, the power coefficient CP, which is used to calculate the turbine

power [20] can be evaluated by

CP = [0.5− 0.00167(β− 2)] sin
[

π(µ + 0.1)
10− 0.3(β− 2)

]
− 0.00184(µ− 3)(β− 2) (2)

The turbine and wind powers can be calculated respectively by

Pt = CPPw, and Pw =
1
2

ρSV3
w (3)

where S is the air covered area, and ρ is the air density.
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Then, from (1), (2) and (3), the turbine torque is evaluated by

Tt =
Pt

ωt
=

CP. 1
2 ρSV3

w
ωt

(4)

A gearbox ratio K is utilized to achieve the balance between the low-speed shaft
(turbine side) and high-speed shaft (machine side). Consequently, the generator torque and
speed are calculated as follows

Tg =
Tt

K
(5)

ωg = Kωt (6)

In addition, the dynamics of the mechanical shaft can be represented using the follow-
ing expression:

Tt − KTg − FKωt =

(
Jt

K
+ KJg

)
dωt

dt
(7)

As stated earlier, to adopt the MPPT operation, the turbine must operate at optimal
(µopt), which results in maximizing the power coefficient CP,max and turbine power Pt,max
according to (2) and (3).

Using these hypotheses, the turbine and generator reference speeds are obtained by

ω∗t =
µoptVw

R
(8)

ω∗g = Kω∗t (9)

where * refers to the reference value. Pitch angle control is activated when wind speed goes
above the nominal speed (Vw,nom). The pitch servo system shown in Figure 1 enables the
correct selection of β according to the wind speed.
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An illustration of the operating regions of the wind turbine is shown in Figure 2, which
provides a detailed view of the regions at which the MPPT and pitch angle control are
active. It is worth noting that in region 4, due to an excessive increase in wind speed, the
system will not be able to effect pitch control, and thus the system is shut down.
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2.2. Mathematical Model of Synchronous Generator

The electric dynamics of SPMSG can be described in a discrete form at instant KTs by
the following expressions [21–23]:

dids,k

dt
=

1
Ls

(uds,k − Rids,k + ωs,kLsiqs,k) (10)

diqs,k

dt
=

1
Ls

(uqs,k − Riqs,k −ωs,kLsids,k −ωs,kψ f ,k) (11)

The mechanical dynamic can be expressed by

dωg,k

dt
=

1
J
(Tt,k − Tg,k − Tf ,k) (12)

where J refers to the combined inertia of turbine and generator.
The developed generator torque can be expressed by

Tg,k = 1.5pψ f ,kiqs,k (13)

The parameters of the wind turbine and SPMSG are given in Table A1, in Appendix A.

2.3. Modeling of the Converters, DC Bus and Filter for Grid Connection Purpose

In the first operating regime of the SPMSG, it is connected to the utility grid and,
therefore, an output filter must be utilized to pass generated power to the grid. The filter is
at the output of the grid side converter (GSC) which is controlled to regulate the DC link
voltage and achieve a unity power factor operation, which provides the filtered quantities
to the grid. Figure 3 shows an illustration of this connection.

Considering that the grid voltage ug,k is oriented to the q-axis of the rotating frame, then

uqg,k = |ug,k|, and udg,k = 0.0 (14)
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Then, the voltage balance across the filter is expressed by

did f ,k

dt
=

1
L f

(ed,k − R f id f ,k + ωe,kL f iq f ,k) (15)

diq f ,k

dt
=

1
L f

(eq,k − R f iq f ,k −ωe,kL f id f ,k − uqg,k) (16)

where ed and eq are the GSC d-q voltages, ωe is the angular frequency of the grid, which is
identified using a phase-locked loop system [54].

Compared with the dynamics of the wind system, the power converters (MSC and
GSC) have a faster switching frequency. Therefore, it is sufficient to calculate only the
low frequency of the converter model quantities to analyze the dynamics of the entire
generation system [55–57]. Thus, an equivalent continuous model of the converter is
utilized to configure the current and voltage balancing conditions. Based on this, the
average modulated voltages of the MSC can be evaluated in terms of the DC link voltage
as following: [

uds,k
uqs,k

]
=

Udc,k

2

[
uc

ds,k
uc

qs,k

]
(17)

where uc
ds and uc

qs are the MSC control signals.
Then, the average modulated current from the generator Im1, shown in Figure 3, can

be calculated from the generator currents as presented in [55,56] by

Im1,k =
1
2
(uc

ds,kids,k + uc
qs,kiqs,k) (18)

In the same manner, the current Im2, which represents the average modulated current
at the GSC side, can be calculated as following:

Im2,k =
1
2
(ec

d,kid f ,k + ec
q,kiq f ,k) (19)

where ec
d and ec

q are the GSC control signals.



Energies 2022, 15, 1002 8 of 42

Similar to (17), the average modulated voltages of the GSC can be calculated by[
ed,k
eq,k

]
=

Udc,k

2

[
ec

d,k
ec

q,k

]
(20)

From (18) and (19), the DC bus dynamics can be also represented by

C
dUdc,k

dt
= Idc,k = Im1,k − Im2,k (21)

It is worth mentioning that the control system designs for the MSC and GSC converters
are described later in Section 3.

