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Abstract: In this paper, a generalized sliding mode observer design method is proposed for the
robust reconstruction of sensors and actuators faults in the presence of both unknown disturbances
and uncertainties. For this purpose, the effect of uncertainty and disturbance on the system has
been considered in generalized state-space form, and the LMI tool is combined with the concept
of an equivalent output error injection method to reduce the effects of them on the reconstruction
process. The upper bound of the disturbance and uncertainty are minimized in the design of the
sliding motion so that the reconstruction of the faults will be minimized. The design method is
applied for actuator faults in the generalized state-space form, and then with some suitable filtering,
the method extends as sensors and actuators coincidentally faults. Since in the proposed approach,
the state trajectories do not leave the sliding manifold even in simultaneous sensors and actuators
faults, then the faults are reconstructed based upon information retrieved from the equivalent output
error injection signal. Due to the importance of the robust fault reconstruction in the wind energy
conversion system (WECS), the proposed approach is successfully applied to a 5 MW wind turbine
system. The simulation results verify the robust performances of the proposed approach in the
presence of unknown perturbations and uncertainties.

Keywords: sliding mode observer; fault detection; robust fault reconstruction; linear matrix inequali-
ties (LMIs)

1. Introduction

In recent decades, industrial processes are becoming more and more complex; thus,
ensuring the operational reliability of these processes is an important task. Among them,
fault detection and isolation (FDI) methods play a pivotal role in making the process reli-
able. The sensor and actuator faults are known as the most frequent faults that occur in
many control systems such as satellite/aircraft [1,2], wind turbines [3,4], vehicles suspen-
sion system [5,6], offshore platforms [7], motor drives [8], power systems, and renewable
energies [9,10]. In the event of a fault occurrence, the reliability and efficiency of the system
are severely affected, and thus, the fault reconstruction is an important issue in the context
of FDI approaches, and various types of research have been done in this field. However,
when the system is subject to the uncertainty and disturbance, at the same time, identifying
and reconstructing simultaneous sensor and actuator faults are still challenging issues that
need to be addressed carefully.

In [11], a PI observer is proposed for fault estimation purposes based on convex
structures and by employing nonquadratic Lyapunov functions. As a result, less conser-
vative conditions in the form of LMIs are obtained. In [12], the sensor and actuator faults
reconstruction problem is addressed by only considering the uncertainty in the model.

Energies 2022, 15, 1411. https://doi.org/10.3390/en15041411 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15041411
https://doi.org/10.3390/en15041411
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5131-3419
https://orcid.org/0000-0003-1735-9856
https://orcid.org/0000-0002-1271-8488
https://doi.org/10.3390/en15041411
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15041411?type=check_update&version=2


Energies 2022, 15, 1411 2 of 20

In [13], the actuator fault reconstruction (AFR) problem is investigated by introducing two
observers: one to estimate unknown inputs and the other to facilitate fault reconstruction.
A particular kind of actuator faults in manipulator systems, i.e., joint luck failure, is con-
sidered in [14], and two kinds of reconfiguration schemes are proposed to cope with this
issue. In [15], a fault-tolerant control technique is studied for electro-hydraulic actuators.
In this reference, an unknown input observer is used to reconstruct sensor faults in the
presence of disturbances. In [16], a fault-tolerant sliding mode controller was designed
for a class of fuzzy T-S systems subject to actuator saturation, external disturbances, and
time-varying delay. Sliding mode control is a variable structure control method that is
well known in nonlinear system control. In [17], integral sliding mode control is pro-
posed to a new five-dimensional four-wing hyper chaotic system with hidden attractor.
An adaptive finite-time sliding mode control is proposed in [18] to construct a family of
nine new chameleon chaotic systems subjected to uncertainties and disturbances. In [19],
a new synchronous quasi-sliding mode control (QSMC) is studied for Rikitake chaotic
system. A selection on switching surface and the existing of QSMC is also considered in
this reference. A composite sliding mode observer is proposed in [20] to study multi-sensor
fault diagnosis and active fault-tolerant control in a PMSM drive system. For the FDI of a
class of uncertain Lipschitz nonlinear systems, an adaptive robust sliding mode observer
(SMO) is proposed in [21], where both external disturbance and faults are considered. A
second-order sliding mode observer is considered in [22] to reconstruct sensor faults in
an air-path system of a heavy-duty diesel engine in the presence of disturbance. In [23],
an adaptive estimation approach is proposed to recover the bias fault of sensors in a class
of nonlinear systems subject to unstructured uncertainty. In [9], the fault detection and
fault-tolerant control problem for multi-area power systems with sensor failures were
considered using a descriptor form SMO. In [24], an adaptive SMO and a descriptive form
observer are combined to reconstruct the sensor and actuator faults where the stability
analysis was performed by the Lyapunov method. For a linear system with disturbance
and time-varying delay, an adaptive estimation approach is presented in [25] for AFR.
The problem of fault-tolerant controller design for a synchronization problem of complex
dynamical networks subject to actuator faults and saturation was investigated in [26,27].
In [28], a time shift approach for AFR with a time-delay of output is introduced by using
an SMO. For wind turbine faults detecting, a new technique is proposed in [29] as a signal
reconstruction modeling technique. In the mentioned paper, to detect faults at an early
stage, multiple indicators are also calculated. A new data-driven sensor FDI technique is
presented in [30] using interval-valued data and an enhanced reconstruction approach to
develop fault isolation. Various methods for a simultaneous actuator and sensor faults
reconstruction have been proposed in the literature. Inspired by a singular system theory, a
descriptor observer design is presented in [31] to reconstruct the actuator fault based on
the transformed coordinate system. In [32], both faults are simultaneously reconstructed in
a special class of nonlinear system described by the Takagi–Sugeno model. In [33], a new
robust and simultaneous actuator and sensor faults estimation is proposed for a class of
LPV systems described with polytopic representation where the parameters evolve in the
hypercube domain.

