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Abstract: Machine learning (ML) has increasingly received interest as a new approach to accelerating
development in materials science. It has been applied to thermoelectric materials research for dis-
covering new materials and designing experiments. Generally, the amount of data in thermoelectric
materials research, especially experimental data, is very small leading to an undesirable ML model.
In this work, the ML model for predicting ZT of the doped BiCuSeO was implemented. The method
to improve the model was presented step-by-step. This included normalizing the experimental ZT of
the doped BiCuSeO with the pristine BiCuSeO, selecting data for the BiCuSeO doped at Bi-site only,
and limiting important features for the model construction. The modified model showed significant
improvement, with the R2 of 0.93, compared to the original model (R2 of 0.57). The model was
validated and used to predict the ZT of the unknown doped BiCuSeO compounds. The predicted
result was logically justified based on the thermoelectric principle. It means that the ML model can
guide the experiments to improve the thermoelectric properties of BiCuSeO and can be extended to
other materials.

Keywords: thermoelectric materials; thermoelectric properties; machine learning; BiCuSeO

1. Introduction

Electricity consumption is increasing continuously as a result of technological progress.
Thermoelectric is one of the interesting alternative energy technologies, which can convert
heat to electricity and vice versa. This technology provides many benefits, such as envi-
ronmentally friendly energy sources, scalability, and silent operation. Unfortunately, the
generic thermoelectric bulk modules perform with an efficiency of about 3–5% [1], which is
lower than other alternative energy sources such as solar cells with an efficiency of up to
30% [2]. In order to develop a better thermoelectric performance, thermoelectric materials,
the heart of the technology, need to be better developed. The key performance of ther-
moelectric materials is determined from the dimensionless Figure-of-Merit (ZT), defined
as ZT = S2σ

k T [3] where T, σ S, and k are the absolute temperature, electrical conductivity,
Seebeck coefficient, and thermal conductivity, respectively. Various methods have been
investigated to enhance ZT, and thus, the performance of the material.

Traditional approaches to investigate thermoelectric materials are by experiments and
computational methods based on density functional theory (DFT). In general, experiment-
ing requires expertise, instrument, and advanced technology, which consume considerable
resources. Furthermore, it is difficult to control overall variables and may require a long
acquisition period. Alternatively, the computational simulation needs less time and is
profitable in complete control over the essential variables. Nonetheless, there are also many
challenges for the DFT simulation related to microstructures of material. It needs high-
performance computing apparatus, usually in large computing clusters, which is difficult
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to be accessed by individuals. Additionally, the simulation was merely employed to some
specific systems and required approximations to minimize runtime on complex systems.
To accelerate the development and discovery of novel thermoelectric materials, machine
learning (ML) becomes an attractive approach. ML is a data-driven method that utilizes
statistical mathematics to analyze the data. It can predict micro and macro properties and
the correlation between the parameters of the materials [4].

To accelerate the material research, advances and applications of ML have been
developed continuously [4–7]. The ML was currently supported by several online databases,
algorithms, and frameworks [8,9]. The ML model for predicting materials properties
was usually implemented via a classical algorithm, such as regression, determined by
yi = a0 + a1x1 + a2x2 + . . . + anxn, i = 1, 2, . . . n, where yi is the target or predicting
value, ai is the regression coefficient automatically calculated by an ML algorithm, and xi
is the feature or descriptor for representing the character of materials. Even though there
are many ways to generate the features, Magpie is the software that originates features
for material science by using physical properties. They are operated with mathematics
requiring only chemical formula [10]. Furthermore, the features have the potential to
build an ML model with advantages in a comfortable and quick method for searching
new candidate materials [11,12]. With many advantages, ML has the potential to be a new
approach to accelerate the discovery of thermoelectric material with high performance.

Related Work

Recently, ML applications in thermoelectric materials have been increasingly investi-
gated due to high accuracy and less time-consuming. For example, Iwasaki et al. reported
the ML model that accelerated the discovery of new candidate materials by generating
features from the chemical formula confirmed with the experiment [12]. In their investiga-
tion for the spin-driven thermoelectric effect (STE) device, the descriptors for training the
ML model were generated automatically from the composition with a composition-based
feature vector (CBFV) [13]. The results showed that some features, such as atomic weight,
spin, and orbital angular momenta, play an important role in thermopower. In addition,
Wang et al. studied the CuxBi2Te2.85+ySe0.15 system with ML [14]. The correlation between
microstructure and thermoelectric properties was investigated with the principal compo-
nent analysis (PCA) and the regression algorithm. Furthermore, apart from predicting the
properties of new materials, ML could design the experimental conditions to obtain a high
ZT value. Hou et al. presented an effective way to find the optimal chemical composition
of the Al2Fe3Si3 thermoelectric compound [15]. With the Bayesian Optimization (BO) algo-
rithm, ML can be applied to the experiment effectively. The power factor can be improved
by about 40% compared to the sample with the initial Al/Si ratio of 0.9. Moreover, the
author claimed that the framework of this study could be extended to the extrinsic doping
of Al2Fe3Si3. These related works can be summarized in Table 1.

