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Abstract: The main functions of a three-dimensional test device for simulating rock formations and
surface movement affected by underground coal mining were described in detail, and a series of
similar related tests were carried out. The device consisted of an outer frame, a pressurization unit, a
pulling unit, and a coal seam simulation portion. Using this test device, supported by monitoring
methods such as the three-dimensional laser scanner method, a model test study on the surface
subsidence characteristics caused by coal seam mining was carried out. Combined with the field
measurements, the transfer law of surface subsidence caused by coal seam mining was revealed, and
the whole surface subsidence response process was analyzed. The experimental results show that
the subsidence caused by mining disturbances below the coal seam accounts for 79.3% of the total
subsidence, which is the dominant factor of the total surface subsidence. After long-term surface
observations, surface subsidence can be divided into four stages after coal mining, and the settlement
value of the obvious settlement stage accounts for more than 60% of the total settlement value. The
above test results fully reflect the feasibility and practicality of the three-dimensional test device to
simulate rock strata and surface movement and provide a new experimental research tool that can be
used to further study the surface subsidence characteristics and control caused by coal mining.

Keywords: rock formations; surface subsidence law; surface subsidence process; 3D test device; 3D
laser scanning

1. Introduction

With the transformation and upgrade of coal development and people’s increased
awareness of environmental protection issues, the vast majority of coal mines in China
will encounter problems related to coal pressing to protect buildings, structures, water
bodies and other protected bodies during the construction and production process, as well
as mining problems that are influenced by protective bodies, that is, problems related to
subsidence control and coal mining activities under special conditions, seriously restricting
the production of coal mining enterprises [1–3]. Fundamentally, technical measures that
reduce subsidence and control loss mainly include filling mining, partial mining, coordi-
nated mining, etc. [4–7]. Filling mining is a method that has been proven to solve pressed
coal problems. The use of this method supports the rock mass over the mined-out area,
thereby alleviating surface subsidence, reducing damage to surface buildings, achieving
the goals of efficiently mining coal mine resources and of controlling surface damage [8–13].
Controlling the deformation and destruction of structures, such as villages, railways and
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other structures is one of the problems that the mining industry urgently needs to solve.
After mining, stress in the overlying rock mass is redistributed, causing local stress con-
centration in the surrounding rock, causing the top of the mined-out area to sink, become
crushed, or fall [14–16]. As the stress in the support body changes, surface deformation
will be induced within a certain range [17–20]. Therefore, studying the influence of strata
movement and surface subsidence on the villages and buildings on the surface during and
after coal mining is of great significance [21–23].

There are many theoretical methods and monitoring methods related to surface sub-
sidence, and many achievements have been made [24,25]. For example, Sun proposed a
theoretical method to predict surface subsidence caused by inclined coal seam mining [26].
Dong studied the influence of different factors on tomography [27]. Existing test devices
for similar coal mining material simulations are mostly two-dimensional test benches
that simulate the roof and rock formation movement in coal mines and represent mature
technology, but there are certain surface movement limitations that must be accounted for
during simulation [28–30]. The control process of the coal seam simulation components in
three-dimensional test equipment is complex, and successful trial production is difficult or
is limited by the bearing capacity, function and size, making it difficult to effectively com-
bine these simulations with engineering practices to carry out model test research [31–33].
Therefore, in order to better study the strata and surface movement characteristics caused
by coal mining, this paper adopts a method combining field measurements and the de-
velopment of a test device to conduct simulation tests. Through the “three-dimensional
test device to simulate the influence of underground coal mining on strata and surface
movement”, developed by the authors of this paper, combined with three-dimensional laser
scanning technology, simulation tests determining surface subsidence after coal mining are
carried out. Combined with long-term surface observations, the laws of strata and surface
movement caused by coal mining are revealed.