Discrepancies between the actual process and its model such as model uncertainties
and disturbances cause misleading of fault detection and reconstruction. The problem of
simultaneous fault detection and reconstruction of sensors and actuators in the presence
of both uncertainties and unknown disturbances has been addressed in this paper. A
noticeable feature of the proposed approach is that the inherent differences between the
effect of uncertainty and disturbance on the system have been considered in the design
of sliding mode observers in a generalized state-space form when faults occur at both
sensors and actuators coincidentally. This problem is efficiently addressed in this paper,
where two different distribution matrices are incorporated to represent perturbations and
uncertainties in the system. Then, LMI and the equivalent output error injection (EOEI)
methods have been used to design a robust SMO. Since the state trajectories of SMO do
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not leave the sliding manifold in the presence of the uncertainties and disturbances, then
the sensor and actuator faults are reconstructed based upon information retrieved from
the equivalent output error injection signal. In order to verify the robust performances
of the proposed approach, we applied it to a 5 MW wind turbine system. The wind
energy conversion system (WECS) is a typical large and complex nonlinear system with
random and intermittent wind force. In the electrical power system, the safety of electrical
equipment is the basis for ensuring the stability and reliability. Fault reconstruction’s aim is
to guarantee the security of electrical power system operation and industry production. For
this reason, we proposed fault reconstruction to ensure the safe and efficient operation of
wind turbines. The wind turbine systems actuators and sensors have the highest probability
of failure, which has the greatest impact on the WECS safe and efficient operation. A robust
fault-tolerant control for a Takagi–Sugeno fuzzy model is studied for the wind energy
conversion system in [34].

The rest of this paper is organized as follows. Description of the system in the presence
of an actuator and sensor fault, disturbances and uncertainties, and design of the proposed
SMO are presented in Section 2. A robust AFR employing the EOEI approach is presented
in Section 3. Sensor fault reconstruction is studied similar to the actuator fault method
by introducing a new state in Section 4. Simulation results and concluding remarks are
provided in Section 5.

2. Description of the Problem

We consider a class of uncertain systems in the presence of fault and disturbance
given as:

ż(t) = Az(t) + Bu(t) + M∂(t, y, u) + Dd(t) + F fa(t)

y(t) = Cz(t) + Fs fs(t)
(1)

where B ∈ Rn×m, A ∈ Rn×n, C ∈ Rp×n, M ∈ Rn×k, D ∈ Rn×q, F ∈ Rn×r, and Fs ∈
Rp×l denote the matrices of inputs, states, outputs, unknown bounded uncertainties,
disturbances, actuator faults, and sensor faults, respectively. We assume p ≥ q, p ≥ l,
n > p ≥ r, and F and C are full column rank matrices. We also assume that fa(t) is a
bounded unknown function indicating the fault of actuators, where ‖ fa(t)‖ ≤ α(t), and α
is a known function. Furthermore, the unknown bounded function ∂(t, y, u) denotes the
system’s uncertainty and ‖∂(t, y, u)‖ ≤ β, where β > 0 is a known parameter. Moreover,
d(t) denotes the disturbance signal, which is bounded ‖d(t)‖ ≤ d0, where d0 is a positive
constant.

Assumption 1. It is assumed that rank(CF) = rank(F) = r and the system with (A, F, C)
matrices has all its invariant zeros in the LHP.

It is important to note that p < n implies that some states may not be observable.
To cope with this issue, the following theorem is utilized to extract the observable and
unobservable parts of the system in (1) with fs(t) = 0 where the matrix F only appears in
the observable subsystem.

Theorem 1. Assuming the conditions of Assumption 1 are satisfied and fs(t) = 0, then, there
exist linear nonsingular transformations z̃ = Tb z̄ and z̄ = Tcz such that:

Ã =

[
A1 A2
A3 A4

]
, C̃ = [0p×(n−p), T ], F̃ =

[
0r×r
F2

]
(2)

where F2 =

[
0(p−r)×r

F22

]
∈ Rr×r and T ∈ Rp×p is orthogonal and nonsingular, A1 ∈

R(n−p)×(n−p), B̃T = [BT
1 , BT

2 ], D̃T = [DT
1(n−p)×q

, DT
2p×q

], M̃T = [MT
1(n−p)×k

, MT
2p×k

].
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Proof. First, consider Tc = [Nc, CT ]T , where columns of Nc span the null space of C and
are orthonormal. Then, one obtains:

˙̄z(t) = Tc AT −1
c︸ ︷︷ ︸

Ac

z̄(t) + TcB︸︷︷︸
Bc

u(t) + Tc M︸︷︷︸
Mc

∂(t, y, u)

+ TcD︸︷︷︸
Dc

d(t) + TcF︸︷︷︸
Fc

fa(t)

ȳ = T −1
c C︸ ︷︷ ︸
Cc

z̄ = [ 0(n−p) Ip ]z̄.

