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Abstract: Offshore sites show greater potential for wind energy utilization than most onshore sites.
When planning an offshore wind power farm, the speed of offshore wind is used to estimate various
operation parameters, such as the power output, extreme wind load, and fatigue load. Accurate
speed prediction is crucial to the running of wind power farms and the security of smart grids. Unlike
onshore wind, offshore wind has the characteristics of random, intermittent, and chaotic, which will
cause the time series of wind speeds to have strong nonlinearity. It will bring greater difficulties
to offshore wind speed predictions, which traditional recurrent neural networks cannot deal with
for lacking in long-term dependency. An offshore wind speed prediction method is proposed by
using a clockwork recurrent network (CWRNN). In a CWRNN model, the hidden layer is subdivided
into several parts and each part is allocated a different clock speed. Under the mechanism, the long-
term dependency of the recurrent neural network can be easily addressed, which can furthermore
effectively solve the problem of strong nonlinearity in offshore speed winds. The experiments are
performed by using the actual data of two different offshore sites located in the Caribbean Sea and
one onshore site located in the interior of the United States, to verify the performance of the model.
The results show that the prediction model achieves significant accuracy improvement.

Keywords: clockwork recurrent network; offshore site; strong nonlinearity; wind speed prediction

1. Introduction

With the increasingly severe global climate problem, the sustainability of traditional
fossil fuels is facing huge challenges, and the development of renewable energy (RE) is
becoming inevitable [1]. RE, including wind energy, geothermal energy, and solar energy,
cannot only reduce carbon emissions, but also achieve sustainable development [2,3]. As
one form of RE, wind energy is widely used around the world on account of its wide
distribution, huge reserves, and environmental friendliness [4]. At the same time, wind
power is also one of the most commercially viable and dynamic RE sources due to its low
cost and permanent nature. On account of its relatively mature technology and commercial
conditions for large-scale development, wind energy has been the fastest growing energy
source in recent years. [5]. According to the data from the Global Wind Energy Council,
global wind power is accelerating its deployment, driven by the carbon-neutral trend. The
latest data show that the total global wind power bidding volume in the first quarter of
2021 is 6970 MW, 1.6 times that of the same period last year [6].

However, wind energy resources are susceptible to environmental changes, such as
geography, climate, and seasons. It brings great difficulties to wind power utilization. In
addition, the ecological problem with wind power is that it may disturb birds. Therefore,
accurate offshore wind speed prediction is of great help to the development of wind power.
However, there are still some factors that affect the prediction accuracy, among which
the major challenge is historical data. Regrettably, potential offshore sites have not had
enough records of wind speed for various reasons in the past. Consequently, it is a major
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technical challenge for risk assessment using only short-term records of historical wind
speed data. Nevertheless, unlike onshore wind, offshore wind has the characteristics
of random, intermittent, and chaotic, which will cause the time series of wind speeds
to have strong nonlinearity [7], inevitably bringing greater difficulties to offshore wind
speed predictions.

Within past studies, scholars have proposed various wind speed prediction methods.
There are three main categories, including physical models, statistical models, and machine
learning models. Physical models make predictions by monitoring the terrain, climate,
and other factors. Among the physical models, numerical weather prediction (NWP) is
a commonly used model that simulates physical interactions in the atmosphere based
on conservation equations (kinetic energy, potential energy, and mass) [8,9]. However,
different locations and fields bring about variability in the NWP models and their model
resolutions. The resolution of the model data seriously affects the prediction accuracy
and the datasets are hard to obtain [10]. Statistical models mainly use historical data to
make predictions. The commonly used statistical models are Gaussian process regression
(GPR) [11,12], autoregressive (AR) [13], autoregressive moving average (ARMA) [14],
autoregressive integral moving average (ARIMA) [15], and seasonal ARIMA [16]. However,
when the nonlinear characteristics are prominent, the prediction performance of these
models decreases significantly [17]. Comparatively, machine learning is often performed
to predict wind speed because of its ability to fit stronger nonlinearity, which includes the
multi-layer perceptron (MLP) [18], back propagation neural network (BPNN) [19], radial
basis function neural network (RBFNN) [20], support vector machine (SVM)/support
vector regression (SVR) [21–26], echo state network [27], deep belief networks [28], and
convolutional neural network (CNN) [29]. However, these models still have various
problems in their application, such as getting stuck in local optimum solutions, overfitting,
and low convergence rates.