Table 1. Summary of the research investigating thermoelectric properties with ML.

Datasets Input Output R2 Remark Ref.

112
temperature, chemical

potential, atomic
radius, etc.

Thermopower -
Thermopower

improved an order
of magnitude

[13]

17 chemical composition ZT 0.99
design experiment

condition providing
high ZT

[14]

5 Al/Si ratio Power factor - increase 40% of
power factor [15]

The previous related research generally exploited the data from the first principle
calculation or from one laboratory. Our present work made a contribution over the pre-
vious related research by exploring the experimental datasets available in literature to
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construct the ML model. We then used the model to predict the thermoelectric properties
of BiCuSeO. BiCuSeO is a class of thermoelectric oxides considered a new candidate for
high-performance p-type thermoelectric materials [16]. Even though the material was only
discovered in 2010, thermoelectric researchers have paid much attention to this compound,
and continuous publications have been reported since then [17–24]. This compound has a
complex ZrSiCuAs layered structure, as shown in Figure 1. It consists of the conducting
(Cu2Se2)2− layers alternatively stacked by the insulating (Bi2O3)2+ layers. Due to distinct
functionalities and the weak bonding between these two layers, BiCuSeO showed outstand-
ing thermoelectric properties and outperformed most thermoelectric oxides [25]. Therefore,
intense research interest is focusing on BiCuSeO to lift the thermoelectric performance
and ZT even higher. The most common approach to enhance ZT is by extrinsic doping
some elements into the BiCuSeO structure to lower thermal conductivity, increase carrier
concentration, and optimize electrical transport properties [25–27]. Nevertheless, since
there are numerous available dopants, tedious experiments are required. Therefore, ML
could be a wise choice to address the issue by providing guidance for appropriate effective
doping of BiCuSeO.
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Figure 1. The crystal structure of BiCuSeO consists of conducting (Cu2Se2)2− layer and insulating
(Bi2O3)2+ layer. It also shows the dopant substituted at the Bi site.

In this work, the ML model was constructed to provide the guidelines for effective
doping of the BiCuSeO system. The ML model was built and tested by collecting data
from available published articles (2010–present). Step-by-step, we improved the accuracy
of our model so that the predicted ZT value from the model closely matched with the
experiment. We then extracted the features/descriptors representing the characteristics
of materials and discussed their correlation to the physical parameters of the materials.
Finally, we used the ML model to predict the suitable dopants in the BiCuSeO system,
which can improve thermoelectric properties and lift the ZT of the doped compound with
respect to the pristine BiCuSeO. We truly believe that our work and technique would be
very useful for experimental researchers working to improve the thermoelectric properties
of the BiCuSeO compounds.
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2. Materials and Methods

Thermoelectric databases for the BiCuSeO compounds were collected from published
articles from 2010 to the present (available in the supplementary information, Table S1).
They were then tabulated in Excel for the convenience to import into the Jupyter Notebook
software. The descriptors or features for building classical ML models were generated
from the collected chemical formula via Magpie. The physical and chemical properties of
the element were manipulated by mathematical operators, such as average, summation,
min, mode, max, and median, and a total of 154 features were obtained. Then, the total
datasets were split into a training set (85%) and a test set (15%). The training set was
used to teach ML to find the pattern of the data, whereas the test set was used to test the
accuracy of the model. Due to the small size of datasets compared to other ML research in
materials science [11], the models were built by using different regression algorithms [28],
namely, forest regression (RF), Gradient Boosting Regressor (GBR), kneighbor regressor
(KN), extraboost tree (ET) and xgboost (XGB). These regression algorithms were determined
from a simple linear relationship according to:

yi = a0 + a1x1 + a2x2 + . . . + anxn, i = 1, 2, . . . n, (1)

where yi is the target or predicting value, ai is the regression coefficient automatically
calculated by an ML algorithm, and xi is the features or descriptors for representing the
character of materials. The algorithm which showed the best performance was selected.