(3)

It can be seen that only the last p states are present at the output. Now, considering

Fc =

[
f1(r×r)

f2(p×r)

]
, we define a nonsingular linear transformation matrix Tb as:

Tb =

[
I(n−p) − f1

(
f T
2 f2
)−1 f T

2
0p×(n−p) T T

]
(4)

where the QR decomposition of f2 is used to obtain T . Then, by using z̃ = Tb z̄, one obtains:

˙̃z(t) = Ãz̃(t) + B̃u(t) + M̃∂(t, y, u) + D̃d(t) + F̃ fa(t)
ỹ(t) = C̃z̃(t)

(5)

where

Ã =

[
A1 A2
A3 A4

]
, F̃ =

[
0r×r
F2

]
, D̃ =

[
D1
D2

]
C̃ =

[
0p×(n−p), T

]
, B̃ =

[
B1
B2

]
, M̃ =

[
M1
M2

]
.

(6)

The following SMO is considered:

˙̃̂z(t) = Ã ˆ̃z(t) + B̃u(t)− G̃leỹ(t) + G̃nv
ˆ̃y(t) = C̃ ˆ̃z(t).

(7)

where ˆ̃y(t) and ˆ̃z(t) denote the estimation of outputs and states, respectively. The output
estimation error is represented by eỹ(t) = ˆ̃y(t)− ỹ(t). Furthermore, the observer gains
G̃n, G̃l ∈ Rn×p will be defined in the following.

The sliding variable v has a nonlinear discontinuous term to maintain the sliding
motion, which is given as:

v =

{
0, ∀eỹ = 0

−ρ(t, y, u)
∥∥eỹ
∥∥−1eỹ, ∀eỹ 6= 0

(8)

where the upper bound for the fault plus uncertainty and disturbance is represented by the
gain factor ρ(t, y, u) ∈ R.

The gain G̃n is chosen as:

G̃n =

[
−LT T

T T

]
P−1

0 (9)
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where P0 = PT
0 ∈ Rp×p is a PDF design matrix that will be calculated in the following and

L is defined as:

L =
[

L0 0
]
∈ R(n−p)×p (10)

where L0 ∈ R(n−p)×(p−r) is adjusted such that (L0 A31 + A1) is Hurwitz, where A31 repre-
sents the first p− q rows of A3.

Now, the following theorem is recalled from [35].

Theorem 2. Assume an observer dynamic as given in (7), a Lyapunov matrix P̃, and a matrix
G̃l satisfying:

P̃ =

[
P1 P1L

LT P1 T T P0T + LT P1L

]
(Ã− G̃lC̃)T P̃ + P̃(Ã− G̃lC̃) < 0

(11)

where L defined in (10) and P1 ∈ R(n−p)×(n−p). Then, the observation error e(t) ∆
= ˆ̃z(t)− z̃(t) is

asymptotically stable.

Considering Assumption 1, it can be shown that there exists a stable sliding motion
on the sliding surface given as [36]:

S =
{

e(t)|C̃e(t) = 0
}

. (12)

Then, one obtains:

ė(t) = (Ã− G̃lC̃)e(t)− M̃∂(t, y, u)

−D̃d(t) − F̃ fa(t) + G̃nv
. (13)

Lemma 1. The error dynamics in (13) is bounded in the region Ω defined as:

Ω =
{

e|‖e‖ < 2(µ2β + µ1d0)
/

µ0
}

(14)

where µ0 = −λmax(Ãc), µ1 =
∥∥P̃D̃

∥∥, µ2 =
∥∥P̃M̃

∥∥, Ãc = −(G̃lC̃− Ã)T P̃− P̃(G̃lC̃− Ã).

Proof. Define V = eT P̃e. Then

V̇ = eT Ãce− 2eT P̃M̃∂(t, y, u)− 2eT P̃D̃d(t)

−2eT P̃F̃ fa(t) + 2eT P̃G̃nv
. (15)

From (16) and considering ‖∂(t, y, u)‖ ≤ β and ‖d(t)‖ ≤ d0 and utilizing the Cauchy–
Schwartz inequality, yield:

V̇ ≤ −µ0‖e‖2 + 2‖e‖µ1d0 + 2‖e‖µ2β− 2eT P̃F̃ fa(t) + 2eT P̃G̃nv. (16)

Using (6), (9), and (11), it is simply verified that P̃F̃ = C̃T P0C̃F̃ and P̃G̃n = C̃T . Then,
considering eỹ(t) = C̃e(t) = C̃(z̃(t)− z(t)), ‖ fa(t)‖ ≤ α and (8), one obtains:

V̇ ≤ 2‖e‖µ1d0 − µ0‖e‖2 + 2‖e‖µ2β
−2
(
ρ(t, y, u)− α(t, u)

∥∥P0C̃F̃
∥∥)∥∥eỹ

∥∥
≤ −‖e‖(µ0‖e‖ − 2µ1d0 − 2µ2β).