Recently, the recurrent neural network (RNN) is proposed to model sequential data
or time series data [30]. RNN, as a type of artificial neural network that uses a simple
but elegant mechanism, addresses the drawback of vanilla neural networks and keeps
the characteristic of the autoregressive model. It brings to RNN the ability to solve the
nonlinear problem of time series data. Therefore, RNNs achieve great performances when
modeling sequential data and have become one of the most valuable breakthroughs in deep
learning model preparation in recent decades. Meanwhile, many studies on wind speed
prediction have emerged in recent years, which use RNN models [30,31] or hybrid RNN
models [32–36]. At the same time, researchers constantly optimized the network structure
of the RNN to improve its performance. Several new models based on RNNs, such as
long and short term memory networks (LSTMs) [37–48], bidirectional LSTM (BiLSTM) [49],
gated recurrent units (GRUs) [50], clockwork recurrent neural networks (CWRNNs) [51],
and dilated recurrent neural networks (DRNNs) [52], have been proposed to solve problems
of RNN, including vanishing gradients and the long-term dependency, and improve the
performance of RNNs.

CWRNN, which adopts a special mechanism to solve problems of simple RNNs
and contains an even smaller number of parameters than simple RNNs, was proposed
in 2014 [53]. CWRNN breaks up neurons in the hidden layer into different parts, and
neurons in the same part work at a given clock speed. At the same time, only a few parts
are activated. It makes CWRNN have a certain memory mechanism that can solve the long-
term dependency problem. Additionally, it has shown better performances than common
RNNs and even LSTM in various tasks. Xie et al. applied CWRNN to muscle perimysium
segmentation. They utilized CWRNN to handle biomedical data, and experiment results
show that CWRNN outperforms the other machine learning models [54]. Feng et al.
used CWRNN to estimate the state-of-charge of lithium batteries and showed that this
method achieves impressive results [51]. Lin et al. proposed a trajectory generation method
for unmanned vehicles based on CWRNN. The performance of the CWRNN method
is verified by experiments. The study also compared CWRNN with LSTM in several
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metrics [55]. Achanta et al. investigated CWRNN for statistical parametric speech synthesis.
The experimental results show that the architecture of the CWRNN is equivalent to the
RNN with LI units, and outperforms the RNN with dense initialization and LI units [56].
Presently, the methods based on CWRNN have been used in various fields, such as speech
recognition and stock prediction [57]. As far as we know, it has not been used in wind
speed prediction.

To solve the strong nonlinear problem and achieve a higher prediction accuracy, an
offshore wind speed prediction method is proposed, which is based on the CWRNN. In
the proposed method, the hidden layer is subdivided into several parts and each part is
allocated a different clock speed. Under the mechanism, the long-term dependency of
RNNs can be easily addressed. The trained CWRNN model can output an instantaneous
prediction for data from the previous sampling step. The experiments are performed to
validate the performance of the model by the actual wind speed data of two different
offshore sites and one onshore site.

The main contributions of this study are as follows:

• An offshore wind speed prediction method is proposed based on the CWRNN. Com-
pared with the other RNNs, the CWRNN adopts a special mechanism to solve long-
term dependency. The experiments prove that the method can effectively solve the
problem of strong nonlinearity in offshore wind speed, and improve the prediction
accuracy by over 38% in terms of the different kinds of evaluation criteria compared
with simple RNNs.