2. Testing Device
2.1. The Overall Structure of the Test Device

This paper introduces a three-dimensional test device that simulates the impact of
underground coal mining on rock formations and surface movement, as shown in Figure 1.
This device belongs to independent research and development, and has obtained the
Chinese utility model patent authorization. And entrust Qingdao local testing machine
manufacturers to cooperate in manufacturing. It includes an outer frame, pressurization
unit, pulling unit, and coal seam simulation portion. The coal seam simulation portion
is located inside the outer frame, the upper surface of which is filled with similar m coal
seam materials, and the coal seam simulation portion consists of multiple mining blocks
and multiple reserved coal pillar assemblies. The pressurization unit is located on the
top of the outer frame, and the pressurization unit is connected to the outer frame by the
pressurizing position adjustment unit. The pulling unit is located at the bottom of the
outer frame, and the pulling unit is connected to the outer frame by the pulling position
adjustment unit. This device can be combined with the coal mining site to simulate the
mining process and can simulate the variable mining height, controlled mining speed and
ease of pressurization, and laying of similar materials.
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0.60 m × 0.60 m × 0.80 m. A detailed image of the model and its size parameters is shown 
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Figure 1. Schematic diagram of the device structure: (a) the top structure and components of the
device; (b) bottom structure and components of the device.

2.2. Introduction of Function and Test Method

Using a “three-dimensional test device for simulating surface movement in underground
coal mining” that was developed by the authors independently to carry out the test, a certain
degree of model simplification was carried out during the physical processing process of the
test device. The specific size of the model is as follows: x × y × z = 0.60 m × 0.60 m × 0.80 m.
A detailed image of the model and its size parameters is shown in Figure 2.
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Figure 2. The three-dimensional test device for simulating surface movement in underground
coal mining.

This device mainly addresses the technical problems that are present in the existing
technology, thus providing a three-dimensional simulation test device and test method that
can simulate different coal seam mining schemes and that can facilitate the observation
of surface deformation characteristics, as shown in Figure 3. In order to achieve the
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design purpose of the device, it was determined that the overall structure of the device
should mainly consist of the outer frame, pressurization unit, pulling unit, and coal seam
simulation portion:
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(1) The outer frame includes columns located in the four corners. Multiple threaded
holes are spaced throughout the column. Four pressure plates are installed in four columns
on all sides with bolts.

(2) The coal seam simulation portion is composed of mining coal blocks and reserved
coal column components that are staggered and connected on the horizontal plane. The
coal seam simulation portion is connected with four pressure plates, which are all around
this part of the model.

(3) The pressurization unit is set at the top of the outer frame and is connected to the
outer frame by the pressurizing position adjustment unit. The pressurization unit is used
to pressurize the surface of coal rock formations that are composed of similar material; if
surface deformation observations are required, then the test geometric similarity ratio can
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be adjusted to make the whole range of the model correspond to the whole stratum. Then,
there is no need to apply the surface pressure to the model.

(4) The pulling unit is located at the bottom of the outer frame and is connected by the
pulling position adjustment unit to the outer frame. The pulling unit is used to pull down
the mining coal block in order to simulate coal mining.

In order to coordinate the operation of the unit and to work closely with the various
parts of the system, the detailed features of each component were designed so that the
functions could be achieved without affecting the overall structure of the equipment: The
reserved coal pillar assembly and the mining block comprise a rectangular steel body with
a bottom opening, a waist through-hole is located on the inner four walls of the rectangular
steel body, and the top also has a welded nut that extends inward and that is connected
to the pulling unit. The coal seam simulation portion is bolted through the threaded hole
to connect it to the four pressure plates; the surface is also filled with a similar coal seam
material surrounded by baffles that are set on all sides, and the front baffle is fitted with
a transparent acrylic plate to observe the overall deformation of the specimen during the
experimental process. The pressurization unit consists of the first ball slide, hydraulic jack
and load plate; the first ball slide is connected to the pressurizing position adjustment unit,
the position of the loading plate corresponds to the surface position of the similar coal
rock formation material, and the pressurization unit is connected to the outer frame by the
pressurizing position adjustment unit. The pressurizing position adjustment unit consists
of a central rail beam, a second ball slide, an upper rail column, and an upper rail beam.