Two metrics were used to evaluate the model’s accuracy, i.e., (1) the coefficient of
determination (R2) and (2) the root mean squared error (RMSE). The R2 was determined by:

R2 = 1− SSE
SST

, (2)

where
SSE = ∑n

i=1{yi − ŷi}2,

and
SST = ∑n

i=1{yi − y,}2

and the RMSE was determined by:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (3)

where yi, ŷi, and y are defined as experimental, predicted, and average target value or ZT.
The features or descriptors that are important to the model were exposed automatically

via the function method from the regression model. Additionally, before bringing the model
to use, a final step was to validate the model by Leave One Out Cross Validation (LOOCV).
Finally, we used our ML model to predict the ZT value of the BiCuSeO compounds doped
at the Bi site (Bi1-xAxCuSeO, where A is the dopant and x was set to 0.02). To discover a
candidate to maximize the ZT value, the dopant (element A) was not in the original datasets
and could possibly be done by experiments. Converting the materials into the numerical
feature vectors benefits thermoelectric material researchers to build the ML model and
discover new candidate material with the only chemical formula.

In the next section, we presented the results for improving the ML model step-by-
step until obtaining the desirable ML model. The processes along with the thermoelectric
principle of BiCuSeO material were discussed.

3. Results and Discussions

Firstly, the data of BiCuSeO research reporting ZT values were extracted from literature
(a total of 264 datasets). Then, the ML model was constructed using CBFV to generate 154
features from the chemical formula. Due to relatively small datasets compared to other
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ML research in materials science [11], several regression algorithms were employed. The
algorithm which showed the best performance was selected.

The results from the ML model are plotted in Figure 2. The x-axis is the experimental
ZT, referring to the reported ZT values extracted from the literature. The y-axis is called the
‘predicted ZT’, the ZT values predicted from the ML model based on the exact chemical
formula of BiCuSeO compounds. All related features (a total of 154 features) were included
in the model. The orange circles represent data from the training set, whereas the blue
squares refer to data from the test set. The dotted line plotted as a guide-to-eyes is an
ideal line when the predicted value perfectly matches the experiment. We evaluated the
accuracy of the model using two metrics: (1) the coefficient of determination (R2), and (2)
the root mean squared error (RMSE). R2 accounts for how well the model can capture the
correlation between the features and the ZT value, whereas RMSE is used to evaluate the
model accuracy regarding the error from prediction. The perfect fit would result in the R2

of 1 and RMSE of 0.
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Figure 2. The plot of the Predicted ZT versus the Experimental ZT from the ML model using ET
regressor. The total datasets of 264 datasets were used, resulting in the R2 of 0.57 and the RMSE
of 0.13.

Figure 2 shows the R2 of 0.57 and the RMSE of 0.13 from the test set. The R2 value
is relatively low, implying that the model is not very accurate. The model inaccuracy
lies in the original data from the experiment database. The reported ZT values of the
pristine BiCuSeO from several research groups varied significantly. For example, Farooq
et al. reported the ZT of 0.25 [29], but Yang et al. reported the ZT of 0.42 [30] for the
same compound (BiCuSeO). These points are explicitly shown in Figure 2, where the
orange squares line up horizontally at the ‘predicted ZT’ around 0.3. The discrepancy
was due to the experimental details, such as processing parameters, microstructures, etc.,
which strongly affect the ML performance because the ML models were trained with the
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features that were extracted from chemical formulas only. The variations from experimental
parameters were not included in the ML model, resulting in the model’s inaccuracy.

To improve the model’s accuracy, we had to eliminate the experimental dependent
variables. To do that, we normalized the experimental ZT by the ZT of the pristine
BiCuSeO from each publication. For instance, Farooq et a. reported the ZT of BiCuSeO
and Bi0.99Cd0.01CuSeO of 0.25 and 0.43 [29], while Yang reported the ZT of BiCuSeO and
Bi0.98Pb0.02CuSeO of 0.42 and 0.66 [30]. By normalizing, the ‘experimental ZTnormalized’
of Farooq’s BiCuSeO and Bi0.8Cd0.2CuSeO became 1.0 and 1.72, whereas ‘experimental
ZTnormalized’ of Yang’s BiCuSeO and BiCu0.8Zn0.2SeO were 1.0 and 1.57. The normalization

can be determined as ZTnormalized =
ZTdoped

ZTundoped
. In other words, by using this process, the

‘experimental ZTnormalized’ of the pristine BiCuSeO from any publication was turned into
unity. The ‘experimental ZTnormalized’ of the doped BiCuSeO thus indicated the ratio of
improvement between the doped BiCuSeO and the pristine BiCuSeO. The ML model was
then reconstructed such that the ZT was only related to the chemical formulas, and other
experimental dependent variables were eliminated.

