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Abstract: South Korea is surrounded by the sea on three sides. The characteristics of offshore wind
resources vary from region to region due to the influence of the distribution of the coastline and
differences in roughness length and atmospheric stability between the coast and the sea. In particular,
turbulent gusts and low-level wind shear occurring near the hub height of the wind turbine within
the atmospheric boundary layer have a significant effect on the load of wind turbines. These severe
weather phenomena are closely related to atmospheric stability. Therefore, the objective of this
study is to determine differences in wind resource characteristics in the South Korean offshore and
coast in relation to variations in atmospheric stability using observation data from the HeMOSU-1
meteorological tower in the West Sea and the Boseong meteorological observation tower on the
southern coast. On the southern coast, changes in sea and land breezes are observed throughout
diurnal and nocturnal periods, with an atmospheric stability distribution similar to that of land,
which is unstable during the day and becomes more stable at night. On the other hand, the stable
ratio continues to dominate in the west offshore. In the case of coastal areas, low-level wind shear
occasionally occurs near the general wind turbine hub height approximately over 100 m due to the
influence of winds from the sea. This study shows that when constructing an offshore wind farm, it
is necessary to first analyze the characteristics of local coastal and offshore wind resources for more
efficient and safe wind farm construction and operation.

Keywords: atmospheric stability; offshore wind; wind shear; Richardson number; meteorological mast

1. Introduction

Interest in eco-friendly renewable energy sources based on the Korean Green New
Deal, 2050 carbon zero, and renewable energy 3020 policies is continuously increasing [1].
In particular, in South Korea, which is surrounded by the sea on three sides, offshore wind
energy is attracting attention as a major national power source for the next generation, and
the industrial market is also rapidly expanding [2]. This is an energy flow in line with the
trend of using renewable energy as the top-priority power source in the national power
mix. Wind energy is in the spotlight as a sustainable, eco-friendly energy type that will
play the most important role in achieving the goals of the RE100 and the Paris Agreement
on Climate Change.

Prior to the implementation of the onshore/offshore wind farm project, it is decided
whether to proceed with the project by analyzing the wind resources and calculating the
expected annual energy production (AEP) based on the actual wind observation data [3]. In
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general, third-party certification companies perform this analysis, and the report includes
information related to wind shear and turbulence intensity [4,5]. However, it only intro-
duces the numerical values and does not specify the rationale for why the wind shear and
turbulence intensity in the area show such values.

In particular, it is difficult to characterize and predict wind resources for coastal areas
by the West and South Seas because of the shallow water depth and complex distribution
of coastlines with many islands [6–9]. This remains a major issue as most offshore wind
energy projects in South Korea are concentrated in the West and South Seas.

It has been shown that the diurnal change in turbulence is 20% larger than that of
other regions due to interactions among the atmosphere, land, and ocean in areas with a
complex coastal topography [10], implying that large turbulent gusts can be generated by
surface-sensible heat fluxes and the growth of turbulence kinetic energy (TKE) during the
transition from day to night.

In general, it is difficult to accurately calculate wind resources because the wind in the
lower part of the atmospheric boundary layer is generated by the simultaneous action of
mechanical forcing due to surface friction and thermal forcing involving the heat balance
due to surface heating [11,12]. In particular, in the case of coastal areas, a large amount
of water vapor is distributed in the atmosphere and the change in atmospheric stability
is relatively larger than that of land due to the difference in heat balance between the
ocean and inland [13]. In addition, South Korea has a lot of mountainous terrain and a
complex coastline, but not a lot of flat lands compared to its total area. Thus, the wind
direction fluctuates widely in South Korea. Therefore, since the horizontal/vertical wind
direction fluctuates greatly, a lot of expertise is required to predict the AEP of offshore wind
farms and secure the stability of the structure. In order to accurately predict the amount of
power generation according to the electric power demand and to ensure the stability of the
offshore wind turbine, an atmospheric stability analysis closely related to the wind should
be performed [14–16]. During the diurnal change, atmospheric stability appears stable
or unstable in addition to the neutral state. Therefore, the manufacturer’s wind turbine
power curve (manufacture power curve, MPC), assuming atmospheric stability in a neutral
state, has no choice but to show a difference from the power curve of the wind turbine
installed at the actual site [16,17], and this difference leads to errors in the AEP calculation.
The International Electrotechnical Commission (IEC61400-12-1) recognizes that the atmo-
spheric stability characteristics of each site can have a significant impact on wind speed
measurement and the actual power output performance of wind turbines [18]. However,
the atmosphere is still assumed to be in a neutral state on several reports and software.
Therefore, in order to reduce the prediction error in the AEP calculation process, an accurate
power curve of the wind turbine according to external environmental conditions, especially
atmospheric conditions, is required [12,19]. Atmospheric conditions include turbulence
intensity, wind shear, and heat flux, all of which depend largely on atmospheric stability.
Therefore, analysis of atmospheric stability is essential [13]. According to a previous study,
thermal forcing based on humidity and temperature should be considered before predicting
offshore and coastal vertical shear because winds at each vertical layer analyzed from the
meteorological observation tower located on the offshore show rapid changes according to
atmospheric stability [20]. Moreover, it has been suggested that the difference between sea
surface temperature and air temperature should be analyzed because atmospheric stability
and baroclinicity play an important role in offshore wind [21,22].