• The method fully exploits the ability of RNNs to solve nonlinear problems with time
series data. Compared with the traditional machine learning models, the proposed
method keeps the characteristics of the autoregressive model, which improves the
performance in prediction accuracy.

• Hyperparameters, such as the number of network parts that are the key influencing
factors of the model, and the different part periods are thoroughly analyzed, which
seriously affect the performance of predicting the offshore wind speed.

The rest of the paper is organized as follows: Section 2 introduces the related theory;
Section 3 describes the overall implementation process of this method; Section 4 presents
the experiment results; the results are discussed in Section 5; and Section 6 summarizes the
whole paper.

2. Theoretical Background

There is an inherent concept of sequential data that incrementally progresses over time.
As we all know, traditional neural networks (NNs) are good at solving nonlinear problems
and perform well in most cases. However, they lack the inherent trend for the persistence
of sequential data. For example, a simple feedforward NN cannot really understand the
meaning of a sentence according to the order of input data in the context. The RNNs settle
the shortcomings of the original NNs with an ingenious mechanism, which gives them the
advantage in time modeling. This section provides a brief overview of the RNN, LSTM,
and CWRNN.

2.1. RNN

RNN is a specific NN that is designed to model sequential data or time- series data.
The principle of RNN is to feed the output of the previous layer back to the input of the
next layer, which gives RNN the ability to predict the output of the layer. In the RNN,
the neurons in different layers of the NN are compressed into a single layer, as shown in
Figure 1.
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Figure 1. The structure of a simple RNN.

As seen in Figure 1, at time t, the input is a combination of the input at t and the
output at a previous time, t− 1. This feedback mechanism improves the output of the time
step t. The calculation formula for output yO

t at time step t is:

yH
t = fH

(
WH ·yH

t−1 + UI ·xt

)
(1)

yO
t = fO

(
WO·yH

t−1

)
(2)

where WH , UI ,WO are the weight matrices of the hidden layers, input layer, and output
layer; xt is defined as the input vector at t; and yH

t and yH
t−1 are defined as the hidden

neurons at different times. fH(·) and fO(·) are defined as different activation functions.
Here, the biases of the neurons are omitted.

RNNs must use a context when making predictions and, in this case, must also learn
the required context. The shortcoming of the RNN is that, when training the model, the
gradient can easily vanish or explode, which is mainly because of the lack of long-term
dependency. Researchers proposed some techniques to solve the problems, such as LSTM,
which uses a gate mechanism.

2.2. LSTM

LSTM, as a special type of RNN, can keep long-term information from the input
sequence, which makes up for the difficulties of RNN in learning long-term information,
and solves the problems of RNN gradient disappearance and gradient explosion. The
framework of the LSTM unit is shown in Figure 2. LSTM and RNN have the same chain
structures, but their repeating modules are different. Unlike the repeating module in a
standard RNN that contains a single layer, LSTM has multiple layers of neurons. These
neurons constitute the forgetting gate, the input gate, and the output gate of LSTM. The
status updates and output updates for the three gates are described below.

Figure 2. The structure of LSTM.
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Forgetting gate: this gate control unit determines how much information the cell state
discards. The status update, ft, of the forgetting gate at the time, t, is as follows:

ft = fO

(
W f ·yH

t−1 + U f
I ·xt

)
(3)

where W f is defined as the weight matrix of the forgetting gate, and U f
I is defined as the

weight matrix between the hidden layer of the forgetting gate and the input layer.
Input gate: this gate control unit determines to what extent the input information, xt,

at the current moment is added to the memory cell stream. The status update, it, of the
input gate is as follows:

it = fO

(
Wi·yH

t−1 + Ui
I ·xt

)
(4)

where Wi is defined as the weight matrix of the input gate, and Ui
I is the weight matrix

between the hidden layer of the input gate and the input layer.
After the work of the input gate and the forgetting gate is completed, the state of the

