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Abstract: Many countries have larger land areas and scattered communities. Therefore, to elec-
trify them, small standalone power systems are the more preferred and cost-efficient solution as
compared to utility grid extensions. The main objective of a standalone power system is to supply
cleaner, cheaper, and uninterrupted electricity. However, for standalone power systems, demand-side
management always remains a challenging task. In this paper, a load scheduling algorithm driven
by K-mean clustering and linear integer programming to schedule consumers’ appliances for the
upcoming day is proposed. In addition, the basic power to run the necessary appliances is kept
available in the system all the time. Furthermore, to assist the consumer in every situation, the battery
storage system and the overall system size reduction are also taken into consideration. Consumer
input is also used in scheduling the appliances. The proposed method is evaluated on the publicly
available real-world dataset; the simulation results demonstrate that the proposed approach performs
better, due to which the reliability and continuity of the system are increased.

Keywords: standalone hybrid renewable energy system; K-mean clustering; demand-side manage-
ment; demand response

1. Introduction

The electrification of remote and islanded villages from the central grid system is a
challenging and expensive task. It leaves 15% of the world’s population without electric-
ity [1]. Especially in remote areas, due to economic and geographic reasons, people face so
many challenges related to energy supply [2]. In the current era, the usage of electricity in
all countries is increasing day by day. In [3], it is mentioned that electricity consumption
will increase by 53% in 2035. Therefore, the most challenging task for smart grids is to
keep the balance between consumption and generation. This is particularly true for those
residential areas which are located far away from the electricity network, with most of
them using diesel generators [4,5]. There are some disadvantages in the use of these diesel
generators, i.e., its negative impact on the environment, fuel carrying, and variation in
fuel prices [6]. To resolve the preceding problems, the use of renewable energy sources
for electricity generation has increased [7,8] since wind and solar are the two renewable
energy sources that are ubiquitous in nature. These renewable energy sources are useful
for the electrification of islanded areas and have many advantages, but at the same time,
they also have some disadvantages such as their dependency on weather conditions and
unpredictable nature. In addition, solar energy and wind turbines are unable to meet
the consumption demand on critical days due to a lack of the required solar irradiations
and wind speed [9]. The research community has devised different approaches to resolve
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these problems; the most appropriate approach is demand-side management (DSM). We
can overcome the power outage problem with the help of DSM and perform the optimal
scheduling of appliances according to the weather conditions. The main objective of DSM
is the continual availability of electricity for appliances of basic use, while other appliances
are scheduled according to consumer convenience.

DSM has an important feature which is called demand response (DR) [10,11], and
it deals with the residential, commercial, and industrial sectors. In DR strategies, two
important points are customer convenience in reducing energy consumption as well as
the load curve peak shaving and valley filling. In the existing literature work related to
standalone systems, most of the work is focused on DSM and DR in relation to the economic
point of view. In [12], appliance usage is defined based on time-varying electricity tariffs
and coordination between grid supply, photovoltaic, and battery. An analysis of different
techniques based on dynamic pricing tariffs is summarized in [13] for shaving peak hours
and reducing load usage. In the literature, different optimization techniques for DSM have
been proposed in which advanced metering infrastructure-based energy management [14],
evolutionary algorithm [15], and binary partial swam optimization heuristic algorithm [16]
are included. In all of these previously mentioned papers, the load shifting and control
techniques are set forth without consideration of customer behavior towards insufficient
electricity supply and generation constraints [17].

In [18], a novel approach based on the Dijkstra algorithm was proposed to reduce
the cost for customers by adopting the less computational complexity strategy. In [19,20],
the authors proposed an autonomous DSM system based on game-theoretic energy con-
sumption scheduling for energy demand in order to reduce the overall energy costs and
the peak-to-average ratio (PAR) of the total energy demand. Moreover, in [21], a genetic
algorithm was used to minimize the energy consumption of commercial, industrial, and
residential buildings. A modified mild intrusive genetic algorithm (MMIGA) was devel-
oped for off-grid residential buildings [4], and an ant colony algorithm was proposed to
solve the optimization scheduling problem [22]. It optimizes the overall cost of the system
by considering load demand, electricity wholesale market prices, meteorological data, and
the operation of the micro grid for 24 h.