The results from the ML model after normalizing all 264 datasets are presented in
Figure 3, with the R2 of 0.78 and RMSE of 1.48 for the test set. The R2 of 0.78 in Figure 3 is
larger than the R2 of 0.57 in Figure 2, indicating the improvement of the model’s accuracy.
However, the higher RMSE (1.48) in Figure 3 compared to Figure 2 (RMSE = 0.13) does
not mean that its prediction’s error is worse. In fact, it is incorrect to compare the RMSE
between the two figures because the data ranges are not the same. The scales in both axes
in Figure 2 range between 0 and 1.2, whereas Figure 3 ranges from 0 to 20.0. Hence, it is
expected that the RMSE in Figure 3 tends to be higher.

Although the R2 for the ML model in Figure 3 is relatively high, there are still outliers
that deviated from the ideal line, for instance, the orange square and the blue circle on
the right of the figure, leading to the reduction of R2. This situation occurred even when
the selected features in the model were already optimized. Therefore, we tried improving
our ML model further by analyzing the original datasets. We found that the outliers and
inaccuracy of the model could be from the different doping sites in the BiCuSeO compound.
In general, doping elements in BiCuSeO is done by substituting atoms at different sites,
written in a chemical formula Bi1-xAxCu1-yBySe1-zCzO1-wDw, where A, B, C, and D are
dopants. Sometimes, dual dopings were done at one or more sites. The purpose of doping
in each site is different, such as lowering thermal conductivity, bandgap engineering, and
tuning electrical transport properties [17]. We assumed that our ML model could not
capture the pattern from the data including all variations. Therefore, we analyzed the data
and grouped the datasets into a few sub-groups. The major sub-group (145datasets) was
the BiCuSeO compound doped at the Bi site (Figure 1), for instance, Bi0.98K0.02CuSeO [31].
This group is vital from the thermoelectric perspective. The BiCuSeO structure consists
of two layers: the conducting (Cu2Se2)2− layers and the insulating (Bi2O3)2+ layers. The
electrical transport pathway is mainly limited to the Cu2Se2 layers, whereas the Bi2O2
layers behave as a charge reservoir [32]. Thus, doping at the Bi site provides extra charge
carriers for thermoelectric power factor tuning without interrupting the carrier transport.
Therefore, the ML was reconstructed based on these datasets.

Figure 4 shows the results from the ML model based on 144 datasets for the Bi-doped
BiCuSeO. The R2 was considerably increased to 0.89, with the RMSE of 0.40, indicating the
improvement of the model’s accuracy. However, decreasing the amount of data and using
many features (154 features) could lead to overfitting, which means the model shows high
performance on the training dataset but low performance on the test set [33]. To address
the issue, we exported the features or descriptors representing the material characteristics
from our ML model and ranked them according to their importance to the model. There
were a total of 154 generated features, but the first 30 important features are shown in
Figure 5. We then optimized the ML model by including only the important features. We
have tried including the first 3, the first 6, the first 9 . . . and so on important features in the
model. The best-performance model was obtained when the first 12 important features (as
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highlighted in Figure 5) were used. Figure 6 shows the results from such a model, with
the R2 of 0.93 and the RMSE of 0.33 for the test set, an improvement in accuracy from the
model in Figure 4. If one compared the model in Figure 6 to the primitive model in Figure 2,
the accuracy performance increased >63%. However, before bringing the model to use, the
generalization of the model was carried out via Leave One Out Cross Validation (LOOCV).
This method is appropriate, particularly for small-size datasets [5]. The validation resulted
in the RMSE of 0.71 for the training dataset, which means that the predicted ZTnormalized
values from the model have an error of ±0.71.
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Figure 4. The plot of the Predicted ZTnormalized versus the Experimental ZTnormalized from the ML
model using ET regressor. The total dataset of 145 datasets was used, resulting in the R2 of 0.89 and
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The physical meaning of the important features in Figure 5 is worth discussing. The
most important feature is the min_NUnfilled. The prefix min refers to the minimum
number of the element’s properties obtained from Magpie software, whereas the NUnfilled
accounts for the total number of unfilled electrons in electronic shells (s, p, d, f). For
example, the NUnfilled of He is 0 from its electronic configuration (1s2), whereas the
electronic configuration of Na is 1s2 2s2 2p6 3s1 resulting in the NUnfilled of 1. In the case
of the BiCuSeO compound, the NUnfilled of Bi, Cu, Se, and O is 3, 1, 2, and 2, respectively,
and hence, the min_NUnfilled of BiCuSeO is 1, according to the minimum NUnfilled of
Cu. For the doped compound, such as Bi0.94Mg0.03Pb0.03CuSeO, the min_NUnfilled of
this compound is 0 because the NUnfilled of Mg equals 0. By using Pearson correlation
analysis, it was found that the lower the min_NUnfilled, the higher the ZTnormalized. The
lowest min_NUnfilled (0) was found in the BiCuSeO doped with, for example, Mg, Ca, Sr,
Ba. These elements are divalent ions (Mg2+, Ca2+, Sr2+, Ba2+). When they were substituted
for Bi3+, an extra +1 charge was generated for charge neutralization. This extra charge
increased the carrier concentration of the BiCuSeO system, leading to optimization of power
factors [17,34,35]. Therefore, it is reasonable for min_NUnfilled to be the most important
feature for our ML model.
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Figure 5. Exported features from the ML model, ranked according to their importance. The first
12 features are: 1. min_NUnfilled = minimum of total number of unfilled valence orbitals of the
elements in the material (Bi1-xAxCuSeO), 2. range_SpaceGroupNumber = range of space group of
T= 0 K ground state structure of the elements, 3. max_ SpaceGroupNumber = maximum of space
group of T = 0 K ground state structure of the elements, 4. dev_Row = deviation of row on periodic
table of the elements, 5. sum_NfValence = summation of number of filled f valence orbitals of
the elements, 6. dev_NValence = deviation of total number of valence electrons of the elements, 7.
min_Electronegativity = minimum of Pauling electronegativity of the elements, 8. avg_NfValence =
average of number of filled f valence orbitals of the elements, 9. range_Electronegativity = range of
Pauling electronegativity of the elements, 10. range_NUnfilled = range of total number of unfilled
valence orbitals of the elements, 11. sum_GSvolume_pa = DFT volume per atom of T = 0 K ground
state, 12. max_NpUnfilled = maximum of number of unfilled p valence orbitals of the elements.
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model using ET regressor. The total dataset of 145 datasets was used with the first 12 important
features, resulting in the R2 of 0.93 and the RMSE of 0.33.