memory cells, ct, is updated as follows:

c̃t = fH

(
Wc·yH

t−1 + Uc
I ·xt

)
(5)

ct = ft·ct−1 + it·c̃t (6)

where Wc represents the weight matrix of the memory cells, and Uc
I is the weight matrix

between the hidden layer of the memory cells and the input layer.
Output gate: after the internal memory cell state is updated, the output gate controls

how much memory can be used in the network update at the next moment. The state
update, ot, of the output gate at the time, t, is as follows:

ot = fO

(
Wo·yH

t−1 + Uo
I ·xt

)
(7)

where Wo is defined as the weight matrix of the output gate; Uo
I is the weight matrix between

the hidden layer of the output gate and the input layer; and bo represents the offset.
Finally, the network output at moment t is:

yH
t = ot· fH(ct) (8)

yO
t = fO

(
WO·yH

t

)
(9)

To alleviate the gradient exploding and vanishing problems, an LSTM block that
embeds three gates into the hidden neurons of the RNN is generally applied to process the
time series data, and achieves a good result in most cases. It is easier to understand that the
complex network structure increases the stability and ability of the model. However, it also
makes the network computationally more expensive. Meanwhile, the performance of the
complex deep learning neural network models, especially LSTMs, depends on the quantity
and diversity of the data.

2.3. CWRNN

The structure of the CWRNN is close to that of a simple RNN with three layers. The
difference between these two models is that the CWRNN divides the neurons of the hidden
layers into n parts; each part has a clock speed, Ti, where Ti ∈ {T1, T2, · · · , Tn}. Therefore,
each part handles the input data at a different frequency, as shown in Figure 3. The parts
with a long clock speed can handle long-term information, and the parts with a short clock
speed are used to handle the continuous information.
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Figure 3. The framework of the CWRNN.

WH and Wi are defined as the weight matrices of the hidden and input layers, respec-
tively, which are divided into n blocks. At the same time, WH is also an upper triangular
matrix, as shown in Figure 4. At any time step, t, only the related rows of the work parts WH
and Wi are activated. Then, the output vector, yH , was updated in the same way. The other
parts keep the output values unchanged. The update mechanism is shown in Figure 4.

Figure 4. Update process of the hidden units at t = 6.

WH =

 WH1
...

WHn

 Wi =

 WI1
...

WIn

 (10)

WHi =

{
WHi for (t MOD Ti) = 0
0 otherwise

(11)

Therefore, the parts with a long clock-speed handle the long-term information, and
the parts with a short clock-speed handle the continuous information. The two parts are
independent of each other and work well.

Having the same number of hidden neurons, the CWRNN processes much faster than
a simple RNN, because only the corresponding parts are updated at each step. In the case
of this exponential clock setting, when n > 4, the CWRNN can run faster than the RNN,
which has the same neurons [53].
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3. Framework of the Prediction Method
3.1. The Procedure

The framework of the proposed method is described in Figure 5. The procedure is
divided into four steps.

Figure 5. The procedure of the proposed method.

Step 1: data processing. Wind speed raw data are normalized to [0, 1] at first, then
preprocessed to the format required for the CWRNN model.

Step 2: model setting. The hyperparameters are set to fit the model, including the
hidden layer parts, length of series input, and number of neurons. The influence of these
hyperparameters will be discussed later, in detail.

Step 3: train model. For model training, we used a mini-batch stochastic gradient
descent and Adam optimizer to minimize the mean square error (MSE) for the prediction
vectors. The parameters can be trained through the back propagation of standard error.

Step 4: model test. Some prediction and evaluation indexes of the training model,
such as the mean absolute error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE), and coefficient of determination (R2), are performed to verify the
prediction performance.