Since the energy generated by the wind turbine is mostly dependent on wind speed,
it can be greatly influenced by changes in the daily wind speed. This change in wind
speed may vary depending on atmospheric stability, because the atmospheric boundary
layer does not exhibit the property of a steady state with time [23,24]. Therefore, the wind
power generation has variability according to the heat flux and vertical wind speed change
by height according to atmospheric stability. In particular, in the case of onshore wind
farms close to the coast, the change in atmospheric stability is also large because the daily
wind speed and direction change frequently and the temperature change is large due to
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the influence of the land–sea breeze compared to the inland [25–28]. The difference in
wind speed by height according to the atmospheric stability affects the wake diffusion of
the wind turbine and the power generation, which can also influence the future power
supply plan and revenue [29–33]. Studies on the effect of atmospheric stability on wind
energy are being actively conducted abroad, but not many studies are being conducted in
South Korea.

As mentioned above, changes in atmospheric stability tend to be larger on the coast
than on land. The interrelationship between the atmosphere and the ocean can induce
changes in the characteristics of each system, thus playing a role in the transition from
local meteorological phenomena to global climate change in the long term. Therefore, the
importance of wind characteristics research in coastal areas has been highlighted. Related
studies are being conducted in various fields.

In this study, wind resource conditions at coastal and offshore areas were compared
and analyzed using data from meteorological observation towers located at the Boseong
Global Standard Meteorological Observation site and the West Sea area in the Republic of
Korea. In order to analyze atmospheric stability, which is closely related to the coastal and
offshore winds, a stability classification method according to the Richardson number and
wind shear, turbulence kinetic energy (TKE), and Monin–Obukhov length was selected to
investigate the relationship of atmospheric stability with wind resources.

Atmospheric stability greatly affects not only the wind power generation but also the
stability of structures. Rather than focusing on the economic feasibility of the project, it
was decided to proceed with this study because it is believed that detailed meteorological
research in the area where the project is to be carried out should be performed prior to the
preliminary feasibility study.

2. Data and Methods

Meteorological mast observation data were used to compare the characteristics of
wind resource conditions in the West Sea adjacent to the land and in the southern sea
coast (Figure 1). Both are meteorological masts operated by public institutions (Korea
Electric Power Research Institute, National Institute of Meteorological Sciences) for research
purposes. Analysis was performed with consent to a request to use them only for non-profit
research purposes. Information on each meteorological mast and observation data are
shown as follows (Table 1) (Figure 2).
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Table 1. Observation parameters and heights for each meteorological mast.

Item Observation Height [m]

Boseong Met. Mast
(Onshore, Coast)

Wind speed 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300
Wind direction 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300

Air temperature 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300
Air pressure 60, 140, 300

Relative humidity 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300

HeMOSU-1 Met.
Mast (Offshore)

Wind speed 1 26, 46, 56, 66, 76, 86, 95, 97
Wind direction 1 46, 56, 66, 76, 95

Air temperature 1 13, 95
Air pressure 1 13, 95

Relative humidity 1 13, 95
1 To correctly calculate the measuring height above the mean sea level (MSL), the height of the sensor above MSL
('10.0 m) must be considered. For example, if the configured measuring height of HeMOSU-1 is 10.0 m, true
height where measurement is taken is 20.0 m above the Lowest Astronomical Tide (LAT).
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Figure 2. Sensor installation heights for each meteorological mast. Left: Boseong onshore mast; Right:
HeMOSU-1 offshore mast.

2.1. Boseong Onshore Meteorological Mast

The first meteorological mast is the comprehensive meteorological observation mast in
Boseong, Jeollanam-do. A comprehensive meteorological observatory was built to establish
a foundation for performing the role of the atmospheric boundary layer characteristic
research test bed designated by the World Meteorological Organization (WMO) [34]. The
Boseong meteorological mast is installed on homogeneous flat land (Figure 3). It is suitable
for local micro-meteorological experiments. It can be used to conduct research on coastal
boundary layer structures, typhoons, coastal fog generation, and coastal gusts. It is also
the second-tallest meteorological observatory in Asia, with a maximum height of 307 m.
Observations are made from a total of 11 altitudes from the ground. Wind speed, wind
direction, air temperature, relative humidity, atmospheric pressure, radiation, CO2 · H2O
concentration, etc., are observed. Momentum flux, sensible and latent heat flux, friction
velocity, and air density are then calculated (Table 2).
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logical Observatory site.

Table 2. Specifications of Boseong global standard meteorological observation site and its meteoro-
logical observation elements.