2.4. Modeling of Battery Storage System for Standalone Operation Purpose

As the wind-driven SPMSG is also used for stand-alone operation, feeding an isolated
average DC load, a battery model is constructed to handle the excess power and provides
the required load power in case of wind energy shortage. Furthermore, the unpredictable
and intermittent nature of the wind requires the utilization of batteries as storage systems.
Lead acid batteries (LAB) have proven their effectiveness and shown promising features
when used in autonomous power supply (APS) systems [58,59]. Therefore, the model of
the LAB is constructed and used by the standalone generation system. Figure 4 illustrates
the equivalent circuit model of a LAB.
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The voltage balance in the battery equivalent circuit of Figure 4 can be expressed by

Ubat,k = Ibat,kRt + Ib,kRe + Ucb,k = Ibat,kRt + Is,kRs + Ucs,k (22)

The state variable representation of the battery-voltages can be expressed as in [58] by
dUcb,k

dt
dUcs,k

dt
dUbat,k

dt

 =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

.

 Ucb,k
Ucs,k
Ubat,k

+


Rs

Cb(Re+Rs)
Rb

Cs(Re+Rs)

B

.Ibat,k (23)

where A11 = −1
Cb(Re+Rs)

, A12 = 1
Cb(Re+Rs)

, A13 = 0.

A21 = 1
Cs(Re+Rs)

, A22 = −1
Cs(Re+Rs)

, A23 = 0.

A31 = −Rs
Cb(Re+Rs)

2 +
Re

Cs(Re+Rs)
2 −

R2
s

CbRe(Re+Rs)
2 +

Rs
Cs(Re+Rs)

2 , A32 = 0,

A33 = Rs
CbRe(Re+Rs)

− 1
Cs(Re+Rs)

.

B = R2
e

Cb(Re+Rs)
2 − RsRt

Cb(Re+Rs)
+ RsRe

Cs(Re+Rs)
2 +

Rt
Cs(Re+Rs)

.

The storage system used in the present study is a 240 V battery with efficiency ηbat of
85%, and depth of discharge (DOD) limit of 60%. The nominal capacity of the battery is
50 Ah.

An overall schematic diagram for the standalone operation of SPMSG is illustrated
in Figure 5. As can be seen, only the MSC converter is present to manage the operation
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of the wind driven SPMSG, while a bidirectional DC/DC converter is utilized to manage
the charging and discharging processes of the battery. This is in addition to the connected
variable DC load, which is used to illustrate the power handling process between the
SPMSG and the battery.
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To represent the DC bus dynamics under stand-alone operation, the current flow
through capacitor C is constructed using the modulated current Im1 calculated by (18), the
modulated battery current Im,bat and the load current IL as following:

C
dUdc,k

dt
= Idc,k = Im1,k + Im,bat,k − IL,k (24)

The power flow between the MSC, DC link, Load and bi-directional converter is shown
in Figure 6. The specified powers are defined as follows:

Pg,k = Im1,kUdc,k
Pdc,k = Idc,kUdc,k
PL,k = IL,kUdc,k

Pm,bat,k = Im,bat,kUm,bat,k

(25)

where IL is the load current, Um,bat and Im,bat are the modulated battery voltage and current,
respectively, Pg is the MSC output power, Pdc is the DC link power, PL is the load power,
and Pm,bat,k is the bidirectional power to/from the bidirectional converter.

An equivalent continuous model of the converter is adequate for the study [56]. Thus,
the modulated voltage Umbat and the modulated current Imbat of the converter can be
obtained as followings:

Um,bat = mbatUdc, and Im,bat = mbat Ibat (26)

where mbat is the modulation signal. An illustration for obtaining the modulated signals is
shown in Figure 7.

As seen in Figure 6, the bi-directional power (Pm,bat) flow of the battery is calculated in
terms of the modulated battery current and modulated battery voltage, and illustrates how
these two quantities are derived by making a power balance between the different units. A
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detailed scheme in Figure 7 is shown. In this scheme, the procedure starts with calculating
the powers Pg, Pdc and PL. The collective net power of the three quantities should balance
the battery power. Using the net power and battery voltage, the reference battery current
I∗bat is calculated, and then is compared with the calculated battery current Ibat passing
through the inductor Lbat to obtain the modulated battery voltage Um,bat. Finally, the
modulated battery current Im,bat is obtained from the battery current Ibat after multiplying
it by the ratio (Um,bat/Udc). By ensuring power exchange balance, the load power can be
effectively covered, as will be illustrated through the test results.
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3. Control System Designs

This section presents the design of the control systems e used by the wind energy
conversion system for grid connection and stand-alone operation. Four control algorithms
are used to manage the operation of the MSC, which are MP DPC, MP DTC, MP CC and
a formulated PVC scheme. For the grid connection regime, only the MP CC controls the
GSC converter.
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3.1. Design of Model Predictive Current Control for Grid Side Converter

MP CC control topology is utilized to regulate the operation of GSC. Control is
achieved by a cost function form, which combines the absolute errors between the reference
and predicted values of d-q filtered grid currents (id f ,k+1, iq f ,k+1). Thus, the cost function [41]
can be represented at instant Ts (k + 1) by

∆i
k+1 = |i∗d f ,k+1 − ĩd f ,k+1|i + |i∗q f ,k+1 − ĩq f ,k+1|i (27)

where i refers to the voltage index, and ĩd f ,k+1 and ĩq f ,k+1 are the predicted values of filtered
grid currents, which can be obtained using (15) and (16) as follows:

ĩd f ,k+1 = id f ,k +

(did f ,k

dt

)
Ts, and ĩq f ,k+1 = iq f ,k +

(diq f ,k

dt

)
Ts (28)

Under the orientation of grid voltage along the q-axis of the rotating frame, the
reference current i∗q f ,k+1 can be obtained by regulating the difference between the reference
and actual value of the DC link voltage, while the reference current i∗d f ,k+1 can be obtained
in terms of the reference reactive power Q∗g,k+1, which is set to zero to achieve unity pf
operation. An illustration for the control scheme of GSC using the MP CC principle is
shown in Figure 8.
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The schematic diagram of the MP DPC for the MSC is illustrated in Figure 9. 