However, for the last several years, linear programming (LP) has remained an attrac-
tive field for the implementation of DSM [23]. In [24], an optimum energy management
system for a small business or household using LP was proposed. In [25], a hybrid iterative
load disaggregation algorithm using LP and clustering techniques was proposed to achieve
better accuracy for all types of household appliances. Mixed-integer linear programming
(MILP) was used in [26] to obtain the minimum household payment and to decrease the
PAR of the load profile. In [27], an MILP formulation was presented to control the energy
consumption price of the household appliances based on electricity tariffs. The objective
function and constraints in MILP are linear equations, while the variables can be real or
integer values [28]. In [29], an effective approach was presented to reduce the power and
energy losses in a distribution network by using the storage systems. In [30], the positive
effects of demand response and storage systems on the optimal management of a smart
home were evaluated. In [31], a demand management system using convex programming
for the energy storage system was proposed for a house with a battery and an electric
vehicle. The authors of [32] provided a detailed analysis examining the effects of battery
storage on micro grids to reduce their operational costs.

Another problem in optimizing the standalone grids is big data processing. To analyze
the high-volume datasets [33], traditional methods for sample averaging are not a suitable
choice [34,35]. However, in smart grid systems, analyzing the data based on machine
learning algorithms has been gaining more attention. Clustering is one of these machine-
learning algorithms which divides the dataset into different groups based on the similarity
of a data point. Currently, for electrical power plant issues, the use of clustering has been
increased. Therefore, many systems have analyzed load consumption data with the help of
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clustering. For example, in [36], with the help of fuzzy c means and linkage clustering, the
load data from seven regions in Italy were investigated to achieve significant output.

In [37], dynamic clustering was used to get the peak hours of consumption patterns.
In [38], K-means and hierarchal clustering were used to cluster the substations into some
categories according to their load profiles scanned shape. In [38], K-means and hierarchical
clustering were used to compare their results for load profiles. In [39], with the help of
clustering, commercial load profiles were analyzed. In [40], clustering was used for the
coordination of wind turbines. In addition, the power generation and wind speed of
solar-based distribution networks were analyzed by using Linkage-ward clustering [41].
In addition, clustering was used to analyze the commercial load profile [39] and also to
analyze the behavior of renewable sources, just as in [40] where clustering was used for
the coordination of wind turbines. In [41,42], wind power generation and quality were
analyzed by using fuzzy c mean clustering [42]. In the existing research work related
to DSM, most of them lack the modeling of hybrid energy resources [43]. The MILP
base problem was proposed in [44] for off-grid residential houses which contain PV and
batteries; by considering the supply and demand constraints, it was formulated that the
load demand must be less than the available power all the time. However, the power
supply from these constraints was continuous, and it did not define the best time for using
controllable appliances. In [45], the linkage-ward clustering method was used to define
time-varying tariffs and schedule the appliances according to the pre-determined hourly
energy generation. Clusters were formed using the probability of their occurrence, and
objective function was formulated using time-varying tariffs. Existing research works
designed on the basis of time-varying tariffs lack consumer input as a variable function in
scheduling the appliances. Furthermore, the time-varying tariffs increase the size of the
generation system, and as a result, the overall capital cost of the system is increased.

In this work, a DSM algorithm is proposed as shown Figure 1. By using renewable
resources such as PV and wind turbines for those houses that are located far away from the
main city. A battery storage bank is included in the system to provide the baseload power
at the time when renewable sources are not sufficient to meet the baseload power demand.
Diesel generators equal to the rating of the baseload are kept as backup to avoid total
black out in the worst conditions. Our objectives are to schedule and shift the controllable
appliances by estimating hourly power generation and by considering consumer demand
as a variable function. The appliances are prioritized based on their need and demand to
achieve optimum energy utilization.

The main contributions of this paper include the following:

• A demand-side management algorithm is proposed to fulfil the energy gap between
generation and consumer demand for standalone renewable energy systems;

• K-mean clustering is used to group the data based on two factors: probability of turn-
ing on a specific appliance at time t, and the priority number given by the consumer
to that specific appliance;

• Linear integer programming is used to schedule the clusters of appliances based on
the available power and state of charge of the battery system.
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Figure 1. Block diagram of the proposed method.