Item Description

Name Boseong Global Standard Meteorological Observation Site

Location 34.76◦ N, 127.21◦ E

Height [m] 307.19

Level [m] 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300 (11 levels)

Observation factors Wind speed, wind direction, air temperature, radiation,
relative humidity, air pressure, CO2·H2O concentration

Calculation or external factors Momentum flux, sensible heat flux, air density, latent heat
flux, roughness length, friction velocity

Period 1 January 2016~31 December 2016 (10 min)

The Boseong meteorological mast was built on a reclaimed land. It is adjacent to the
coast at a distance of 1.5 km to the southeast and a hilly area at an altitude of 400 to 500 m
separated about 5 km to the northwest. Therefore, site conditions are being established to
simultaneously analyze the characteristics of the topography and meteorological factors, as
well as ocean and meteorological factors. The Boseong meteorological mast is the only and
the first in South Korea to produce data on the vertical distribution of high-rise turbulence
characteristics. Thus, it has large advantages in that it can also be used for the prediction
and diagnosis of local climate change phenomena based on an increased understanding of
the atmospheric boundary layer in coastal areas [35]. In this study, data on wind direction,
wind speed, friction velocity (u*), air temperature, and sensible heat flux of 10 m, 60 m,
140 m, and 300 m per 10 min from 1 January 2016 to 31 December 2016 were used for
the analysis.

2.2. HeMOSU-1 Offshore Meteorological Mast

HErald of Meteorological and Oceanographic Special Unit-1 (HeMOSU-1) is the first
offshore meteorological mast to support the development of large-scale offshore wind
farms in South Korea. It was installed in February 2011 at 100 m height above mean sea
level and 35 km southwest of Gyeokpo Port with support from the government. The
meteorological mast has oceanographic observation devices (such as tides, tidal currents,
waves, etc.), structural measurement devices that measure the verticality and stress of
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structures, and meteorological measurement devices that measure wind direction, wind
speed, air temperature, air pressure, relative humidity, and precipitation (Table 3). It also
consists of a device that stores and transmits these signals. Through this meteorological
mast, it is possible to overcome the limitations of reanalysis data or numerical weather
prediction model data used in an offshore wind farm project. It is also possible to provide
precise measured data that can be directly used in the development of projects [36,37].

Table 3. Specification of HeMOSU-1 offshore meteorological mast and its observation elements.

Item Description

Name HeMOSU-1 (HErald Meteorological and Oceanographic Special Unit-1)

Location 35.47◦ N, 126.13◦ E

Height [m] 100.0

Level [m] 26, 46, 56, 66, 76, 86, 95, 97 (8 levels)

Observation factors Wind speed, wind direction, air temperature, relative humidity, air pressure

Period 1 January 2016~31 December 2016 (10 min)

2.3. Atmospheric Stability Index

Atmospheric stability is an important factor used to define atmospheric turbulence or
to describe the magnitude of atmospheric diffusion [13]. It refers to the degree to which the
atmosphere in a state of mechanical equilibrium is slightly disturbed to return to its original
state or the state of the atmosphere is likely to change significantly. Atmospheric stability
can be classified into three stages: unstable, neutral, and stable. Atmospheric stability can
be broadly classified as mechanical stability and thermal stability. A typical classification
method of mechanical atmospheric stability is the vertical wind shear coefficient, which is
a principle that determines the degree of flow and diffusion by the transfer of momentum
according to the difference in wind speed for each height in the z-direction [14]. Thermal
stability such as Richardson number and Monin–Obukhov length not only considers the
difference in momentum due to wind speed, but also considers the thermal motion effect
due to temperature and heat flux. Table 4 shows atmospheric stability classification criteria
and representative meteorological phenomena [19,31,38].

Table 4. Atmospheric stability indices criteria and boundary layer properties.

Stability Class Wind Shear Richardson Number TKE 1

[m2/s2]
MO 2 Length

[m]
Boundary Layer

Properties

Strongly Unstable α < 0.0 Ri < −0.86 TKE > 1.4 −50 m < L ≤ 0 m Lowest WS 3/Shear
Highly TI

Unstable 0.0 ≤ α < 0.1 −0.86 ≤ Ri < −0.1 1.0 < TKE < 1.4 −600 m < L ≤ −50 m Lower WS/Shear
High TI

Near-Neutral 0.1 ≤ α < 0.2 −0.1 ≤ Ri < 0.053 0.7 < TKE < 1.0 |L| > 600 m Logarithmic
wind profile

Stable 0.2 ≤ α< 0.3 0.053 ≤ Ri < 0.134 0.4 < TKE < 0.7 100 m < L ≤ 600 m High WS/Shear
Low TI

Strongly Stable α ≥ 0.3 Ri ≥ 0.134 TKE < 0.4 0 m < L ≤ 100 m Highest WS/Shear
Lowest TI