3.2. Dataset

The experimental datasets are from three wind speed measure sites, among which two
are located offshore in the Virgin Islands, between the Atlantic Ocean and the Caribbean
Sea, and the other onshore site is located in Humeston, Iowa, U.S.A. [58,59]. This study first
conducts experiments on two offshore wind speed datasets to verify the proposed model, and
then conducts experiments on the onshore wind speeds to verify the generalization of the
model. Three data sets and their division in the model are described in Figure 6. The data are
collected from 2012–2014. The sampling period in the data set is 10 min and each dataset has
3000 points. Table 1 shows the data of the wind speed at three different locations. It depicts
the minimum, average, maximum, and standard deviation values (Stdev).



Energies 2022, 15, 751 8 of 18

Figure 6. Datasets of Site1, Site2, Site3, and the data segmentation method.

Table 1. Data statistics on the wind speed at the three locations.

Site
Metrics

Average(m/s) Maximum(m/s) Minimum(m/s) Stdev (m/s)

Site1 5.6655 11.7630 0.3600 2.0553
Site2 7.4647 14.4030 1.8014 1.7486
Site3 9.1397 17.4560 0.3870 3.3416

3.3. Evaluation Metrics

To quantitatively describe the performance of all the methods, four different indicators,
MAE, MAPE, RMSE, and R2, are used to analyze the results. The calculation formula of
each indicator is shown in Table 2. For all the formulas, yi is the true value, ŷi is the
predicted value, yi is the average of the samples, and N is the length of the samples.
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Table 2. Calculation formulas for the four evaluation indicators of the experiment.

Evaluation Metrics Equations

MAE MAE = 1
n

n
∑

i=1
|yi − ŷi|

MAPE MAPE = 1
N

N
∑

i=1

∣∣∣ yi−ŷi
yi

∣∣∣
RMSE RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2

R2
R2 = 1−

N
∑

i=1
(yi−ŷi)

2

N
∑

i=1
(yi−yi)

2

4. Results

The proposed method was programmed with Python using Tensorflow and Keras.
The following results and discussions were accomplished on a laptop computer with a
system of Windows 10, an Intel Core i5-1135G7 @2.40 GHz, and 16 GB of memory. The
source codes of the baseline models will be publicly available on the website [60].

4.1. Comparison with the RNNs

In reference [53], the CWRNN demonstrates that it outperforms both the RNN and
LSTM networks in the experiments. In this study, to verify the advantages of CWRNNs,
three other RNN models, including simple RNNs, LSTMs, and BiLSTMs, were used to
make offshore wind speed predictions. The same dataset was used to train and evaluate
the models. All the models have the same hyperparameters, which are shown in Table 3.
The prediction results are shown and described in Figure 7 and Table 4.

Table 3. The numerical metrics of the prediction results by CWRNNs and RNNs of Site1.

Hyperparameters
Settings

(All Models, including the RNN, LSTM, BiLSTM, and CWRNN, have
the Same Hyperparameters)

Input numbers 60
Hidden layers 1

Hidden neurons 200
Dense layers 1

Optimizer RMSprop
Learning rate 10-3

Epoch 200
Batch size 100

Figure 7. Comparison results of the proposed model with RNNs of Site1.
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Table 4. The numerical metrics of the prediction results by CWRNNs and RNNs of Site1.

Model Parameters
Run Times

(Mean Value of 10 Times)
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

Simple RNN 40,601 128.3919 s 0.7207 10.8733 1.0116 0.5988
LSTM 161,801 743.7911 s 0.6222 8.5401 0.8304 0.7296

BiLSTM 323,601 1666.8021 s 0.5443 7.8204 0.7551 0.7764
CWRNN 40,801 77.7866 s 0.4572 6.7873 0.6566 0.8310

As shown in Figure 7, compared with the true data for Site1, the prediction curves
of all the RNNs are close to the real curve of the true wind speed data, which means they
have all captured the tendency of true wind speed. It relies on the powerful ability of
RNNs in a modeling time series. In contrast to other RNNs, the prediction curve of the
CWRNN appears to be closer to the real curve, which verifies that the CWRNN has a better
performance in solving strong nonlinear problems.