Figure 8. Model of the predictive current control scheme for the grid side converter.

3.2. Control of Machine Side Converter for Grid Connected and Standalone Operations
3.2.1. Design of Model Predictive Direct Power Control Scheme

The MP DPC scheme is concerned with regulating the operation of MSC via controlling
the active and reactive powers of the SPMSG directly without involving current loops, as
in MP CC, or torque and flux loops as in MP DTC. The main part of the MP DPC is the
cost function, which consists of the absolute errors between the reference and predicted
values of active and reactive powers, in addition to using a weighting value w f =

Pnominal
Qnominal

,
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which is used to achieve a weighting balance between the controlled powers. Thus, the
cost function of the MP DPC [37] can be expressed as follows:

{i
k+1 = |P∗g,k+1 − P̃g,k+1|i + w f |Q∗g,k+1 − Q̃g,k+1|i (29)

The reference reactive power Q∗g,k+1 is set to zero, and the reference active power
(P∗g,k+1 = T∗g,k+1 ∗ω∗g,k+1) is obtained through the multiplication of the reference generator
torque T∗g,k+1 and reference generator speed ω∗g,k+1; both are obtained from the wind turbine
power management system as illustrated in Figure 1. On the other hand, the predicted
values P̃g,k+1 and Q̃g,k+1 are calculated as follows:

P̃g,k+1 = 1.5(uds,k+1 ĩds,k+1 + uqs,k+1 ĩqs,k+1) (30)

Q̃g,k+1 = 1.5(uqs,k+1 ĩds,k+1 − uds,k+1 ĩqs,k+1) (31)

where ĩds,k+1 and ĩqs,k+1 are the predicted stator current d-q components of SPMSG which
can be obtained using (10) and (11) as follows:

ĩds,k+1 = ids,k +

(
dids,k

dt

)
Ts, and ĩqs,k+1 = iqs,k +

(diqs,k

dt

)
Ts (32)

Meanwhile, the stator voltage components uds,k+1 and uqs,k+1 are obtained as follows:

uds,k+1 = uds,k +
(uds,k−uds,k−1

∆T

)
Ts, and uqs,k+1 = uqs,k +

(uqs,k−uqs,k−1

∆T

)
Ts (33)

The schematic diagram of the MP DPC for the MSC is illustrated in Figure 9.
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3.2.2. Design of the Model Predictive Direct Torque Control Scheme

The MP DTC is concerned with regulating the torque and flux of the SPMSG. To
formulate the control system, a cost function that combines the absolute errors of the torque
and flux must be used. This cost function replaces the function of hysteresis controllers
and look-up tables in classic DTC technique. Consequently, the cost function of the MP
DTC [38] can be expressed by

∂i
k+1 = |T∗g,k+1 − T̃g,k+1|i + w′f |ψ

∗
g,k+1 − ψ̃g,k+1|i (34)

where T∗g,k+1 and ψ∗g,k+1 are the reference torque and flux for the SPMSG. w′f =
Tnominal
ψnominal

is

the weighting factor. T̃g,k+1 and ψ̃g,k+1 are the predicted values of the torque and flux.
The reference torque signal T∗g,k+1 is obtained from the wind turbine power man-

agement system shown in Figure 1, while the reference flux ψ∗g,k+1 is obtained using the
reference current d-q components as follows:

ψ∗g,k+1 =

√(
Lsi∗ds,k+1 + ψ f ,k+1

)2
+
(

Lsi∗qs,k+1

)2
(35)

The reference current i∗ds,k+1 is set to zero, while the reference i∗qs,k+1 is obtained by

i∗qs,k+1 =
T∗g,k+1

1.5pψ f ,k+1
(36)

The predicted torque and flux values to be used in (34) are obtained by

T̃g,k+1 = 1.5pψ f ,k+1 ĩqs,k+1 (37)

ψ̃g,k+1 =
√
(Ls ĩds,k+1 + ψ f ,k+1)2 + (Ls ĩqs,k+1)2 (38)

The predicted currents ĩds,k+1 and ĩqs,k+1 are calculated using (32).
Thus, the MP DTC evaluates the value of (34) using the eight possible voltage vectors

and selects the first voltage vector that minimizes it and applies it to the machine terminals.
The MP DTC scheme for the MSC is illustrated in Figure 10.

3.2.3. Design of Model Predictive Current Control Scheme

The MP CC scheme is dedicated to regulating the d-q stator current components (ids,k,
iqs,k) of the SPMSG. This is accomplished by utilizing a weighting-free cost function, which
incorporates the absolute errors of the d-q current components. Thus, the MP CC utilizes
the inner current control loops, and, for this reason, it is considered as a transposition of the
FOC principle but with removing the PI regulators. The cost function of the MP CC [41]
can be expressed by

∩i
k+1 = |i∗ds,k+1 − ĩds,k+1|i + |i∗qs,k+1 − ĩqs,k+1|i (39)

In (39), the reference current i∗ds,k+1 is set to zero, while the reference current i∗qs,k+1

is obtained using (36). In addition, the predicted currents ĩds,k+1 and ĩqs,k+1 are evaluated
using (32). It is worth stating that the MP CC uses a weighting-free cost function, which
contributes to some extent in avoiding the ripples issue found in MP DPC and MP DTC.
However, as the current prediction process depends on the machine model, the MP CC is
still a time-consuming approach, in addition to the dependency on the model parameters,
which makes the cost function not generally robust. A schematic diagram of the MP CC for
the MSC is illustrated in Figure 11.
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3.2.4. Proposed Predictive Voltage Control Scheme

As an attempt to avoid the shortcomings of the model-dependent predictive con-
trol schemes described above, an effective predictive voltage control (PVC) scheme was
formulated. The main idea is based using a robust cost function, which has no parameter-
dependent terms. To fulfill this requirement, the d-q stator voltage components of the
SPMSG are selected as the cost function variables. Thus, the PVC operation is managed
using the following cost function represented at instant (k + 1)Ts.