The rest of the paper is organized as follows: Section 2 explains the modeling of
electricity generation sources in the system and the factors affecting their output. The
system model and problem formulation are presented in Section 3. Our proposed demand
management system is presented in Section 4. The experimental setup, results, and empiri-
cal analyses of the proposed approach are reported in Section 5. Finally, the concluding
remarks are given in Section 6.

2. Mathematical Modeling of the Energy Sources

Standalone renewable energy sources considered in this work are: solar panels, wind
turbines, battery storage systems, and diesel generators. Parameters affecting the generating
capacity of each source are discussed in the upcoming sections.

2.1. Solar Panels

Photovoltaic cells combined in panels are used to convert solar energy into electricity.
Panels are stacked in series to form strings, and these strings are connected in parallel
to build PV arrays. The number of PV arrays is increased to achieve the required level
of electricity production. Solar irradiance falls onto the PV arrays, which converts solar
energy into DC voltage and current. After the installation of the PV arrays, solar irradiance
and temperature are considered as the key factors in the production of electricity. Based
on different locations, losses of up to 10% are considered due to dirt and snow. Although
sun-tracking features are added to increase the output of a single array, in this study, we
used a fixed optimized installation position for PV arrays.

The output power of the PV arrays fluctuates due to weather conditions, solar irra-
diance, and temperature. Therefore, considering all PV strings are exposed to the same
conditions, the approximate output power of PV arrays can be calculated by using Equa-
tion (1) [46]

Psolar = n× Psolar,rated ×
S(t)
Sre f
× ηloss × ηPV

conv (1)
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where Psolar, Psolar,rated, and n are the PV arrays’ output power, the rated power of a single
PV array, and the number of arrays in the system, respectively. Furthermore, S(t) and Sre f

are the solar irradiance on the PV module surface (kW/m2) at time t and the reference
solar irradiance (1.5 AM), respectively. In addition, ηloss and ηPV

conv provide the efficiency
standing for the loss due to temperature and the DC–DC converter efficiency, respectively.

ηloss(t) = 1− λ(Tcell − 25)

Tcell(t) = Ta(t)− S(t)
0.8 × (TNOCT − 20)

(2)

where λ stands for the temperature coefficient (0.00485/◦C), Tcell(t), Ta(t) and TNOCT are
the temperature of the PV cell, the ambient temperature, and the nominal operating
temperature (i.e., 45 ◦C), respectively. By using Equations (1) and (2), the PV system is
designed according to the consumer load whose annual load peak curve is the highest out
of all the consumers in the community.

2.2. Wind Farm

Wind is another renewable source of electricity, available at most places. Wind turbines
are used to extract energy from the wind and convert it into electricity. The rotor blades,
gearbox, and generator are the main parts of the wind turbine. The power produced from
wind is estimated by using Equation (3):

Pwind =
1
2

ρAV3Cp (3)

where ρ is the air density (i.e., 1.255 kg/m3), A is the area swept by the rotor blades in
m2, and V is the velocity of air in m/s. It can be seen that wind power (Pwind) is directly
proportional to a cube of air velocity. In addition, the actual power extracted from the wind
is the difference between upstream and downstream wind power. In Equation (3), Cp is the
fraction of upstream wind power that is converted into electricity by the blades, and the
remaining power is wasted in the downstream wind. Here, Cp represents rotor efficiency,
and theoretically, the maximum value of rotor efficiency is 0.59. In particular, it varies from
0.2 to 0.5, depending on the turbine speed and the number of blades. In this study, we
assumed it to be 0.45.

Pwind(t) =


0 ; v(t) ≤ vin or v(t) ≥ vout

Pwind,rated ×
v(t)−vin
vr−vin

; vin ≤ v(t) ≤ vr

Pwind ; vr ≤ v(t) ≤ vout

(4)

where v(t) is the wind speed at time t, vin is the wind turbine’s minimum operating speed,
vout is the wind turbine’s maximum operating speed, and vr is the rated wind speed for
the turbine. The capacity of the wind turbine installed is equal to the load of the consumer
whose annual peak load curve is the highest in the community.

2.3. Battery Storage

A storage system is an essential part of the renewable standalone system that bridges
the gap between the base power and the generated power when no renewable energy
source is available for conversion. Batteries are the most preferred storage system as they
are easy to install and scalable for every type of load, with a 6–10-year lifespan.

The efficiency of the battery system depends on two parameters: the first one is
the state of charge (SOC), and the other one is the depth of discharge (DOD). These two
parameters are controlled to increase the battery lifetime and system reliability.