(17)

Therefore, if ‖e‖ > 2(µ2β + µ1d0)
/

µ0, then V̇ < 0, and this implies that e(t) will
converge to the following bounded region:
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Ω =
{

e|‖e‖ < (2µ1d0 + 2µ2β)
/

µ0
}

. (18)

Now, we show that with the proper selection of ρ(y, u, t), the sliding surface in (13) is
reached in finite time. Define:

TL =

[
In−p L

0 T

]
. (19)

Using this transformation, the matrices in (6), (9), and (11) are converted to the
following form:

A = TL ÃT −1
L =

[
A1 A2
A3 A4

]
, M = TL M̃ =

[
M1
M2

]
Gn = TLG̃n =

[
0

P−1
0

]
, F = TL F̃ =

[
0(n−p)×r
F2

]
D = TLD̃ =

[
D1
D2

]
, C = C̃T −1

L = [ 0p×(n−p) Ip]

P = (T −1
L )T P̃T −1

L =

[
P1 0
0 P0

]
(20)

where:

A1 = A1 + LA3, M1 = M1 + LM2, D1 = D1 + LD2
A3 = T A3, M2 = T M2, D2 = T D2, F2 = T F2.

(21)

Therefore, the error in (14) becomes:

ėl(t) = (A− GLC)el(t)−M∂(t, y, u)−Dd(t)
−F fa(t) + Gnv

(22)

where

el = TLe =
[

e1
eỹ

]
, GL = TLGl =

[
GL1
GL2

]
. (23)

Using this, (23) can be decomposed as:

ė1(t) = A1e1(t) + (A2 − GL1)eỹ(t)
−M1∂(t, y, u) − D1d(t)s

ėỹ(t) = A3e1(t) + (A4 − GL2)eỹ(t) + P−1
0 v

−M2∂(t, y, u)−D2d(t)−F2 fa(t).

(24)

The following theorem proposes a proper choice of ρ to guarantee finite time conver-
gence to the sliding surface S.

Theorem 3. The error dynamic (23) reaches the sliding surface S in finite-time Ts ≤
√

V(0)

η0

√
λmin(P−1

0 )
and stays there forever, if:

ρ(t, y, u) ≥ ‖P0D2‖d0 + ‖P0M2‖β + ‖P0F2‖α+
2‖P0A3‖(µ1d0 + µ2β)/µ0 + η0.

(25)
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Proof. Define the candidate Lyapunov function V = eT
ỹ P0eỹ. Then:

V̇ = eT
ỹ

(
P0(A4 − GL2) + (A4 − GL2)

T P0

)
eỹ+

2eT
ỹ P0A3e1 − 2eT

ỹ P0F2 f − 2eT
ỹ P0D2d−

2eT
ỹ P0M2∂ + 2eT

ỹ v

(26)

where 2eT
ỹ v = −2ρ

∥∥eỹ
∥∥. Then, by using the Cauchy–Schwartz inequality, one gets:

V̇ ≤ −2
∥∥eỹ
∥∥( ρ− ‖P0A3‖‖e1‖ − ‖P0F2‖α−
‖P0D2‖d0 − ‖P0M2‖β

)
. (27)

From (15), (24), and (25) we conclude that ρ− ‖P0A3‖‖e1‖ − ‖P0M2‖β− ‖P0D2‖d0 −
‖P0F2‖α = η0 > 0 and ‖e1‖ < 2(µ2β + µ1d0)

/
µ0. This results:

V̇ ≤ −2η0
∥∥eỹ
∥∥ ≤ −2η0

√
λmin

(
P−1

0

)√
V. (28)

Therefore, using (29) and the finite-time stability theorem (see Theorem 4.2 of [37]),
we conclude that the estimation error converges to zero, and the sliding motion reaches S

in finite-time Ts ≤ 1
η0

√
V(0)

λmin(P−1
0 )

.

Now, an LMI-based approach is proposed to obtain an appropriate gain matrix G̃l . In
this regard, Theorem 2.2 requires finding a matrix P̃ that satisfies:

(Ã− G̃lC̃)T P̃ + P̃(Ã− G̃lC̃) < 0. (29)

As discussed in [36], an inequality of the form (30) can be alternatively solved by the
following set of inequalities:

P̃ > 0, ÃT P̃ + P̃Ã− C̃TU−1C̃ + P̃QP̃ < 0 (30)

where U ∈ Rp×p and Q ∈ Rn×n are PSD matrices. Applying the Schur lemma, (31) is
converted to the following LMI:[

P̃Ã + ÃT P̃− C̃TU−1C̃ P̃
P̃ −Q−1

]
< 0. (31)

The matrix P̃ is obtained by solving the LMI (32), and then:

G̃l = P̃−1C̃TU−1. (32)

3. Robust Actuator Faults Reconstruction

In this part, assuming that the proposed SMO gains in (7) are well-designed, an
efficient approach is proposed for a robust AFR procedure. Relying on the results of
Theorem 2.3, one obtains that eỹ = ėỹ = 0 as t→ ∞. Then:

ė1(t) = A1e1(t)−M1∂(t, y, u)−D1d(t) (33)

0 = A3e1(t)−M2∂(t, y, u)−D2d(t)−F2 fa(t) + P−1
0 veq

where veq is obtained by approximating v in (8):

veq = −ρ(t, y, u)eỹ
(
ε +

∥∥eỹ
∥∥)−1 (34)
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where ε > 0. From (34), one obtains:

ė1(t) = (LA3 + A1)e1(t)− (M1 + LM2)∂(t, y, u)
− (D1 + LD2)d(t)

0 = T
(

A3e1(t)−M2∂(t, y, u)−
D2d(t)− F2 fa(t)

)
+ P−1

0 veq.
(35)

This implies:

P−1
0 veq = T

(
−A3e1(t) + M2∂(t, y, u)+
D2d(t) + F2 fa(t)

)
. (36)

Now, the goal is to minimize or eliminate the effects of disturbance and uncertainty
signals on the AFR. To this end, the reconstruction signal is defined as:

f̂i = WT T P−1
0 veq (37)

where W = [W1, F−1
22 ]. Multiplication of both sides in (37) by WT T implies:

f̂i(t) = + fa(t)−WA3e1(t) + [WD2, WM2]

[
d(t)

∂(t, y, u)

]
. (38)

From (36), we have:

e1(s) = −(sI − (LA3 + A1))
−1×

[LD2 + D1, LM2 + M1]

[
d(t)

∂(t, y, u)

]
.