Table 4 lists the corresponding MAE, MAPE, RMSE, and R2 values. The indexes of
the RNN are the worst because the RNN cannot remember long-term dependency due
to the vanishing gradient. In comparison to the other RNNs, CWRNNs achieves great
accuracy, with lower MAE, MAPE, RMSE and higher R2. Furthermore, it can be observed
from Table 4 that the CWRNN almost has the same parameters as the simple RNN, but the
LSTM and BiLSTM have large parameters, which are computationally expensive; hence,
the LSTMs are slow, which is also shown in Table 5. In comparison to all the RNNs, the
CWRNN resulted in fewer runtimes because only parts were updated at every step.

Table 5. Average and standard deviation of prediction results by the CWRNNs and RNNs of Site1.

Model
Evaluation Metrics

MAE MAPE RMSE R2

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Simple
RNN 0.7207 0.0974 10.8733 1.5279 1.0116 0.0896 0.5988 0.0749

LSTM 0.6222 0.0539 8.5401 0.6652 0.8304 0.0715 0.7296 0.0492
BiLSTM 0.5443 0.0334 7.8204 0.5151 0.7551 0.0362 0.7764 0.0217
CWRNN 0.4572 0.0044 6.7873 0.0311 0.6566 0.0044 0.8310 0.0023

Table 5 shows the mean and standard deviation values of the metrics of the prediction
results. All the metrics data in the following figures are the average of 10 times.

As shown in Figure 8, compared with the true data of site2, the same conclusion as Site1
can be obtained. Compared with the other RNNs, the prediction curve of the CWRNN still
appears to be closer to the real curve, by which the performance of the CWRNN has been
verified again. These numerical results can also be obtained from Table 6. Compared with the
other RNNs, the CWRNN also achieves better accuracy, with a lower MAE, MAPE, and RMSE,
and a higher R2, which shows that the CWRNN can deal with strong nonlinear problems.

To verify the generalization of the proposed model, Site3, which is an onshore wind
power station, was selected for verification. Compared with the offshore sites, the wind
speed of Site3 changes more slowly, as is shown in Figure 9. From the figure, it can be
observed that the RNN is still the worst model among all the RNNs. The reason may be
that we set the same hyperparameters in the experiments, which included the input length.
The RNN has a poor ability in its long-term dependency. The numerical result in Table 7
also verifies the conclusion. The CWRNN continues to show the best prediction results
in both the onshore and offshore wind speed data, which verified that the CWRNN has a
better performance in wind speed predictions.
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Figure 8. Comparison results of the proposed model with the RNNs of Site2.

Table 6. The numerical metrics of the prediction results by the CWRNNs and RNNs of Site2.

Model
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

Simple RNN 0.6719 9.5407 0.8794 0.6362
LSTM 0.4952 6.3373 0.7256 0.7523

CWRNN 0.4430 5.8871 0.6799 0.7825

Figure 9. Comparison results of the proposed model with the RNNs of Site3.

Table 7. The numerical metrics of the prediction results by the CWRNNs and RNNs of Site3.

Model
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

Simple RNN 1.6685 22.5562 1.7986 0.5955
LSTM 0.4315 5.7073 0.7715 0.9288

CWRNN 0.3843 5.0672 0.6446 0.9480

The evaluation metrics of all three sites are recorded together, as shown in Figure 10.
It can be seen that the model achieves a better performance at all three sites, which means
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the proposed method has good generalization. Furthermore, Site3, which was an onshore
site, achieved the best performance out of all of the sites; its wind speed could be more
easily predicted in comparison to the other offshore sites.

Figure 10. Evaluation metrics of Site1, Site2, and Site3.