Since it depends on the yearly weather forecast for the selected site, the battery storage
system is designed to fulfil the baseload demand of the community throughout the year. In
this work, two assumptions are made related to the dynamic behavior of battery storage:
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1. The SOC of the storage battery changes linearly, and the charging and discharging
power are uniform;

2. The charging and discharging efficiency of the battery is 100%.

PBatt = (SOC− DOD)× Prated(battery) (5)

2.4. Diesel Generator

A non-renewable energy source such as a fossil fuel-consuming generator is also used
as a backup and for emergency situations. The benefit of a diesel generator is that it is
detachable and easy to attach to the system when needed again. On the other hand, its
drawback is that it consumes fossil fuel, which causes pollution and has worse effects on
human health and the environment. Currently, it is widely used in remote areas to generate
electricity and make the lives of the inhabitants easier. The electricity production cost
depends on the efficiency of the generator and the fuel used. Although generators make
human life easier, they are still expensive and not affordable for everyone.

In our proposed management algorithm, we minimize the use of diesel generators
in the system. The proposed system maintains the minimum electric power required by
every consumer in the system all the time. This is the power needed by basic household
appliances such as tube lights, refrigerators, and fans. A diesel generator is included in
the system to compensate for a total blackout situation. The capacity of a diesel generator
is equal to the sum of the energy requirements of basic appliances of all houses in the
community.

3. System Model and Problem Formulation

Generation systems are always designed to match the load from peak hours, which
results in the wastage of energy in off-peak hours. A better energy demand management
system reduces the wastage of energy in off-peak hours and decreases the capital investment
of the system as well. This paper proposes a demand-side management system based on
two algorithms: first, the K-mean clustering algorithm based on appliances’ weights, and
second is the linear integer programming (LIP) algorithm that schedules the appliances
according to the available power in the system. Further details on these two algorithms are
discussed in the following sections.

3.1. Probability Weights

Most of the consumers feel comfortable in using their appliances at a time of their
choosing. As the restriction on the usage of appliances without considering consumer
consent is not acceptable to the community, in this paper, consumer choice is considered in
the scheduling of their appliances. Each appliance is given a weight based on its probability
of usage at that hour, on a specific day and month. Available renewable energy is allocated
among the consumers’ appliances whose probability of usage at that specific hour is the
highest based on previous data.

Let Ai be the ith number of appliances at a consumer’s house cj, where j is the house
number. The probability of turning on the appliance Ai,j at hour h on weekday Y is
calculated by using the Bayes’ theorem, as stated in Equation (6):

H = Event occurs at hour h

Y = Day o f the week

wi,j(H/Y) = Pr(H,Y)
Pr(Y)

(6)

3.2. K-Mean Clustering

The consumer data are categorized into a matrix <j×i based on the probability
weights and consumer priority. The number of appliances in a house is represented
by A = [a1, a2, . . . , ai], and the appliance probability weights in house j are denoted by
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Wj = [w1, w2, . . . wi], where i is the total number of appliances in a house. Consumers are
represented by C =

[
c1, c2, . . . , cj

]
, where j is the total number of houses in the community.

The priority for each appliance as set by the consumer j for an appliance i is denoted
by Ej,i = z where z = 0→ 1 . For example, E1,2(t) = 0.6 shows that consumer 1 set the
priority at 0.6 for the second appliance at time t.

In particular, consumer appliance data are denoted by Equation (7):

Dj(t) =
[
d1,j(t), d2,j(t), . . . , dn,j(t)

]
(7)

di,j(t) = wi(t) + Ei,j(t) (8)

where j is the number of houses in the community, and di,j is the array containing the
probability weight of appliances i and its priority number at time t. Time is divided into
each hour of the day for 365 days; therefore, in total, we have 8760 timestamps for a
year. The consumer can update their appliance preferences once a month for each day of
the week.

In addition, the K-mean clustering algorithm is applied to the data D = {d1,, d2, . . . , dn}
to make k number of clusters on the basis of appliance data at time t (d(t)). For a given set
of data, K-mean clustering returns the k cluster centroids V = {v1, v2,, . . . , vk}. Through
this clustering algorithm, we get the clusters for each hour and each day of the week as
the number of clusters for each timestamp is greater than 1, and the maximum number of
clusters that can be formed is equal to the total number of appliances in the community.
The distance of the data point di,j from the centroid of each cluster is calculated by using
the Euclidean distance formula. The complete clustering procedure used in this study is
illustrated in Algorithm 1.