(39)

Substitution of (40) in (39) results:

f̂i(t) = fa(t) + G(s)
[

d(t)
∂(t, y, u)

]
G(s) =

[
WD2 WM2

]
+

WA3(sI − (LA3 + A1))
−1×[

LD2 + D1 LM2 + M1
]
.

(40)

Therefore, the effect of
[

d(t)
∂(t, y, u)

]
on the fault reconstruction signal will be mini-

mized or bounded if:

‖G(s)‖∞ < ξ (41)

where ξ is a small constant. Let define P̃ in (31) as:

P̃ =

[
P̃11 P̃12
P̃T

12 P̃22

]
> 0 (42)

where P̃22 ∈ Rp×p and P̃11 ∈ R(n−p)×(n−p). By applying the Bounded Real Lemma
(BRL) [38], the inequality (42) is converted to: Φ11 Φ12 −(WA3)

T

ΦT
12 −ξ I (W

[
D2 M2

]
)

T

−WA3 W
[

D2 M2
]

−ξ I

 < 0

Φ11 = P̃11 A1 + AT
1 P̃11 + P̃12 A3 + AT

3 P̃T
12

Φ12 = −(P̃11
[

D1 M1
]
+ P̃12

[
D2 M2

]
).

(43)
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By solving (44), one obtains W and P̃. Then, by substituting W in (38) results:

f̂i(t) ' fa(t). (44)

4. Robust Sensor Fault Reconstruction

In this case and without loss of generality, we define a new state yn(t) ∈ Rp that
converts (1) with fa(t) = 0 to a similar form presented in the previous section, i.e., (1) with
fs(t) = 0, so that a similar algorithm can be used. To this aim, let us define:

ẏn(t) + Anyn(t) = Any(t) (45)

where An is a stable PD matrix. Then, one obtains:

ẏn(t) = −Anyn(t) + AnCz(t) + AnFs fs(t). (46)

Now, an augmented system with n + p states is defined as:[
ż(t)

ẏn(t)

]
=

[
A 0

AnC −An

]
︸ ︷︷ ︸

AN

[
z(t)

yn(t)

]
+

[
B
0

]
︸ ︷︷ ︸

BN

u(t)

+

[
0

AnFs

]
︸ ︷︷ ︸

FN

fs(t) +
[

D
0

]
︸ ︷︷ ︸

DN

d(t) +
[

M
0

]
︸ ︷︷ ︸

MN

∂(t, y, u)

yn(t) =
[

0 Ip
]︸ ︷︷ ︸

CN

[
z(t)

yn(t)

]
. (47)

Using this augmented model, it is evident that the sensor fault reconstruction (SFR)
can be handled similar to the AFR procedure discussed in the previous section.

5. Simultaneous Sensor and Actuator Faults Reconstruction

In this section, a more general case is investigated where the sensor and actuator faults
occur simultaneously, i.e., fs(t) 6= 0 and fa(t) 6= 0. Before proceeding to the main results,
some precalculations need to be done. As discussed earlier, the nonsingular transformation
matrices H = [H1, H2]

T and T exist such that:

T AT −1 =

[
A1 A2
A3 A4

]
, T B =

[
B1
0

]
,

T Fa =

[
Fa1

0

]
, T D =

[
D1
0

]
, T M =

[
M1
0

]
,

HCT −1 =

[
C1 0
0 C4

]
, HFs =

[
0

Fs2

]
.

(48)

Then, the system (1) in the new coordinates z̄ = T z =

[
z̄1
z̄2

]
and ȳ = Hy =

[
ȳ1
ȳ2

]
is decomposed as 

˙̄z1(t) = A1z̄1(t) + A2z̄2(t) + B1u(t)
+Fa1 fa(t) + D1d(t) + M1∂(t, y, u)

ȳ1(t) = C1z̄1(t)
(49)

{
˙̄z2(t) = A3z̄1(t) + A4z̄2(t)
ȳ2(t) = C4z̄2(t) + Fs2 fs(t)

. (50)
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By defining z̄3 =

[
z̄2
fs

]
and C5 =

[
C4 Fs2

]
, Equation (51) can be rewritten as:

N ˙̄z3 = Ā3z̄1 + Ā4z̄3 + F̄s2 fs
ȳ2 = C5z̄3

(51)

where 
˙̄z1(t) = A1z̄1(t) + A2z̄2(t) + B1u(t)

+Fa1 fa(t) + D1d(t) + M1∂(t, y, u)
ȳ1(t) = C1z̄1(t)

(52)

{
˙̄z2(t) = A3z̄1(t) + A4z̄2(t)
ȳ2(t) = C4z̄2(t) + Fs2 fs(t)

. (53)

Considering Ā2 = [A2, 0], from (50) one obtains:

˙̄z1(t) = A1z̄1(t) + Ā2z̄3(t) + B1u(t) + Fa1 fa(t)
+D1d(t) + M1∂(t, y, u)

. (54)

Combining (50)–(54), we get:
˙̄z1(t) = A1z̄1(t) + Ā2z̄3(t) + B1u(t)

+Fa1 fa(t) + K1ψ(t, y, u)
ȳ1(t) = C1z̄1(t)

(55)

{
N ˙̄z3 = Ā3z̄1 + Ā4z̄3 + F̄s2 fs
ȳ2 = C5z̄3

(56)

where K1 = [D1, M1], K̄2 = [D̄2, M̄2], ψ(t, y, u) =
[

d(t)
∂(t, y, u)

]
. Based on the above results,

the following theorem characterizes the proposed method for simultaneous reconstruction
of the sensor and actuator faults in the presence of disturbances and uncertainties.