1 Turbulence kinetic energy, 2 Monin–Obukhov, 3 wind speed.

In this study, the characteristics of wind resources according to the atmospheric
stability the offshore and coast were analyzed through the Richardson number and wind
shear coefficient. Since sensible heat flux and vertical wind speed are only observed at the
Boseong meteorological mast, additional atmospheric stability analysis was also conducted
along the coast of Boseong according to the Monin–Obukhov length and turbulence kinetic
energy (TKE).
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2.3.1. Wind Shear Coefficient

The power law describes a functional relationship between two numbers in which one
number is theoretically expressed as a power of the other. When the atmospheric stability
is near-neutral, the vertical wind speed distribution in which the wind speed constantly
increases according to the height even in the lower boundary layer of the atmosphere will
appear so that the power law can be applied [39,40]. The wind shear coefficient (α) or
power law exponent calculated from this is a correction factor that follows the ground state
around the observation point, as shown in Equation (1):

U
Ur

=

(
Z
Zr

)α

(1)

Here, Z [m] is the target height, Zr [m] is the reference height, U [ms−1] is the wind
speed at the target height, and Ur [ms−1] is the wind speed at the reference height. Wind
shear coefficients can be calculated if wind resource measurements for at least two heights
are available by fitting wind speed data with Equation (2):

α =
ln(U)− ln(Ur)

ln(Z)− ln(Zr)
(2)

2.3.2. Richardson Number

The relative importance of turbulence produced by thermal and mechanical convection
can be determined by the Richardson number. When defining the Richardson number,
it is convenient to first define the stability parameter S (Equation (3)). The term S is
proportional to the rate at which the stable state suppresses turbulence. The concepts of
gravitational constant (g, 9.81 m/s2) and potential temperature (θ) are introduced. The
potential temperature is defined as the temperature at which a dry air mass at a certain
height is adiabatically moved to an 1000 hpa height. An increase in potential temperature
by height means that the atmosphere is stable. Turbulence is also created by mechanical
convection at a rate proportional to (∂ū/∂z)2. The Richardson number is the ratio of these
two processes.

The Richardson number is an indicator of both turbulence and stability. A very neg-
ative Richardson number indicates that convection prevails and winds are weak, with a
strong vertical motion characteristic of an unstable atmosphere. As the mechanical turbu-
lence increases, the Richardson number approaches zero, with neutral stability (∂θ/∂z = 0).
Finally, when the Richardson number becomes positive, vertical mixing stops and the
atmosphere stably stratifies, resulting in mechanical turbulence [29,41].

S =
g
T

(
∆θ

∆Z

)
(3)

θ = T
(

p0

p

)0.286
(4)

Ri =
S

(∂u/∂Z)2 =
g
T

(∂θ/∂Z)

(∂u/∂Z)2 =
g
T0

(∂/∂Z)[θ0 + θ1]

[(∂/∂Z)(u0 + u1)]
2 (5)

2.3.3. Turbulence Kinetic Energy (TKE)

Wind resource parameters have important effects on wind turbine performance and
load. Turbulence measurements are generally performed using instruments placed within
the flow, such as cup anemometers, sonic anemometers, and LiDARs. Another detail is
that IEC 61400-12-1 requires the horizontal/vertical component of the wind resource to
be measured so that the strength of turbulence can be analyzed from the velocity of the
horizontal/vertical component [42]. Turbulence kinetic energy explains the generation,
maintenance, and dissipation of turbulence. TKE can be obtained by the Reynolds average
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of the instantaneous kinetic energy per unit mass for turbulence. TKE is a measure of the
strength of turbulence. It shows that large-scale turbulence eddies can supply energy to
small-scale turbulence eddies. When small-scale eddies cannot be supplied with energy,
they disappear due to viscosity on the land surface, as shown in Equations (6) and (7):

TKE =
1
2

(
u′

2
+ v′

2
+ w′

2
)
=

1
2

(
σ2

u + σ2
v + σ2

w

)
(6)

∂k
∂t

+ uj
∂k
∂xj

= − 1
ρ0

∂u′ ι p′

∂xi
− 1

2
∂u′ u′ u′ ι

∂xi
+ ν

∂2k
∂x2

j
− u′ ιu′ 

∂uι

∂xj
− ν

∂u′ ι
∂x

∂u′ ι
∂x
− g

ρ0
ρ′u′ ιδi3 (7)

2.3.4. Monin–Obukhov Length

The Monin–Obukhov (MO) length is a similarity theory that states that the turbulent
flow characteristics and averaged flow of a fluid depend only on four independent variables:
friction velocity, height, surface heat flux, and buoyancy in a horizontally homogeneous
surface layer. It is an index of atmospheric stability indicating the degree of dominance of
buoyancy over the shear effect. The MO similarity theory is basically organized under five
hypotheses [13,43]:

1. The flow is horizontally homogeneous and quasi-stagnate;
2. The momentum and turbulent flux of heat is constant with height;
3. Molecular exchange is not as important as turbulent exchange;
4. The Coriolis effect is neglected in the surface layer;
5. Effects of surface roughness, boundary layer height, and geostrophic winds are all

explained by T0/ρ.