Algorithm 1: K-mean clustering algorithm

Input: Appliance data of each consumer Di,j(t)
Initialize: select k number of clusters (Ck) with their centroid value Vk
Flag = 0

1. While cluster size remains unchanged do
2. Calculate the Euclidean distance of each data point from the mean of cluster ‖di,j −Vk‖
3. Assign the data point to the cluster whose Euclidean distance with mean is minimum
4. Recalculate the cluster means
5. Calculate the size of the clusters
6. If the cluster size is unchanged then

Set Flag = 1
Terminate the while loop
end if

7. Update: cluster means
8. end while
9. Arrange clusters in an array C in descending order with respect to their centroids
10. Output: Array containing k number of clusters in descending order of their centroids

C(v) ∀ v = 2, 3, . . . , n.

3.3. Battery Management System

The controlled charging and discharging of batteries will increase the reliability of the
system and the lifetime of the batteries. Battery power is reserved for fulfilling the basic load
requirements for 24 h, and the excess power is distributed among the consumers. However,
batteries are charged on a priority basis if the supply of basic energy is not available for
6 h before scheduling the consumer appliances, in which case DOD is considered in the
calculation to increase the efficiency of the batteries. The SOC of the battery is also a decision
variable in determining the storage power. The reserved power in the battery Preserved(t) is
calculated by using Equation (9). Pgenerated(t) is the schedulable power available at time t
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after subtracting the baseload power Pbasic from the total generated power. The power is
reserved in the storage system to supply the base power for an uninterrupted 6 h period.

Preserved(t) = 6 ∗ Pbasic − PBatt(t) (9)

Pgenerated(t) = Pwind(t) + Psolar(t)− Pbasic(t) (10)

Z(t) = Pgenerated(t) + ∂(t) ∗ Pbattery(t) (11)

where ∂ is the sign with Pbattery, which represents the battery condition either in its charging
state or discharging state.

∂(t) =
{

+ ive i f Pgenerated(t) or Preserved(t) < 0
− ive i f Pgenerated(t) and Preserved(t) > 0

(12)

3.4. Linear Integer Programming

Total power available at time t is distributed among the appliances using the linear
integer programming (LIP) algorithm. The objective function of the LIP is to minimize the
difference between available power and rated appliance power scheduled at time t. The
constraints of LIP restrict the scheduling of more than two appliances for one consumer.
This helps in distributing the available power to more consumers.

The total power available at time t is represented by Z(t), and P(t) is the power
calculated by LIP for the appliances that can be scheduled at time t. Furthermore, the p
array contains the power rating of the available appliances in the community, and p(v)
contains the appliance power rating in the cluster v. In addition, binary variables Xi,j(t)
are used to denote the state of the i-th appliance in j-th house at time t. The algorithm runs
for a period of 24 h and schedules the appliances for each hour in advance.

Xi.j(t) =
{

1 if appliance i in house j is schudule in time t
0 otherwise

(13)

P(t) =
n

∑
j=1

Pj(t) (14)

Pj(t) =
n

∑
i=1

Xi,j(t)p (15)

The objective function is formulated by using Equation (16), subject to constraints in
Equations (17) and (18).

minimize
Xi,j(t)

24

∑
t=1

(Z(t)− P(t)) (16)

n

∑
i=0

Xi,j(t) ≤ 2 (17)

Xi,j(t) ∈ {0, 1}, ∀ i, j, t (18)

4. Proposed Demand Management System

In this section, we describe the proposed demand energy management system al-
gorithm. The flowchart of the proposed system is shown in Figure 2. This algorithm
is presented in two halves, as Algorithms 2 and 3. This system discloses the appliance
scheduling to the consumer one day in advance. The weather forecast data for the next 24 h
are obtained from [47] to predict the power generation Z(t) for each hour. The predicted
power is then scheduled for the consumers according to the clusters formed.
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1 
 

 

Figure 2. Work flow of the proposed management system.