Theorem 4. Consider the faulty system (55) and (56), and assume the observer structure as:

(N + VC5)ẋ = (Ā4 − L1C5)x + L2(y1 − C1 ˆ̄z1)

+Ā3 ˆ̄z1 + Ā4(N + VC5)
−1Vy2

(57)

ˆ̄z3 = x + (N + VC5)
−1Vy2 (58)

˙̄̂z1 = A1 ˆ̄z1 + Ā2 ˆ̄z3 + B1u(t) + Ḡnv(t)− Ḡley1 . (59)

Then, the observer error is bounded if there exist P1 = PT
1 , P3 = PT

3 , and K satisfying the
following LMIs  Q11 P1 Ā2 P1K

∗ Q22 Q23
∗ ∗ −I


︸ ︷︷ ︸

Q

< 0 (60)

P1 > 0, P3 > 0 (61)

where ∗ denotes the transpose of each symmetric element, and

Q11 = AT
1 P1 + P1 A1 + λ2

∥∥T −1
∥∥2 Im,

Q23 = P3(N + VC5)
−1

Q22 = Q23 Ā4 − KC5 − ĀT
4 QT

23 − CT
5 KT

+λ2
∥∥T −1

∥∥2 In+p−2m

. (62)
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Furthermore, the observer error bound is given as follows

‖e‖ < σ = 2λ−1
min(Q)

∥∥∥∥∥P3

[
0

(V2 F̄s2)
−1

]∥∥∥∥∥+ σ0 (63)

where σ0 is a small positive scalar.

Proof. For the observer (57)–(59), with ey1 = ŷ1 − y1 = C1e1 we have:

v(t) = −ρ0( ˆ̄z1 − z̄1)(‖( ˆ̄z1 − z̄1)‖)−1 (64)

L2 = Ā3C−1
1

L1 = (N + VC5)P3K
(65)

where ρ0 is a positive scalar. Defining e1 = ˆ̄z1 − z̄1, e3 = ˆ̄z3 − z̄3 and using (57)–(59)
one obtains:

ė1 = (A1 − ḠlC5)e1 + Ā2e3 − Fa1 fa(t)
+Ḡnv(t)− K1ψ(t, y, u)

ė3 = −Q23 Ā4(N + VC5)
−1︸ ︷︷ ︸

Q′23

e3 −Q23 F̄s2 fs
. (66)

Defining s(t) = e1(t) and V = 1
2 sT P1s, we get:

V̇ ≤ ‖P1e1‖
( ∥∥(A1 − ḠlC5)e1 + Ā2e3

∥∥− ρ0Ḡn
−‖Fa1 fa(t)‖ − ‖K1ψ(t, y, u)‖

)
(67)

where Ḡnv(t) = −ρ0Ḡne1‖e1‖−1. Choosing ρ0 ≥
∥∥Ḡ−1

n
∥∥(

l
∥∥(A1 − ḠlC5)

∥∥+ ∥∥Ā2
∥∥− ‖Fa1‖ − ‖K1‖

)
ε, implies that after a finite time, we have e1(t) =

ė1(t) = 0. Then, one obtains

0 = Ā2e3 − Fa1 fa(t) + Ḡnv(t)− K1ψ(t, y, u). (68)

Now, the following actuator reconstruction signal is defined:

f̂a = WḠnveq(t) (69)

where W = F−1
a1

. To preserve sliding motion, v(t) must take in the average veq(t) =

−ρ0e1(‖e1‖+ ε)−1. Then, multiplying (68) by W results:

f̂a = −WĀ2e3 + fa(t) + WK1ψ(t, y, u). (70)

Then, one obtains

f̂a − fa = −WĀ2e3 + WK1︸︷︷︸
Z

ψ(t, y, u)

→
∥∥∥ f̂a − fa

∥∥∥ < υ′ + ‖Z‖ψ(t, y, u)
(71)

where υ′ >
∥∥WĀ2e3

∥∥ is a small positive constant. Assuming ‖Z‖∞ < υ′′with υ′′ > 0, results:∥∥∥ f̂a − fa

∥∥∥ < υ. (72)

For small υ, it implies f̂a ≈ fa. Then, from (66) one obtains

ė3 + Q′23e3 = σ = −Q23 F̄s2 fs. (73)
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Now, the following sensor reconstruction signal is defined:

f̂s = Wsσ (74)

where Ws = (−Q23 F̄s2)
−1. Then, one obtains

‖ ˆ̄z3 − z̄3‖ ≤ σ. (75)

This implies f̂s ≈ fs and completes the proof.