∀i
k+1 =

∣∣∣u∗ds,k+1 − uds,k+1

∣∣∣i + ∣∣∣u∗qs,k+1 − uqs,k+1

∣∣∣i (40)

As seen in (40), all terms are of the same type; therefore, there is no need to use a
weighting value. In addition, the voltage components are not evaluated in terms of the
model parameters, which ensures high robustness.

The technique by which the PVC generates its references is described in Figure 12,
which presents possible control behaviors. In Figure 12, it is assumed that the reference
voltage u∗s is present in sector 5, and thus function (40) starts to check the vector that
ensures minimal error. Three bisectors are formulated inside sector 5, which are obtained
by intersecting the inter-median lines of the sector itself (S1, S2 and S3). By checking, there
are three possible vectors that can assume this role, being u5(001), u6(101) and u0(000)/or
u7(111), but the most appropriate vector is u6(101) as this causes the lowest deviation (ue6).
Consequently, by tracking the location of the reference vector and using (40), the designed
PVC is able to reach the control targets with minimal computation burden compared with
the functional forms of (29), (34) and (39).
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The actual d-q voltage components uds,k+1 and uqs,k+1 in (40) are obtained using the
FCS principle, which enables the evaluation of the voltage vectors in terms of the switching
states without using a PWM topology. On the other hand, the derivation of reference
voltage components u∗ds,k+1 and u∗qs,k+1 represents a central point of (40), as the references
can be obtained using different methods as discussed earlier in the introduction section.
One of these ways is to use the deadbeat principle to calculate the references; however,
this technique suffers from dependency on the model parameters, which negatively affects
the robustness of the cost function. Another method is to use traditional PI regulators to
generate the reference voltages, but this technique requires the addition of compensating
terms which are parameter-dependent and can be affected by system uncertainties. For
these reasons, in the current study, the reference d-q voltages are generated using two
designed stator flux and torque regulators, which can provide the reference voltages
directly without adding compensating terms.
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Design of Flux and Torque Regulators

The q-axis component of the stator flux is perpendicular to the stator-flux vector while
the d-axis component is aligned to the flux vector. This results in

ψdg,k+1 = |ψg,k+1|, and ψqg,k+1 = 0.0 (41)

Then, by substituting from (41) into the stator voltage equations of SPMSG:

uds,k+1 = Rids,k+1 +
d|ψg,k+1|

dt
(42)

uqs,k+1 = Riqs,k+1 + ωs,k+1|ψg,k+1| (43)

From (42), if the resistance voltage drop is ignored, the stator flux can be regulated
directly using the d-axis voltage component uds,k+1.

From Figure 13, which illustrates the relationship between the stator flux ψg,k+1 and
permanent magnet rotor flux ψ f ,k+1 vectors, the angular frequency of the stator flux (ωs,k+1)
can be calculated by

ωs,k+1 = ωg,k+1 +
dδk+1

dt
(44)

where δk+1 is the torque angle, and ωg,k+1 is the angular frequency of the SPMSG rotor.
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The q-axis current iqs,k+1 in (43) can be evaluated in terms of the torque by

iqs,k+1 =
Tg,k+1

1.5p|ψg,k+1|
(45)

Then, by substituting from (44) and (45) into (43):

uqs,k+1 = R
Tg,k+1

1.5p|ψg,k+1|
+

(
ωg,k+1 +

dδk+1
dt

)
|ψg,k+1| (46)

From (46), the torque can be regulated using the q-axis voltage component uqs,k+1.
Consequently, d-q reference voltages needed by (40) can be obtained using a torque

and flux regulators with outputs expressed by

u∗ds,k+1 =

(
KPψ +

KIψ

s

)
(ψ∗g,k+1 − ψ̃g,k+1) (47)

u∗qs,k+1 =

(
KPT +

KIT
s

)
(T∗g,k+1 − T̃g,k+1) (48)
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where KPψ, KIψ, KPT and KIT are the coefficients of flux and torque regulators, respectively.
Figure 14 represents the closed-loop flux model, which is obtained by applying the

Laplace transformation on (42).
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In Figure 14, the control object transfer function GPψ(s) and the flux regulator transfer
function GCψ(s) are represented by

GPψ(s) =
1
s

(49)

GCψ(s) =
KPψs + KIψ

s
(50)

By neglecting the resistance voltage drop, the transfer function of stator flux closed
loop can be expressed by

Gψ(s) =
GPψ(s)GCψ(s)

1 + GPψ(s)GCψ(s)
=

KPψs + KIψ

s2 + KPψs + KIψ
(51)

The transfer function (51) represents the dynamics of a second order system with an
auxiliary equation defined by

s2 + KPψs + KIψ = 0.0 (52)

On the other hand, second order system dynamics [17] can be represented by

s2 + 2ωnξs + ω2
n = 0.0 (53)

where ωn and ξ are the natural system frequency and damping coefficient, respectively.
By comparing, (52) and (53), the coefficients of flux regulators are obtained by

KPψ = 2ωnξ, and KIψ = ω2
n (54)