4.2. Comparison with the Traditional Neural Networks

In order to verify the powerful ability of CWRNNs for time series prediction, the
proposed method was compared with the traditional neural networks. In this experiment,
the MLP, BPNN, and CNN, as traditional neural networks that are powerful machine
learning models often used in different fields, were tested to perform the time series
prediction task. The results are shown and described in Figure 11 and Table 8.

Figure 11. Comparison results of the proposed model with traditional NNs.

Table 8. The numerical metrics of the prediction results by CWRNNs and traditional NNs.

Model
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

MLP 0.86 24.9 1.18 0.45
BPNN 0.53 7.99 0.76 0.78
CNN 0.61 8.58 0.79 0.76

CWRNN 0.46 6.79 0.66 0.83

It is obvious from the figure that MLP achieves the worst result. MLP, as a typical
simple NN, has shortcomings, such as a slow learning speed, easily falling into local
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extremum, and learning may not be sufficient. The result shows that MLP fails to learn
from the wind speed data. The results also show that BPNN and CNN have worse
performances in wind speed prediction. In most cases, BPNN and CNN have the powerful
ability to solve nonlinear problems. However, they are not good at dealing with time series.
Compared with the traditional neural networks, CWRNN appears to be more powerful in
time series processing. Table 8 shows the numerical metrics of the prediction results, which
further illustrates the above conclusion.

4.3. Comparison with Different Hyperparameters

There are many hyperparameters to set up a CWRNN model. Some hyperparameters
are shared by RNN models, such as hidden layer parts, hidden layer neurons, the number
of hidden layers, and the length of time series inputs. In essence, the CWRNN is a type of
RNN that has the same network framework and mechanism of the backward pass of the
error propagation. Therefore, the influence of the shared hyperparameters on the network
is roughly the same. However, the CWRNN has some unique hyperparameters. The
following experiments will focus on the specific parameters of CWRNNs.

4.3.1. Comparison with Different Part Numbers

The number of hidden layer parts is an important hyperparameter of the CWRNN,
which has a great impact on the performance of the model. In the experiment, by changing
the value of the hyperparameter, the influence on the accuracy of the model is evaluated.
By setting different numbers for the hidden layer parts and training the model, we then
used the evaluation metrics to evaluate the model’s accuracy. The number of parts was set
as (2, 4, 5), with all other parameters being the same.

The results are shown and described in Figure 12 and Table 9. From the results, we
find that the least number of parts has the worst accuracy. When the number of parts
increase to 4, we achieved the highest prediction accuracy. When the number raised to 5,
the accuracy was lower than 4 parts, and higher than 2 parts. However, at the same time,
the cost time of training the model significantly increased. Therefore, the value of four
parts was the best choice in this study.

Figure 12. Comparison results of the proposed model with different part numbers.

Table 9. The numerical metrics of the prediction results with different part numbers.

Part Number Values
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

2 [1,2] 0.4835 6.9156 0.686 0.8155
4 [1,2,4,8] 0.4572 6.7873 0.6566 0.8310
5 [1,2,4,8,16] 0.4719 6.8052 0.6725 0.8227
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4.3.2. Comparison with Different Part Periods

The part period is another hyperparameter that is unique to CWRNNs. The exponential
series is often used as the part period. However, some other functions can be used for the part
period, such as the linear function, Fibonacci function, logarithmic functions, or even fixed
random periods. Different part periods will cause the different performances of the model. In
this experiment, four different part periods were used to test the performance of the CWRNN.
All the hidden layer parts were set to 4 and the other parameters were the same.

The results are shown in Figure 13 and Table 10. The four part periods were the linear
series, odd series, triple series, and exponential series. Compared with the other series, the
part period using the exponential series resulted in the model achieving the best performance.
The result of the triple series shows great competitiveness, which means that the series gap
increases with the increase in the number of periods and is thus a better choice.

Figure 13. The results comparison of the proposed model with different part periods.

Table 10. The numerical metrics of the prediction results with different part periods.