Remark 1. Regarding the design parameters tuning, it is worthwhile to mention some points. The
parameter ε in (34) should be initially selected as a very small scalar and then gradually increased
such that it approximates the output error injection v and fulfills the design requirements. The
parameter ξ in (41) is a small constant that satisfies the LMI conditions (43).

Remark 2. In practice, both sensor and actuator faults may occur simultaneously. Therefore, unlike
most existing approaches dealing with sensor and actuator faults separately, our proposed approach
takes care of simultaneous sensor and actuator faults, which can be a critical issue in some systems
such as aircraft, wind turbines, etc., which need some more technical cares to have much better
performance and efficiency.

The step-by-step procedure of applying the proposed design algorithm is summarized
as follows:

(I): Use (2) and (4) to obtain the new coordinate system as defined in Theorem 2.1 (Tc, Tb,
and T are obtained).

(II): In the case of robust AFR, solve the LMI (44) to obtain P̃, which minimizes the effects
of disturbances and uncertainties. Then, design the observer gains using (9) and (33).
Finally, the actuator fault is reconstructed using (38).

(III): In the case of robust SFR, first construct the augmented system equations proposed in
(48). Then, apply (I) and (II) to the augmented system to solve SFR.

(IV): In the case of simultaneous sensor and AFR, first use (49) to obtain the new coordinate
system.

(V): Considering the proposed observer structure in Theorem 5.1, solve the LMIs (60) and
(61) to obtain P1, P3, and K. Then, design the observer gains using (64) and (65). Finally,
the actuator and sensor faults are reconstructed using (69) and (74).

6. Simulation Results

To verify the effectiveness of the proposed approaches, we consider a 5 MW wind
turbine subject to the actuator and sensor faults in the presence of disturbances and un-
certainties. The model and the parameters of the wind turbine used in the simulations are
taken from [4] as following:

ẋ(t) = Ax(t) + Bu(t) + Dd(t) + M∂(t, y) + F fa(t)
y(t) = Cx(t) + Fs fs(t)

A =


0 1.0000 −0.0406 0 0

−88.8900 −0.8889 0.0361 6.685e− 45 0
32552 325.2 −13.22 0 −0.1

0 0 0 −6.6670 0
0 0 0 0 −10

, B = F =


0 0
0 0
0 0

10 0
0 6.6667



C =

 0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

, D =


1
0
1
0
1

, M =


1
−0.5

1
0
0

, Fs =

 1 0 0
0 1 0
0 0 1

.
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The state and the control input vectors are denoted as

x(t) =
[

Θ(t) Ωr(t) Ωg(t) β(t) Tg(t)
]T

u(t) =
[

βr(t) Tg,d(t)
]T

where Θ(t) the torsion angle, Ωr(t) the rotor speed, Ωg(t) the generator speed, β(t) the
pitch angle, and Tg(t) the generator torque are the state variables and Tg,d(t) the desired
generator torque and βr(t) the pitch angle command are the control input of the wind
turbine model.

6.1. Actuator Fault Reconstruction

First, the following stabilizing controller is designed:

u(t) =
[
−14.34 −1.26 −0.01 0.33 −3.06
21.89 0.28 0.07 −0.82 9.37

]
x(t).

During the simulation, we assume x(0) = [0.5, 1, 1, 1.5, 0.5]T; the disturbance d(t) =
u(t− 25) and the uncertainty ∂(t, y, u) = [0, 0.5, 2]y are also considered. It is easy to check
that Assumption 1 is satisfied for this system, so the proposed method is applicable. Using
the results in Theorem 2, the transformation matrix Tb is calculated as:

Tb =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 −1

.

Then, the LMI (44) is solved to minimize the effects of disturbances and uncertainties.
Consequently, the observer gains and the AFR are obtained using (9), (33), and (38) as:

Gl =


−0.1 −3.3 0
0.01 0.1 0
−1.55 71.6 0
−0.8 1.55 0

0 0 −0.1

, Gn =


−0.001 0.07 0
0.001 −0.07 0
2.75 2.68 0
1.37 1.3 0

0 0 −0.13

.

The associated matrices L and P0 are calculated as:

L =

 1 1 0
−1 −1 0
0 −1 1

, P0 =

 −13.35 14.06 0
14.06 −14.05 0

0 0 7.53

.

The Lyapunov matrix P is also obtained from (30):

P =


8.41 0 0.1 −0.8 0

0 5.65 −0.01 0 0
0.1 0 0 −0.1 0
−0.81 0 −0.1 0.72 0

0 0 0 0 7.53

.

The parameters ε and ρ are selected as 0.5 and 10, respectively. Then, choosing
ξ = 1× 10−3, the matrix W is calculated as W = [−0.676,−0.581,−0.28].

Figures 1 and 2 show the effectiveness of the proposed AFR algorithm reconstruct-
ing faults simultaneously occurring in both actuators in the presence of the mentioned
unknown disturbances/uncertainties.
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Figure 1. Illustration of robust actuator fault reconstruction (fault on the first actuator).
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Figure 2. Illustration of robust actuator fault reconstruction (fault on the second actuator).

6.2. Sensor Fault Reconstruction

First, by choosing An = 20I3×3, the matrices of the associated augmented model in (48)
are obtained.