In the same manner, the torque regulator gains can be determined by analyzing (46).
From Figure 13, the torque can be expressed by

Tg,k+1 =
1.5p
Ls
|ψ f ,k+1||ψg,k+1| sin δk+1 = KT sin δk+1 (55)

By differentiating (55), and adding the result to (46):

uqs,k+1 =
RTg,k+1

1.5p|ψg,k+1|
+

ωg,k+1 +

dTg,k+1
dt

YT

|ψg,k+1| (56)

where YT = KT cos δk+1.
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Taking the Laplace transform of (56):

uqs,k+1(s) =

(
R

1.5p|ψg,k+1|(s)
+
|ψg,k+1|(s)

YT(s)
s

)
Tg,k+1(s) + ωg,k+1(s)|ψg,k+1|(s) (57)

Using (57), the closed-loop torque control can be constructed as shown in Figure 15,
where GPT(s) is the Laplace transform of the control object and GCT(s) is the Laplace
transform of the torque regulator. Both transformations are expressed by

GPT(s) =
1.5p|ψg,k+1|(s) ∗YT(s)

RYT(s) +
(

1.5p|ψg,k+1|2(s)
)

s
(58)
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GCT(s) =
KPTs + KIT

s
(59)

From Figure 15, the transfer function that outlines the dynamics of torque control loop
can be expressed by

GT(s) =
GPT(s)GCT(s)

1 + GPT(s)GCT(s)
=

KPTs + KIT

s2 + KPTs + KIT
=

(1.5p|ψg,k+1|(s) ∗YT(s)KPT)S + 1.5p|ψg,k+1|(s) ∗YT(s)KIT(
1.5p|ψg,k+1|2(s)

)
s2 + (RYT(s) + 1.5p|ψg,k+1|(s) ∗YT(s)KPT)s + 1.5p|ψg,k+1|(s) ∗YT(s)KIT

(60)

By comparing the terms of the characteristic equation in (60) with the characteristic
equation in (53), the coefficients of the torque regulator can be calculated as following

KPT =
3p|ψg,k+1|2ωnξ − RYT

1.5p|ψg,k+1|YT
, and KIT =

ω2
n|ψg,k+1|

YT
(61)

After evaluating the coefficients of flux and torque regulators, the reference voltages
u∗ds,k+1 and u∗qs,k+1 can be obtained and used in (40).

The schematic diagram of the proposed PVC for the MSC is illustrated in Figure 16.
The sequence of implementation for the proposed PVC scheme is given in Figure 17,

which shows the detailed procedure of selecting the optimal voltage vectors using cost
function (40).
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4. Test Results
4.1. Grid Connected Operating Regime

The first test was performed for the grid connection regime. The SPMSG was driven by
the wind turbine system described in Figure 1. The machine side converter was controlled
using the four described predictive controllers (MP DPC, MP DTC, MP CC and designed
PVC); meanwhile the grid side converter was controlled only by the MP CC.

The wind speed profile is shown in Figure 18, with a nominal speed of 10 m/s.
Figure 19 shows the generator speed under the four control approaches. From this figure,
the generator speed tracks appropriately the wind speed variation, giving the designed
PVC a priority in achieving a better smooth variation compared with the other techniques.
Figure 20 illustrates the turbine power coefficient variation for the four techniques. From
this figure, it is confirmed that the designed MPPT and blade pitch angle controllers
effectively achieved their targets by achieving maximum wind power extraction below
nominal speed and limiting the power above the nominal speed. This fact is also confirmed
in Figures 21 and 22 which show the variation of the tip speed ratio µ and blade pitch
angle β; both are switched from their normal values when the wind speed goes above
the nominal.

The generator performance was also evaluated using the four control algorithms. The
results are presented in a comparative manner. Figure 23 shows the generator active and
reactive powers, from which it is confirmed that the designed PVC exhibits the least ripples
content in comparison with the others. In addition, Figure 23 confirms the validity of the
control systems in achieving proper tracking for the wind power regime, as the active
power follows the wind variation profile, while the reactive power is maintained at zero.
Figure 24 shows a zoomed view for the power variation to illustrate the detailed power
dynamics under different controllers. Figure 25 illustrates the generator torque profiles
for the four controllers, from which the superiority of the designed PVC algorithm is also
confirmed. Figure 26 illustrates the profiles of the d-q components of the generator stator
current. A zoomed view for the d-q current components is shown in Figure 27 to illustrate
the deviation from the reference currents under different control systems. In this figure,
the PVC control ensures the least current oscillation. In addition, the d-axis component is
maintained at zero while the q-axis current follows the variation in the power and torque.

The ripples statistics of the generator variables are summarized in Table 1, from
which it is confirmed that the proposed PVC exhibits the lowest compared to the other
predictive controllers.

Table 1. Generator variables ripples (deviation from reference signals) under grid connection mode.

MP DPC MP DTC MP CC PVC

Generator active power ripples ±189.5 W ±128.8 W ±78.6 W ±38.8 W
Generator reactive power ripples ±141.4 Var ±122.6 Var ±76.2 Var ±29.6 Var

Generator torque ripples ±2.23 Nm ±1.38 Nm ±0.71 Nm ±0.39 Nm
D-axis stator current ripples ±0.66 A ±0.39 A ±0.19 A ±0.096 A
Q-axis stator current ripples ±1.21 A ±0.88 A ±0.41 A ±0.22 A

The generator currents are also illustrated for the four control algorithms as shown in
Figures 28–31, which represent the generated currents under MP DPC, MP DTC, MP CC
and proposed PVC control, respectively. From these figures, it can be confirmed that the
designed PVC algorithm presents the least current harmonics compared with the others,
which validates the effectiveness of the PVC. This was also investigated by applying FFT
analysis for the generated currents as is presented later.
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Figure 24. Zoomed view of active and reactive generator powers.