Consumer appliances are divided into v clusters based on their probability weights and
consumer priority number for each hour. Since the centroids of each cluster vary between 0
and 2, where 2 is the maximum and zero represents the least important appliances at that
hour. If the probability weight of an appliance is 1, and consumer priority is also set to 1,
then it is placed in the cluster with a centroid approximately equal to 2. The likelihood of
this appliance being turned on is the highest for that hour if power is available.

Algorithm 2: Categorization of Data

Input: Appliance consumption data of the community
Consumer appliance preference for weekdays.

1. Bayes’ theorem is used to determine the weight of the appliances wi(t), ∀ t ∈ [H, Y]
2. Add appliance weight and consumer appliance to determine di,j(t)
3. k number Clusters are generated by using the K-mean clustering algorithm

Output: Consumer appliance data in the form of clusters.

Algorithm 3 runs to allocate the consumer’s appliance usage timeline for 24 h. For
each iteration t of the algorithm, the solar and wind energy is predicted to calculate the
total available power at that hour. At the start of this algorithm, Z(t) = Z(t) and v = 1,
where Z(t) is the power fed to the LIP for the appliance schedule, and v represents the
cluster number. In particular, p(v) is the power rating of the appliances present in cluster
v. Furthermore, the linear integer program runs in a loop to check the appliances in
every cluster until Z(t) < minp, where p is an array containing the power rating of all
the appliances available in the community. However, in each iteration, the scheduled
appliances are stored in an array P(v), cluster number v is increased by 1, and Z(t) is
updated to the remaining power available for allocation after each iteration in hour t. If
condition Z(t) < minp fulfills and the for loop is terminated, the scheduled appliances are
stored in an array P(t) for time t, and the value of t is increased by 1; the whole process
goes on for the next hour until t ≤ 24. Finally, the while loop terminates when t reaches the
number 24, and the output array P(t) contains the appliance schedule for the next 24 h.
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Algorithm 3: Demand Management System Algorithm

Initialize: t = 1, Z(t) = Z(1), ∀ t = 1, 2 . . . 24
Flag = 0

1. while t ≤ 24 do
2. Predict the solar energy for time t using Equation (1)
3. Predict the wind energy for time t using Equation (4)
4. Use Equation (11) to determine the available power Z(t) at time t.
5. Set v = 1 & Z(t) == Z(t)
6. for Z(t) < minp

7. Use LIP to determine Pv(t) =
m
∑

j=1
Pj(t) where

Pj(t) =
n
∑

i=1
Xi,j(t)p(v), ∀j = {1, 2, . . . , m}

8. Update Z(t) = Z(t)− Pv(t)
9. Update v = v + 1
10. Update P(v)

at time t
= [Pv(t)]

11. end for
12. Update P(t) = P(v)
13. Update t = t + 1
14. end while
15. Output: Appliances schedule P(t).

5. Results

In this section, we present the simulation results to assess the performance of our
proposed algorithm. For analysis, we considered a community with five houses, and each
house has some schedulable appliances, as shown in Table 1. The load pattern of the five
houses is taken from two publicly available datasets, i.e., UK-dale [48] and Ampds [49]. In
this study, only those houses that have a minimum of six months of readings are considered.

Table 1. Schedulable appliances in each house.

House Boiler DW Micro WM HD Oven

1 X X X X
2 X X
3 X X
4 X X X X X
5 X X X

We also considered a baseload power for every house that could not be scheduled
and had to be available at all times. The appliances for each house such as lights, fans,
charging plugs, and a refrigerator were considered as baseload, and the sum of their power
ratings were termed as base power for each house. In this system, we assumed 1000 watts
as base power for every house, and an uninterrupted supply of base power was assured
for every house.

Although the main objective of our algorithm was to produce a continuous power
supply for the baseload, the consumer’s usage behavior for schedulable appliances was
given priority in the proposed load management system. In this system, consumer prefer-
ences are taken for each day of the week once a month, and to further enhance the user
experience, it can also be taken once a week. Consumer preferences are termed as consumer
weight for each appliance, and its value varies between 0 and 1, where 1 is the maximum
and 0 is the minimum.