L = − u3
∗

k g
T0

w′T′
(8)

u2
∗ =

[
u′w′

2
+ v′w′

2
]2

(9)

In the above equation, u* means friction velocity, g is the gravitational constant
(9.81 ms−2), k is the von Karman constant (0.4), T0 is the surface temperature, and w′T′ is
the sensible heat flux data.

Φm(ζ) =
kz
u∗

∂u
∂z

(10)

Φh(ζ) =
kz
u∗

∂θ

∂z
(11)

u(z) =
u∗
k
[ln(z/z0)−Ψm(z/L)] (12)

Ψm(z/L) = −5·z/L (13)

Ψm(z/L) = 2· ln
[
(1 + x)

2

]
+ ln

[(
1 + x2)

2

]
− 2·tan−1(x) + π/2 (14)

x = [1− (16·z/L)]1/4 (15)

Ψm(z/L) = 0 (16)

In Equations (10) and (11), ζ means z/L. When the value of L is larger than that of z,
the shear effect is large. This means that the shear is more important than the buoyancy
force because the friction effect is large in the lowest layer (land surface). Conversely, when
z is larger than L, it means that the buoyancy effect is greater than the shear in the upper
surface or Ekman layer.

Equation (12) can be used to obtain the wind speed at various heights. It is the
wind speed value to which the stability parameter Monin–Obukhov length (MO length)
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corresponds. The last term in Equation (12) is dependent on the atmospheric stability.
Equations (13), (14) and (16) are applied according to the stable, unstable, and neutral
state of the atmosphere, respectively. This is because changes in momentum and heat flux
according to atmospheric stability can determine the shape of the vertical distribution of
the wind resource.

2.4. Study Procedure

The purpose of this study was to secure basic research data to analyze the character-
istics of wind resources according to the atmospheric stability of the coast and the sea in
order to construct an offshore wind farm. The characteristics of wind resources in each
region were first analyzed through observation data from the Boseong meteorological mast
built on coastal land in South Korea and the HeMOSU-1 meteorological mast installed in
the West Sea.

Analysis was then performed for each atmospheric stability index, such as wind shear,
Richardson number, turbulence kinetic energy, and Monin–Obukhov length (Figure 4).
However, since heat flux and vertical wind speed observations are performed only at the
Boseong meteorological mast, the TKE and Monin–Obukhov length were calculated only
for the Boseong coast.
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Figure 4. Study procedure overview.

Prior to vitalization of the offshore wind energy industry, it is necessary to secure a lot
of basic research on local meteorological characteristics that are closely related to changes
in wind resources. Results of this analysis can be used as basic data for future offshore
wind energy research and projects.

3. Results
3.1. Wind Resource Characteristics

Wind speed and wind direction time series were analyzed by height based on the
annual observation data of each meteorological mast (Figure 5). In the case of the coast
of Boseong, it was confirmed that the wind speed by height showed the maximum value
from 1500 to 1600 LST (Local Standard Time) (Figure 5a). In general, in order to increase
the wind speed near the surface, an energy cascade must occur as the surface heat flux
increases. A large-scale eddy then gradually becomes smaller and emits surplus energy
around it.
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Figure 5. Hourly change in wind speed and direction: (a) 1-hourly averaged diurnal wind speed
change; (b) 1-hourly averaged wind direction change. Blue color indicates Boseong coastal meteoro-
logical mast; orange color indicates HeMOSU-1 offshore meteorological mast.

The wind speed on the surface is strengthened by the energy released in this way.
The reason that the wind speed is the strongest around 1500 LST, and not at noon, when
solar radiation and heat flux are most actively transmitted, is because the surface heats up
and a delay time for radiating energy is required. It is found that the 10 m wind speed is
uniformly maintained at the lowest level during the day. However, upper wind speeds at
60 m, 140 m, and 300 m are similar regardless of the height as of noon, with the wind speed
difference between heights decreasing. In general, as the surface heats up, the vertical
convection mixing becomes active. Kinetic energy exchange between heights also becomes
active. Starting at 1500 LST, wind speeds at the three heights, except near the ground, are
similar at around 5 m/s. However, the wind speed difference shows a tendency to increase
again around the time of sunset, when the emission of surface heat flux gradually weakens.

However, in the case of the sea, the wind speed peak occurs later than on land. This
is because the specific heat of the sea is greater than that of the land, leading to enough
time to retain radiation and heat flux. The wind speed peak at sea occurs between 1700 and
1800 LST. The wind speed difference between heights shows a constant pattern, with little
change over time.