The grid side quantities were also measured. Figure 32 shows the active and reactive
powers at the grid side. From this figure it is confirmed that the PVC provides optimal
dynamics by limiting ripples. A zoomed view of the grid power variation is presented in
Figure 33 to illustrate power dynamics. Figure 34 shows the d-q components of the grid
current, in which the d-axis is held to zero following the reactive power, which is maintained
at zero to achieve unity pf operation. On the other hand, the q-current component follows
the active power variation. A detailed view for the current components is shown in
Figure 35. Finally, Figure 36 illustrates the DC link voltage profiles in which the PVC
maintains the voltage at its reference (400 V) with minimum oscillations compared with
the other techniques. All of these findings were also shown by the recorded grid variables
ripples, as presented in Table 2.
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Figure 25. PMSG torque for the grid connection regime.
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Table 2. Grid variables ripples (deviation from reference signals).

MP DPC MP DTC MP CC PVC

Grid active power ripples ±298.7 W ±223.3 W ±145.8 W ±103.6 W
Grid reactive power ripples ±138.6 Var ±106.2 Var ±81.7 Var ±46.8 Var
D-axis grid current ripples ±0.51 A ±0.38 A ±0.22 A ±0.16 A
Q-axis grid current ripples ±1.54 A ±1.16 A ±0.63 A ±0.24 A

DC link voltage ripples ±2.6 V ±1.8 V ±0.8 V ±0.3 V
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The comparison made between the four controllers in terms of the number of commu-
tations and the results is shown in Table 3, which shows that the PVC has the least number
of commutations and contributes effectively to reducing the computation burden that is
considered one of the main challenges of predictive control schemes.

As stated earlier, FFT analysis was used to analyse the generated current ripples with
the four predictive controllers. Figures 37–40 illustrate the three phase stator currents and
their relevant current spectra for the four controllers, respectively. Checking the spectrum
analysis figures, it is confirmed that the proposed PVC provides the lowest THD percentage.
The THD analysis is also presented statistically in Table 4.
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Figure 36. DC link voltage for the grid connection regime.

Table 3. Number of commutations for the four controllers.

Technique Number of Commutations

MP DPC 31430
MP DTC 30130
MP CC 65340

PVC 8394

The FFT spectrum analysis for the generated currents are presented in numerical form
in Table 4. The statistics confirm the effectiveness of the proposed PVC in achieving lower
THD in generated current signals in comparison with the other techniques.

Table 4. FFT analysis of generated currents for the four predictive controllers for the grid
connection case.

Current Phase MP DPC MP DTC MP CC Proposed PVC

Phase ‘a’ Fundamental (6.31943 A)
THD (10.56%)

Fundamental (7.04328 A)
THD (5.12%)

Fundamental (7.65033 A)
THD (3.26%)

Fundamental (7.5305 A)
THD (1.87%)

Phase ‘b’ Fundamental (6.31223 A)
THD (11.26%)

Fundamental (7.21395 A)
THD (4.55%)

Fundamental (7.5826 A)
THD (3.41%)

Fundamental (7.5062 A)
THD (1.88%)

Phase ‘c’ Fundamental (5.91479 A)
THD (17.97%)

Fundamental (7.03298 A)
THD (6.04%)

Fundamental (7.6745 A)
THD (2.44%)

Fundamental (7.6875 A)
THD (1.34%)



Energies 2022, 15, 1002 27 of 42

Energies 2022, 15, x FOR PEER REVIEW 27 of 43 
 

 

Table 3. Number of commutations for the four controllers. 

Technique Number of Commutations 

MP DPC 31430 

MP DTC 30130 

MP CC 65340 

PVC 8394 

As stated earlier, FFT analysis was used to analyse the generated current ripples with 

the four predictive controllers. Figures 37–40 illustrate the three phase stator currents and 

their relevant current spectra for the four controllers, respectively. Checking the spectrum 

analysis figures, it is confirmed that the proposed PVC provides the lowest THD percent-

age. The THD analysis is also presented statistically in Table 4. 

  

  

  

Figure 37. Generated currents and their relevant spectrum analysis using the MP DPC approach. 

  

Figure 37. Generated currents and their relevant spectrum analysis using the MP DPC approach.

Energies 2022, 15, x FOR PEER REVIEW 28 of 43 
 

 

 

  

  

  

Figure 38. Generated currents and their relevant spectrum analysis using the MP DTC approach. 

  

  

  

Figure 39. Generated currents and their relevant spectrum analysis using the MP CC approach. 

Figure 38. Generated currents and their relevant spectrum analysis using the MP DTC approach.



Energies 2022, 15, 1002 28 of 42

Energies 2022, 15, x FOR PEER REVIEW 28 of 43 
 

 

 

  

  

  

Figure 38. Generated currents and their relevant spectrum analysis using the MP DTC approach. 

  

  

  

Figure 39. Generated currents and their relevant spectrum analysis using the MP CC approach. Figure 39. Generated currents and their relevant spectrum analysis using the MP CC approach.

Energies 2022, 15, x FOR PEER REVIEW 29 of 43 
 

 

  

  

  

Figure 40. Generated currents and their relevant spectrum analysis using the proposed PVC ap-

proach. 

The FFT spectrum analysis for the generated currents are presented in numerical 

form in Table 4. The statistics confirm the effectiveness of the proposed PVC in achieving 

lower THD in generated current signals in comparison with the other techniques. 