The weightage of the appliance was calculated for each hour and each day of the week
based on its usage history for the last six months using Equation (19).
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We ran the proposed management system to schedule the data for one week in
January to verify the results. The consumer-given appliance weights for the week under
consideration are shown in Figure 3. To further compare the schedulable appliances with
the consumer’s priority, we analyzed the results for one day of the week, that is, Monday.
For instance, if a consumer is required to use a washing machine only on Mondays, in that
scenario, our proposed management system will make sure that the consumer’s washing
machine is scheduled for Monday according to the available power.

wi =
Number of time appliance turn ON at specific time

Total number of instances under consideration
(19)
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The power rating of schedulable appliances in different houses under study are shown
in Table 2.

Table 2. Power rating of the appliances available in the dataset.

Appliance Power Rating (watts)

Dish Washer (DW) 2500
Washing Machine (WM) 2000

Microwave (micro) 1600
Oven 2200
Boiler 120

Hair Dryer (HD) 1100

In order to validate the proposed system, the simulation was performed on the MAT-
LAB software, and the load profile of the houses were imported from publicly available
datasets [48,49]. Renewable power generation was calculated using [46], and each renew-
able source was found to be capable of generating 50% of the peak power when running at
its full capacity. The solar power generation in the month of January, calculated using the
Ampds dataset, is shown in Figure 4; the average wind speed in the month of January is
13.5, as shown in Figure 5. The peak power generated by a renewable energy source in one
week of January is 9500 watts, while the peak load demand for the same week is 16,000
watts, as plotted in Figure 6.
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To fulfill the peak load demand, the off-grid renewable energy system increases its
capital cost and wastes a lot of energy in the off-peak hours.

Our proposed load management system makes the curves for the power generated
and the power distributed to the community align with each other, as shown in Figure 7.
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In addition, the proposed approach helps in shaving the peak load curve and minimizing
the wastage of energy during the off-peak period. Figure 7 shows the reduction in peak
load and the new peak load demand at 9500 watts, which indicates a 40% overall reduction
in the generation capacity. Figure 8 shows the charging and discharging patterns of battery
banks, which are used to fulfill the baseload demand when less power is generated in
the system and the excess power is used to charge the battery banks during an off-peak
load period.
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Furthermore, the battery banks are only used to fulfill the baseload requirements,
which will decrease the storage bank capital cost and hence reduce the overall capital cost
of the system by more than 40%.

In addition, to further validate the proposed system, the appliance schedule pattern
for Mondays is drawn in Figure 9, and Figure 3 represents the appliance weightage given
by consumers for Mondays. In addition, Figure 10 represents the power generated graph
for the same day. The baseload is calculated as 1000 watts for each house to keep basic
appliances turned on uninterruptedly. As there are five houses in the community, the
total base power for the system is 5000 watts. The excess power is utilized to turn on the
schedulable appliances on Mondays.
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If we compare the consumer appliance weightage in Figure 3 and the scheduled
appliances for Mondays in Figure 9, the appliances that are given the highest priority by
the consumer for Mondays are scheduled first whenever there is excess power available in
the system. The appliance weightage not only determines the appliance priority in a single
house but also which consumer appliances are scheduled first when there is excess power
available in the system (as can be seen in Equation (18)).

In the previous literature, the load management systems were designed without
considering the consent of the consumers. Therefore, adapting these systems is difficult for
the consumer due to their work routines. In this situation, forced implementation methods
such as increased tariffs for peak hours, forced load shedding, or forced power scheduling
are adapted. In contrast, our proposed system will provide uninterrupted base power for
each consumer in the community without any hike in power tariff and will schedule the
appliances according to their usage habits. This will make the system practically more
acceptable for the communities than the previously proposed load management systems in
the literature. In addition, in the proposed system, the peak power curve is shaved, which
decreases the capital cost of the whole system.



Energies 2022, 15, 1006 15 of 17

6. Conclusions

In this paper, we proposed a demand-side management system for a residential com-
munity electrified through an off-grid renewable energy system. The proposed algorithm
assigned the available power to the appliances based on consumer usage data and con-
sumer appliance priority using linear integer programming. Consumer preferences were
taken once a month to increase the appliance usage convenience for the consumers. Further-
more, simulation results were generated for a community of five houses, which showed the
acceptability and the possibilities for the practical implementation of our proposed manage-
ment system in facilitating better energy utilization; it also enhanced the consumer’s level
of comfort. In future work, the consumer appliance weightage can be taken with respect to
other houses in the community, and the frequency of consumer appliance weightage can
be changed to once a week in order to increase the convenience for the consumers.
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