As the Boseong meteorological mast is located on the coast, it belongs to the sphere
of influence of the sea breeze, which is a local circulation phenomenon in the coastal
area. The observation area is adjacent to a bay surrounded by land in the southeast.
It is greatly affected by meteorological phenomena such as winds flowing in from the
corresponding direction due to the topographical characteristics of the open coast. Due
to the mechanism of temperature and pressure gradients based on the difference in heat
capacity between the land and ocean, sea winds from the ocean dominate during the
day, while land winds dominate during the night [44]. As can be seen in Figure 5b,
during the daytime, between 0900 LST and 1500 LST, the southern wind prevails and the
land wind develops as it gradually changes to a northwestern wind. Overall, as local
micro-meteorological phenomena in the atmospheric boundary layer around the Boseong
site could be clearly identified, it could be judged that the prediction and diagnosis of
meteorological phenomena would be easy.

On the other hand, the wind direction of the observation data from the offshore
meteorological mast shows the characteristic of a northern wind continuously. This is
because the offshore meteorological mast is far from the land, without a large-scale island
area nearby. Thus, it does not fall under the sphere of influence of the land sea breeze.

Figure 6 shows the monthly averaged/maximum/minimum wind speed and devia-
tion. The wind speed of 100 m along the coast of Boseong and the observation data of 97 m
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at the HeMOSU-1 meteorological mast (107 m at mean sea level when platform height is
applied) are compared. In the case of the coastal wind speed in Boseong, the fluctuation
range of the wind speed is larger than that of the offshore site. It is generally located in the
low wind speed section of less than 5 m/s. The reason for the large fluctuation in wind
speed might be due to the influence of obstacles and turbulence in the surrounding terrain.
In addition, since the specific heat capacity on land is relatively small compared to that
of the sea, the ratio of thermal energy to wind speed change and turbulence formation is
much greater. Therefore, it seems that the fluctuation range of wind speed on land is larger
than that of sea. On the other hand, in the case of the sea, the wind speed fluctuation range
is small, belonging to the wind speed section of 6–7 m/s overall.
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Figure 6. Box plots of observed wind speed data. The top of the box indicates the daily-averaged
high. The bottom indicates the daily-averaged low. Top and bottom of the line indicate the maximum
and minimum values of 10-min averaged data, respectively.

In both Boseong and the West Sea, the wind speed becomes stronger during the
winter season, from around October. The wind speed decreases from around March of the
following year (Figure 7).

The difference in wind resource characteristics between the coast and the sea is also
clearly revealed in the results of the analysis of wind speed occurrence frequency (Figure 8).
In the case of the Boseong coast, the frequency rate of the low wind speed band of 1~2 m/s
is the highest, whereas the rate of the high wind speed band of 6~7 m/s is the highest in
the West Sea, where the HeMOSU-1 meteorological mast is installed. When comparing
with the shape parameter by Weibull distribution, the Boseong coastal site shows 1.382 and
HeMOSU-1 is 2.829. The larger the shape factor, the larger the appearance ratio of a specific
wind speed sector. The smaller the shape factor, the smaller the peak centered on the
average wind speed and the larger the wind speed fluctuation range.

3.2. Atmospheric Stability
3.2.1. Wind Shear

In Figure 9, the wind shear coefficient is presented, calculated using the wind speed
data for each height of the HeMOSU-1 offshore meteorological mast and the Boseong coastal
meteorological mast. For the HeMOSU-1 mast, the wind shear coefficient was calculated
at 26 m and 66 m height wind speeds and at 66 m and 95 m height wind speeds. For the
Boseong mast, the wind shear coefficient was calculated at 10 m~60 m and 60 m~140 m
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height wind speeds. In the case of the Boseong site, the wind shear was calculated to
determine the wind shear characteristics under the wind turbine rotor disk and near the
hub height of a typical large wind turbine. However, wind shear at more than 140 m in
height was excluded from the analysis because the wind speed above 140 m had a low data
recovery rate due to sensor replacement.
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Figure 9. Wind shear coefficient diurnal change at each observation site. Blue-colored lines represent
Boseong meteorological mast data. Orange-colored lines represent HeMOSU-1 data.

In the case of the HeMOSU-1 offshore mast, the wind shear coefficient shows a value
of 0.0~0.1 regardless of the height. This means that there is little difference in wind speed
between upper and lower layers, even when the height increased. According to the
classification criteria for atmospheric stability by wind shear coefficient, the atmospheric
stability in the HeMOSU-1 area is unstable or near-neutral.

However, in the case of the Boseong coastal site, the difference in wind shear coefficient
by height is clearly revealed. Wind shear between 10 m and 60 m appeared close to
0.3 at night, showing a high gradient wind speed difference and a mechanically stable
atmospheric condition of around 0.2 on average per day. However, the wind shear between
60 m and 140 m shows a low wind shear magnitude of less than 0.15. In particular, from
around noon to 1600 LST, the wind shear value is negative and the wind speed of the
upper layer is weaker than that of the lower layer (Figure 10a). The ratio of mechanical
atmospheric stability according to wind shear is shown in Table 5.

Table 5. Atmospheric stability ratio by wind shear coefficient.