Table 4. FFT analysis of generated currents for the four predictive controllers for the grid connection 

case. 

Current Phase MP DPC MP DTC MP CC Proposed PVC 

Phase ‘a’ 
Fundamental (6.31943 A) 

THD (10.56%) 

Fundamental (7.04328 A) 

THD (5.12%) 

Fundamental (7.65033 A) 

THD (3.26%) 

Fundamental (7.5305 A) 

THD (1.87%) 

Phase ‘b’ 
Fundamental (6.31223 A) 

THD (11.26%) 

Fundamental (7.21395 A) 

THD (4.55%) 

Fundamental (7.5826 A) 

THD (3.41%) 

Fundamental (7.5062 A) 

THD (1.88%) 

Phase ‘c’ 
Fundamental (5.91479 A) 

THD (17.97%) 

Fundamental (7.03298 A) 

THD (6.04%) 

Fundamental (7.6745 A) 

THD (2.44%) 

Fundamental (7.6875 A) 

THD (1.34%) 

4.2. Stand-Alone Operating Regime 

The dynamic performance of the four controllers was also tested under stand-alone 

operation in which the wind generation system was connected to an average DC isolated 

load and connected to a battery storage system. This test illustrated the effectiveness of 

the power handling/management system used to regulate the power flow between the 

SPMSG, DC link, load and battery system. The comparison was performed mainly for the 

PMSG generator quantities. In addition, the power flow and current flow between the 

different system units are also presented for the four controllers. 

Figure 41 illustrates the wind speed profile, which is different from that used in Sec-

tion 4.1 to test the generator dynamics. Figures 42 and 43 show the general and detailed 

sectional views of generator active and reactive power using the four controllers. From 
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4.2. Stand-Alone Operating Regime

The dynamic performance of the four controllers was also tested under stand-alone
operation in which the wind generation system was connected to an average DC isolated
load and connected to a battery storage system. This test illustrated the effectiveness of
the power handling/management system used to regulate the power flow between the
SPMSG, DC link, load and battery system. The comparison was performed mainly for the
PMSG generator quantities. In addition, the power flow and current flow between the
different system units are also presented for the four controllers.

Figure 41 illustrates the wind speed profile, which is different from that used in
Section 4.1 to test the generator dynamics. Figures 42 and 43 show the general and detailed
sectional views of generator active and reactive power using the four controllers. From these
figures, it is shown that the designed PVC provided minimum power oscillations compared
with the other controllers. This is confirmed in Figure 44 that shows the generator torque,
which tracks the change in active power, and tracks the wind speed variation. Figure 45
provides the d-q components of the generator current using the four controllers. The d-axis
current is kept effectively at zero following the dynamic of the reactive power, which is
also maintained at zero, while the q-axis current follows the change in the torque and active
power. The superiority of the PVC is present in this figure through achieving the minimum
d-q current deviations. The generator current profiles for the four controllers are shown,
respectively, in Figures 46–49, respectively. In these figures, the PVC exhibits the minimum
current harmonics.
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Figure 49. Generator currents under PVC for stand-alone operation.

To provide a detailed view of the generated current harmonics, FFT analysis was
performed for the currents obtained using the four control techniques. The current spectra
are shown, respectively, in Figures 50–53. From visual observation, it is clear that the PVC
has the lowest current THD in comparison with the other three controllers. In addition,
the THD analysis is presented numerically in Table 5. The THD statistics confirm the
effectiveness of the proposed PVC in maintaining the lowest THD percentage.

The dynamics of the four controllers were also evaluated concerning power flow
management between the generator, dc link, load and battery system. This is in addition to
the illustration of battery charging/discharging states.
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Table 5. FFT analysis of generated currents for the four predictive controllers for standalone operation.

Current Phase MP DPC MP DTC MP CC Proposed PVC

Phase ‘a’ Fundamental (10.6698 A)
THD (15.05%)

Fundamental (9.60881 A)
THD (16.64%)

Fundamental (10.5553 A)
THD (6.38%)

Fundamental (10.7981 A)
THD (3.32%)

Phase ‘b’ Fundamental (10.6817 A)
THD (16.04%)

Fundamental (9.20723 A)
THD (12.64%)

Fundamental (10.6452 A)
THD (6.30%)

Fundamental (10.9086 A)
THD (4.07%)

Phase ‘c’ Fundamental (9.80714 A)
THD (12.51%)

Fundamental (8.7651 A)
THD (9.21%)

Fundamental (10.432 A)
THD (5.67%)

Fundamental (10.6933 A)
THD (2.39%)

4.2.1. Power Flow Using Model Predictive Direct Power Control

Figures 54 and 55 illustrate the power flow and current flow for each system unit
under the MP DPC. From these figures it is confirmed that the power management system
has succeeded in making a power balance between the different units. However, the ripples
in the generator power and current are obvious. Figure 56 illustrates the battery voltage,
battery current and SOC of the battery.
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4.2.2. Power Flow Using Model Predictive Direct Torque Control

The power and current flow under the MP DTC is illustrated in Figures 57 and 58
with similar observations concerning ripples of the generator power and current. Power
management between each unit is confirmed and can be easily identified. Figure 59 shows
the battery voltage, battery current and SOC under MP DTC control.
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4.2.3. Power Flow Using Model Predictive Current Control

The power and current flows in the system units were also investigated under MP CC
as shown in Figures 60 and 61, respectively. The power and current were appropriately
managed, although the generator power and current still exhibit ripples even though they
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are lower than their corresponding values under MP DPC and MP DTC. Figure 62 shows
the battery voltage, battery current and SOC under MP CC control.
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4.2.3. Power Flow Using Model Predictive Current Control

The power and current flows in the system units were also investigated under MP CC
as shown in Figures 60 and 61, respectively. The power and current were appropriately
managed, although the generator power and current still exhibit ripples even though they
are lower than their corresponding values under MP DPC and MP DTC. Figure 62 shows
the battery voltage, battery current and SOC under MP CC control.