A =



0 1 0 0 0 0 0 0
8.9 −1 0 0 0 0 0 0

25.5 32.25 −13 0 0 0 0 0
0 0 0 −7 0 0 0 0
0 0 0 −10 0 0 0 0
0 0 0 0 −20 0 0 0
0 20 0 0 0 −20 0 0
0 0 20 0 0 0 −20 0


, B =



0 0
0 0
0 0

10 0
0 6.68
0 0
0 0
0 0



C =

 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

, D =



1
0
1
0
1
0
0
0


, M =



1
0.5
1
0
0
0
0
0


, Fs =



0
0
0
0
0
0
0
20


.
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Then, using a similar procedure the matrix Tb is obtained as:

Tb =



1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1


.

Using this coordinate transformation, the equivalent model is obtained. Then, a stabi-
lizing controller is designed as u(t) = Kz(t), where:

K =

[
−201.7 −10.1 −0.1 2.7 −0.1 1.3 −8.4 56
−4214.3 −6 −18.7 31.5 0.3 1.2 −188.2 84.4

]
.

In this case, we assume x(0) = [1, 0.5, 1, 0.5, 1.5, 1, 2, 0.5]T , ∂(t, y, u) = [0.3,−0.5, 0], y =
0.3z5 − 0.5z6, and d(t) = u(t − 20). Using a similar procedure, the observer gains are
obtained for the augmented system as:

Gn =



−0.1 0 −0.16
0 −0.1 0.16
−0.01 0 −0.43
−0.01 −0.01 0.3

0 0 0.3
0 −0.01 −1.3
−1.3 0 1.3
−1.3 −0.3 −20.7


, Gl =



0 0 0.04
−0.01 −0.01 0
−0.45 −2.15 0
−0.69 −0.97 0
−14.26 −938.31 0

2.77 239.93 0
−0.74 −2.77 0

0 0 −0.07


.

The parameters ε and ρ are selected as 0.1 and 15, respectively. Then, choosing
ξ = 1× 10−3, the matrix W is calculated as W = [−0.651,−1.923, 0.309]. In Figures 3–5,
the performance of the proposed robust SFR is illustrated in the presence of the distur-
bances/uncertainties.
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Figure 3. Illustration of robust sensor fault reconstruction (pitch angle sensor fault).
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Figure 4. Illustration of robust sensor fault reconstruction (rotor speed sensor fault).
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Figure 5. Illustration of robust sensor fault reconstruction (generator speed sensor fault).

6.3. Simultaneous Actuator and Sensor Faults

First, using the transformation in (49), the system is decomposed as in (50) and (51).
Then, using the results in Theorem 5, the LMIs (60) and (61) are solved, and the observer
gains are obtained from (64) and (65):

Gn =

 0.41 −0.43 −1.25
−0.27 0.12 −0.16
−1.16 −0.24 −2.25

, Gl =

 8.87 −66.57 2.22
10.45 −0.6 0.52
−2.45 7.92 −0.52

.

Finally, the simultaneous actuator and sensor faults are reconstructed using (69) and
(74). In this case, the parameters are chosen as given in the previous part. Figures 6 and 7
show the comparison of the simultaneous actuator and sensor fault reconstruction of the
proposed method with [32] in the presence of ∂(t, y, u) = [0.3,−0.5, 0], y = 0.3z5 − 0.5z6,
and d(t) = u(t− 20). The results verify that despite the existence of unknown disturbance
and uncertainty, the proposed method performs well in the reconstruction of both sensor
and actuator faults.

Considering the dynamics of disturbance in the sliding mode observer design, there
was a reduced impact of disturbance in fault reconstruction in comparison with the ap-
proach presented in [32]. In other words, the proposed approach in Theorem 5 has the
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quick response in the fault reconstruction process when disturbance is entered to the sys-
tem. In order to measure and investigate the performance of the proposed methods, it
is required to use quantitative criteria. In Table 1, the norm specifications of the sensor
and actuator fault detection errors for the proposed approach and the method represented
in [32] are calculated. As can be seen in Table 1, the proposed approach improves the
accuracy of the actuator fault reconstruction more than 10% and the accuracy of the sensor
fault reconstruction more than 4%.
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Figure 6. The simultaneous actuator and sensor fault reconstruction using the approach proposed in
Theorem 5.
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Figure 7. The simultaneous actuator and sensor fault reconstruction using the approach presented
in [32].
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Table 1. The comparison of the norm specification of the simultaneous faults reconstruction.

‖error‖2(Actuator) ‖error‖2(Sensor)

Theorem 5 29.04 99.07
[32] 32.61 103.87

Improvement (%) 10.9 4.6

7. Conclusions

In this paper, an efficient robust approach is proposed for simultaneous sensor and
actuator faults reconstruction in the presence of both unknown disturbance and uncertainty.
First, an SMO-based method was proposed, and the observer gains were derived utilizing
an LMI-based method. Then, considering that the system is subject to both disturbance and
uncertainty, a robust reconstruction method is proposed, and incorporating the concept
of BRL, the fault reconstruction problem is represented as an LMI problem and solved
using the available tools. Furthermore, utilizing a wind turbine system, the performance
and robustness of the proposed method were demonstrated. The proposed method can be
robust against of disturbances and uncertainties, which is the most important advantage of
our work. In contrast, the reconstruction of the faults is under the bounded disturbance,
which can be our work’s disadvantage. Finally, it is noted that although in many nonlinear
systems, the nonlinearity and the effects of linearization error can be captured by the
disturbances/uncertainties as considered in this paper, as an ongoing future work, it is
quite beneficial to extend the proposed approach for pure nonlinear models in the presence
of disturbances/uncertainties.
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