Met. Mast Height [m]

Atmospheric Stability Criteria by Wind Shear

AllStrongly
Unstable

(α < 0)

Unstable
(0 ≤ α < 0.1)

Neutral
(0.1 ≤ α < 0.2)

Stable
(0.2 ≤ α < 0.3)

Strongly
Stable

(α ≥ 0.3)

Boseong
(Coast)

10–60 22.19% 9.18% 14.61% 15.52% 38.50% 100%

60–140 38.25% 18.56% 12.69% 7.95% 22.55% 100%

HeMOSU-1
(Offshore)

26–66 4.44% 59.07% 24.38% 10.04% 2.07% 100%

66–95 26.47% 41.71% 20.44% 7.79% 3.59% 100%

3.2.2. Richardson Number

The Richardson number is a dimensionless number calculated by applying the dif-
ference in wind speed and temperature according to height. It is used as a measure for
judging dynamic atmospheric stability. In this study, air temperature data of 13 m and
94 m were used for the HeMOSU-1 offshore meteorological mast and wind speed data of
26 m and 95 m were applied to calculate the Richardson number. In the case of the Boseong
coastal site, wind speeds of 10 m and 140 m and temperature data of 10 m and 140 m were
used. Specific humidity and atmospheric pressure observation data are required to obtain
a virtual potential temperature. Since there were no observation values, only a temperature
gradient characteristic according to height was applied [25].

As a result of calculating the Richardson number based on the observation data of each
meteorological mast, as can be seen in Figures 11 and 12, the atmospheric stability of the
Boseong coastal site showed a very ideal and typical shape. During the daytime, the ratio of
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unstable atmospheric condition increases due to the generation of thermal/mechanical tur-
bulence. The atmospheric boundary layer becomes stable and stratified due to temperature
inversion after sunset.
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60 m and 140 m). (b) HeMOSU-1 mast (purple-colored circles represent wind shear between 26 m
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Figure 12. Diurnal hourly frequency distribution is correlated with Richardson number. Each colored
bar represents strongly unstable (red), unstable (orange), neutral (yellow), stable (sky blue), and
strongly stable (dark blue) conditions; (a) Boseong; (b) HeMOSU-1.

However, in the case of the offshore area, there appears to be little change in atmo-
spheric stability by the Richardson number. Overall, a stable atmosphere accounts for
more than half of the hourly rate. Most of the rest has a very unstable atmosphere. It
could be seen that the atmospheric structure under the Planetary Boundary Layer (PBL) is
polarized in a very stable or very unstable state (Table 6). It is judged that the change in the
Richardson number is also small because differences in air temperature and wind speed by
height in the offshore area are insignificant.

3.2.3. Turbulence Kinetic Energy

As could be seen from Equation (6), wind speed deviation values in the x, y, and z
directions are required to calculate TKE. However, since a vertical wind speed sensor is not
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installed in the HeMOSU-1 offshore meteorological mast, TKE was analyzed only for the
coastal area of Boseong.

TKE was calculated using observational altitude data of 10 m, 60 m, 140 m, and
300 m. The relationship between TKE and wind speed, friction velocity, or wind direction
according to topographical distribution characteristics was also investigated.

If the general turbulence scale index is predicted, it can be predicted that the TKE value
will be high at low heights with low wind speed bands. Figure 13 shows the frequency of
occurrence (%) of TKE according to wind speed by height. The darker the red color, the
more frequently TKE occurs. However, TKE shows a larger value at 300 m height than at
10 m near the surface. Wind speed variability at the upper level is also greater than that at
the lower level.

Table 6. Atmospheric stability ratio by Richardson number.

Met.
Mast

Height
[m]

Atmospheric Stability Criteria by Richardson Number

AllStrongly
Unstable

(Ri < −0.86)
Unstable

(−0.86 ≤ Ri < −0.1)
Neutral

(−0.1 ≤ Ri < 0.053)
Stable

(0.053 ≤ Ri < 0.134)
Strongly

Stable
(Ri ≥ 0.134)

Boseong
(Coast) 10–140 32.98% 4.30% 9.83% 4.31% 48.58% 100%

HeMOSU
(Offshore) 26–95 31.55% 0.75% 1.74% 2.52% 63.44% 100%
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(95 m).

The relationship between friction velocity and TKE is shown in Figure 14. The friction
velocity is a key turbulence parameter representing the overturning speed of energy-
containing eddies. Friction velocity can be represented by the mixing length to produce
reasonable estimates of eddy viscosity in the entire boundary layer. Thus, it can be judged
that when friction velocity becomes higher, the turbulence intensity also becomes higher.
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It can be seen that the TKE value of the wind blowing from upper layer is high
(Figure 15). As can be seen in Figure 3, where the location of the Boseong site is represented,
there is a hilly area of 400~500 m to the northwest. The sea without terrain obstacles is
distributed to the southeast. The low TKE value in the 120~180◦ wind direction zone
and the high TKE value near the 300◦ wind direction zone by height are based on such
topographical characteristics. The reason that the turbulence component of the upper wind
is stronger than that near the surface is that the wind on the upwind side crosses the high
hilly area.
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3.2.4. Monin–Obukhov Length

As with the Richardson number, the MO length is an atmospheric stability classifica-
tion method that can consider both mechanical and thermal aspects. To calculate the MO
length, friction velocity and heat flux measurement data are required. Since a sensor is
not installed in the HeMOSU-1 offshore mast, the MO length was calculated only for the
Boseong coastal site.