Figure 60. Power flow in different system units under MP CC control.
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4.2.4. Power Flow Using Proposed Predictive Voltage Control

The power and current flows were also tested with the designed PVC. As shown in
Figures 63 and 64, PVC exhibits much lower ripples in the generator power and current
compared with the other controllers. At the same time, power management is effectively
achieved. Lastly, Figure 65 illustrates the battery voltage, battery current and SOC of the
battery under the PVC.

A comparison was also made between the four controllers in terms of the number of
commutations; the results are shown in Table 6. PVC has the least number of commutations,
which contributes effectively to reducing the computation burden.

Table 6. Number of commutations for the four controllers.

Technique Number of Commutations

MP DPC 308300
MP DTC 299800
MP CC 321700

PVC 39710
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5. Conclusions

This research presented an effective predictive voltage control scheme to enhance
the dynamic performance of a wind-driven permanent magnet synchronous generator
operating in two modes of operation: grid connection and stand-alone operation. For the
stand-alone operation, a battery management system was incorporated to enhance and
manage the power delivery to the isolated loads. A complete wind turbine driving system
was constructed and is described in detail. To clarify the validity of the proposed controller,
the performance of the generator was evaluated using three classical predictive controllers:
model predictive direct power control, model predictive direct torque control and model
predictive current control. A detailed performance comparison was conducted between the
four controllers in terms of variable ripples and THD currents. The results show that the
proposed controller had the most effective dynamic performance in comparison with the
other controllers, confirmed by its simple structure, low ripples, low computation burdens
and low current harmonics. Furthermore, the effectiveness of the battery storage system
was shown by smooth power exchange between the generator, battery and isolated loads.
To summarize:
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• The study presented a novel predictive voltage control technique to improve the
dynamic performance of a wind driven permanent magnet synchronous generator
under two operating conditions.

• A wind turbine driving system was constructed and described in detail.
• A detailed design of a battery storage system is presented to manage power flow

exchange between the different units of the wind generation system.
• The research involved comprehensive performance comparison between the proposed

control scheme and three classical controllers to show the features of each control
system and outline their advantages and shortcomings.

• The results revealed that the proposed predictive voltage controller had the most
effective dynamic performance among the four used controllers. This was based on its
simple structure, low ripples, low computation burdens, and low current harmonics.
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Abbreviations and Nomenclature

SPMSG Surface permanent magnet synchronous generator
MPC Model predictive control
MP DPC Model predictive direct power control
MP DTC Model predictive direct torque control
MP CC Model predictive current control
PVC Predictive voltage control
MPPT Maximum power point tracking
DFIG Doubly fed induction generator
FOC Field oriented control
DTC Direct torque control
THD Total harmonics distortion
PWM Pulse width modulation
SVPWM Space vector pulse width modulation
FCS Finite control set
MSC Machine side converter
GSC Grid side converter
DC Direct current
LAB Lead acid battery
APS Autonomous power supply
DOD Depth of discharge
β Blade pitch angle
µ Tip speed ratio
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µopt Optimal tip speed ratio
Vw Wind speed
Vw,nom Nominal wind speed
Cp Turbine power coefficient
Cp,max Maximum turbine power coefficient
Pt Turbine power
Pt,max Maximum turbine power
Pw Wind power
Pg, P∗g Actual and reference active generator powers
Qg, Q∗g Actual and reference reactive generator powers
Pnominal , Qnominal Nominal active and reactive powers of the generator
PDC, PL DC link and load powers
Tt, Tg, Tf Turbine, generator and friction torques.
Jt, Jg Turbine and generator inertias, respectively.
F Friction coefficient
R Generator stator resistance
Ls Generator stator inductance
ωg Generator shaft speed
ωs Generator electrical speed
ωe Angular frequency of the grid
p Pole pairs number
ψg Generator flux
ψ f Permanent magnet flux
ids, iqs d-q components of generator stator current
uds, uqs d-q components of generator stator voltage
udg, uqg d-q components of grid voltage
R f , L f Resistance and inductance of the grid filter
id f , iq f d-q axis current components of electric utility
Udc, U∗dc Actual and reference DC link voltages
C DC link capacitance
Cb, Cs Bulk and surface capacitances of the battery
Rs, Re, Rt Surface, end and terminal resistances of the battery
Ucb, Ucs Bulk and surface capacitance voltages
Ibat, Ib, Is Battery, bulk and surface currents
Idc, IL DC link and load currents, respectively
w f Weighting factor
δ Generator torque angle
Ts Sampling time

Appendix A

Table A1. Turbine and SPMSG parameters.

Parameter Value Parameter Value

r 2 m p 4
CPmax 0.472 R 0.82 Ω
µopt 8.1 Ls 15.1 mH
Pnom 3.9 KW ψf 0.5 Vs

Vw,nom 10 m/s Rf and Lf 0.1 Ω and 3 mH
K 3.83 Cdc 2200 µF
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Table A2. Battery parameters and specifications.

Parameter Value Parameter Value

Rt 2.75 mΩ Lbat 30 mH
Re 3.75 mΩ Capacity 50 Ah
Rs 3.75 mΩ Rated voltage 240 V
Cb 8.8373 F DOD (%) 60%
Cs 82.1 mF ηbat % 85%
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