Finally, we used the optimized ML model to predict ZTnormalized of the doped BiCuSeO
at Bi-site (Bi1-xAxCuSeO, where A is the dopant and x = 0.02). We selected some elements
that were not already in the model datasets, and such elements could be synthesized exper-
imentally. Figure 7 shows the predicted ZTnormalized value for some candidate materials.
The highest ZTnormalized belongs to the Si-doped compound, which is reasonably justified.
It was reported that doping light elements at the Bi-site in BiCuSeO could promote carrier
mobility from the decreased carrier scattering [36]. Since Si can be considered as a light
element, doping Si for Bi is likely to promote carrier mobility and increase ZT. Moreover,
the DFT simulation of the Si doping at Bi-site showed the increased electrical conductivity,
with a slight decrease in the Seebeck coefficient, from the modified electronic band near the
Femi level, resulting in a large power factor. On the other hand, the Cl-doped compound
exhibited the lowest ZTnormalized value from the model. This result is understandable. The
previous experiment reported that doping Cl at Se-site negatively affected the ZT value, by
increasing both electrical resistivity and thermal conductivity [37]. Thus, Cl is unlikely to
be a good candidate for doping in BiCuSeO.
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The step-by-step development of the ML model with improving performance was
presented. It was used to guide a new candidate material for enhancing ZT value. However,
the limited data from experiments was an obstacle to constructing the accurate ML model.
Apart from that, it was also found that training the ML model requires both good and bad
results. Generally, most published articles reported only good results (large ZT), but in fact,
various data (positive or negative results) are necessary to improve the ML model.

4. Conclusions

We have developed the ML model for predicting the thermoelectric Figure-of-Merit
(ZT) of the BiCuSeO compounds. The model was improved step-by-step to achieve rela-
tively high accuracy. The ML initially showed a relatively low R2 of 0.57. We then improved
the model’s accuracy by normalizing the experimental ZT of the doped BiCuSeO with the
pristine BiCuSeO. The modified ML model showed improved accuracy with an R2 of 0.78.
Furthermore, we selected the data for the BiCuSeO doped at Bi-site only and reconstructed
the model. The R2 increased to 0.89, indicating the enhanced model’s accuracy. Last but not
least, only 12 important features were used in the model, which resulted in the increased
R2 to 0.93 and the RMSE of 0.33. Furthermore, the most important feature, min_NUnfilled,
was discussed and correlated to the physical parameters of materials. The model predicted
the substantial ZT improvement for the Si-doped BiCuSeO material, which is scientifically
sound from the thermoelectric principle. Therefore, the ML model of this work can provide
a guideline for experimental researchers for improving the thermoelectric properties of
BiCuSeO and can be extended to other thermoelectric materials.
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