As can be seen in Figure 16, the diurnal change pattern is clearly reflected by the
Monin–Obukhov length change at 10 m height near the surface. During the nighttime, from
after sunset to before sunrise, the neutral and stable ratio increase and the atmosphere is
stratified into a stable state due to surface cooling. On the other hand, during the daytime,
the atmosphere becomes unstable and the movement by vertical buoyancy rather than
shear dominates (Figure 16).
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represents hourly averaged MO length.

Table 7 shows occurrence frequency rates by atmospheric stability. In the case of the
10 m height, the frequency of the strongly unstable state is significantly higher than that of
the upper layer. Its frequency decreases as the height increases. However, the frequency of
occurrence of near-neutral and stable atmospheric states increases.

Table 7. Atmospheric stability ratio by Monin–Obukhov length.

Met.
Mast

Heigh
[m]

Atmospheric Stability Criteria by Monin–Obukhov Length

AllStrongly
Unstable

(−50 ≤ L < 0)
Unstable

(−600 ≤ L < −50)
Neutral

(|L| > 600)
Stable

(100 < L ≤ 600)
Strongly

Stable
(0 < L ≤ 100)

Boseong
(Coast)

10 20.38 20.03 3.36 14.72 41.51 100%

60 10.41 23.31 6.86 17.73 41.69 100%

140 7.27 22.78 9.10 21.26 39.29 100%

300 7.34 26.08 14.02 27.39 25.17 100%

When comparing the daily 1-h averaged MO length change by height, values from
0900 LST to noon are negative at 10 m and 60 m heights, implying that an unstable
atmosphere is dominant. However, values are positive from 1700 to 1800 LST, indicating
that it is converted to a neutral or stable atmosphere (Figure 17). At 300 m height, a stable
atmosphere with a continuous positive averaged value is found, similar to the results
shown in Figure 18.
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As a result, it is confirmed that the stability classification using the MO length is an
appropriate analysis method in this study as the atmospheric stability during the day and
night shows opposite patterns.

4. Conclusions

In general, the predictability of wind resources near the surface of the atmospheric
boundary layer is remarkably low because it induces changes in a short time due to
air convection caused by simultaneous forcing by mechanical and thermal factors, the
temperature inversion layer, and wind shear caused by the vertical wind speed gradient.
Since wind resource analysis based on accurate atmospheric stability is essential, the
most commonly used atmospheric stability classification methods by wind shear, TKE,
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Richardson number, and Monin–Obukhov Length are utilized to analyze the characteristics
of local wind resources according to each stability state. Wind shear and TKE are used as a
classification method for mechanical stability, and the Richardson number and MO length
are used for thermal stability classification.

When the atmospheric stability was analyzed by the wind shear coefficient, the diurnal
change in atmospheric stability by hour was evident in the observation area of Boseong on
the southern coast. During the daytime, it shows a negative coefficient value, indicating an
unstable atmospheric stability state. At nighttime, the difference in wind speed between
the upper and lower layers increases, indicating a positive coefficient. However, in the case
of the West Sea, there is no significant change in wind shear. This might be because wind
shear is mainly affected by surface roughness.

As a result of analyzing thermal atmospheric stability with the Richardson number, a
clear diurnal change pattern was observed in the case of the coast of Boseong. Changes
in heat flux were clearly observed in the absence of any large obstacles, which resulted in
a predominantly unstable atmosphere during the daytime and a predominantly neutral
and stable atmosphere at night. In the case of the West Sea, there is no significant change in
heat flux over time because the specific heat of the sea is significantly higher than that of
the land. Therefore, atmospheric stability also shows a lower variation pattern.

Since meteorological parameters for calculating TKE and MO lengths were observed
only at the Boseong meteorological mast, it could not be analyzed in the West Sea. The TKE
value of the upper wind is higher than that near the surface due to the 400 m hilly area to
the northwest of the mast. A similar diurnal change pattern was found in the MO length
analysis, which could have been due to thermal factors such as the Richardson number.

To further expand and improve the technological maturity of wind energy, a basic
analysis of local wind resources in the area where the wind farm project will be carried
out must be performed in detail. It is thought that awareness of atmospheric stability is
important in order to improve the understanding of basic research in the Korean wind
energy industry and to introduce professional knowledge of wind resources to operators
according to obvious evidence. It is hoped that this study will be widely used as a source
of basic data by developers and researchers for the detailed analysis of wind resources for
offshore wind energy in South Korea.
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