Part Periods Values
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

1 [1,2,3,4] 0.4948 7.0096 0.6973 0.8094
2 [1,3,9,27] 0.4655 6.7413 0.6673 0.8254
3 [1,3,5,7] 0.4806 6.9184 0.6822 0.8175
4 [1,2,4,8] 0.4572 6.7873 0.6566 0.8310

5. Discussion

An offshore wind speed prediction method using CWRNNs is proposed and is verified
by the wind speed dataset of offshore and onshore sites. The results are further discussed
and analyzed in the following contexts:

(1) As is commonly known, RNN is excellent at modeling sequential data with a simple
mechanism. However, with the increase in the dependency length, which means
more context is needed, the RNN cannot learn from the input data. There are some
techniques to improve the RNN. LSTM, which uses the gating mechanism, is proposed
to solve problems, including vanishing gradients and long dependency. It is easier to
understand that the complex network structure increases the model stability. However,
the performance of most machine learning models, especially complex deep learning
neural network models, depends on the quantity and diversity of the data. Naturally,
if a machine learning model has a lot of parameters, it needs a proportional number
of samples to perform well.

The CWRNN is another type of RNN, which breaks up the neurons in the hidden
layer into different parts, and the neurons in the same part work at a given clock speed
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to address long term dependency. The parameters of the CWRNN are close to the simple
RNN. This indicates that the CWRNN is more suitable for the case of a small sample size
than LSTM. Meanwhile, the CWRNN employs an ingenious mechanism for activating
neurons parts at different clock speeds, which can efficiently learn the long-term time series
information, thus solving strongly nonlinear problems. At the same time, the CWRNN
only updates neuron parts at a specific clock rate, which reduces the computation cost.

(2) There is an inherent concept of sequential data or time series data that incrementally
progresses over time. As we know, traditional NNs are good at solving the nonlinear
problem and perform well in most cases. However, they lack the inherent trend of
persistence for obtaining sequential data. A simple feedforward NN cannot really
understand the meaning of a sentence according to the order of input data in the context.
CNNs have been extremely successful in the computer vision field. However, they have
difficulties in dealing with time series data. The RNN, as a type of neural network,
keeps the characteristics of the autoregressive model, and also has the ability to model
sequential data. Furthermore, for the human neural system, the vision channel and the
memory channel are different channels that have different mechanisms.

Recently, the attention mechanism is one of the most valuable breakthroughs in deep
learning model preparation in the last few decades. Unlike the vanilla RNN approach,
it proposes to help monitor all the hidden states in the encoder sequence for making
predictions. It can assign the weight values to the extracted information to highlight the
important information that the attention mechanism seems to break the barriers between
the vision channel and memory channel. However, it still has a great number of parameters,
which also need a large number of sample data. For now, the CWRNN is a good choice to
solve strong nonlinear problems with limited samples.

(3) Hyperparameters can directly impact the performance of machine learning models.
Therefore, to achieve the best performance, the optimization of the hyperparame-
ters plays a crucial role. In addition to the common parameters of the RNNs, the
CWRNN has some unique parameters. The setting of these parameters requires a
complex parameter tuning process and the appropriate parameters will result in a
great improvement to its performance.

In this study, some unique parameters were discussed, which were based on the ex-
periment results. However, the common parameters of the RNNs still affect the model
performance. Considering the shared RNN parameters together with the intrinsic parameters
of the CWRNN will be a big project. Tuning these parameters requires further research.

6. Conclusions

This study proposes an offshore wind speed prediction method based on CWRNNs.
The CWRNN breaks up neurons in the hidden layer into different parts, and neurons
in the same part work at a given clock speed to address long term dependency, which
can effectively solve the problem of strong nonlinearity in offshore wind speed. The
performance of the proposed method is verified by three datasets from two different
offshore sites and one onshore site. The experimental results show that the proposed model
achieves a significant improvement in its prediction accuracy.
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