By combining the overall structure and the other components, the device can effectively
simulate the surface subsidence characteristics of coal seam mining. During the test,
the HandyScan700 three-dimensional laser scanner was used to scan the surface of the
model multiple times in order to obtain the deformation characteristics of the model. The
HandyScan700 three-dimensional laser scanner includes a handheld scanner as well as the
control host and control software VXelements, as shown in Figure 4. During operation, the
scanner is able to calculate the shape of the object accurately based on the triangulation
principle combined with the positioning spots on the object by projecting the laser mesh
onto the object being tested, and the camera is used to capture the laser mesh shape. The
following are the positive characteristics of this method: fast, non-contacting, high-density,
high-precision, digital, automatic, etc.
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2.3. Test Steps

When using this device to simulate underground coal mining processes and to observe
its surface movement features, the following steps should be followed:

(1) According to the actual situation of the project site, develop pre-simulation mining
conditions (mining area, number of working faces, mining methods, etc.), assemble the
test device;

(2) Obtain the on-site coal seam and rock formations parameters, and formulated
similar materials indoors;

(3) Test to determine the parameters of the formulated similar materials;
(4) Place similar materials in the test device, arrange the sensors, and compact the layers;
(5) Place the three-dimensional scanners in the surface deformation observation po-

sitions of the test device and scan and store the surface and building deformation and
movement in real-time;

(6) Conduct similar simulation tests according to the established mining simulation
scheme: the non-slip fastening screws between the mining coal blocks will be loosened, and
the pulling mechanism will be pulled down one by one to simulate coal mining. After the
test is completed, according to the corresponding data and the processing steps, conduct
the analysis.

3. Characteristics Analysis of Surface Subsidence in Coal Seam Mining
3.1. Test Scheme

During the field engineering measurement process, due to the influence of building
surfaces and other factors, irregular monitoring points will be laid down according to the
actual situation on the surface to obtain the subsidence law of the monitoring polyline on
the surface. Two-dimensional planar or the three-dimensional spatial features of surface
subsidence can only be studied by means of indoor experiments. In order to better analyze
the dynamic spatial characteristics of surface subsidence caused by coal seam mining, a test
device for simulating rock formations and surface movement can be used, and supplemen-
tary research and analysis of the temporal and spatial surface subsidence characteristics are
conducted through the test results.

3.1.1. Formulation Ratio of Similar Materials

The test scheme is designed based on a similar material test design principle, combined
with the characteristics of the overlying strata of Tangshan ore. To highlight the geological
features of the thick, loose layers on the surface, the thickness of the loose layer on the
surface is set to 300 m, and the parameters of the remaining rock formations are listed in
Table 1.

Table 1. Formulation ratio of the test.

Layer
No.

Lithology Thickness/m Model
Thickness/cm

Unit
Weight
g/cm3

Formulation
Ratio

Amount of Material/kg
Total

Weight Sand Calcium
Carbonate Gypsum Water

R4 Loose Layer 300 33 0.95 673 182.40 156.34 18.24 7.82 20.27

R3 Bedrock
Layer 300 33 1.60 537 230.40 192.00 11.52 26.88 25.60

R2 Basic Roof 100 11 1.70 755 73.44 64.26 4.59 4.59 8.16

R1 Immediate
Roof 30 3 1.80 773 34.56 30.24 1.30 3.02 3.84

Total 730 80 520.80 442.84 35.65 42.31 57.87

3.1.2. Test Steps

(1) Design the similarity ratio of the test according to the purpose, calculate the material
formulation ratio based on the similarity ratio and rock formations, and determine the
formulation scheme;
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(2) Adjust the mining block according to the test scheme and raise the expected mined
coal seam range, as shown in Figure 5a;
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(3) Formulate the similar material of each rock formation according to the test scheme,
lay the model out, and compact each layer, as shown in Figure 5b;

(4) Lay out the three-dimensional scanning positions of the surface on the model, as
shown in Figure 5c;

(5) Mine the model step-by-step and lower the pre-raised mining blocks to their
original position while using a three-dimensional laser scanner to monitor the vertical
deformation of the surface on the model, as shown in Figure 5d.

3.2. Analysis of Test Results
3.2.1. Surface Subsidence Characteristics of Coal Seam Mining

In order to compare the surface subsidence morphology after coal seam mining,
a cloud map of the vertical displacement on the surface of the model and a schematic
of the measuring line of the model are calculated by Geomagic Control X, as shown in
Figures 6 and 7, respectively. After coal seam mining, the surface subsidence pattern is
symmetrically distributed along the working surface. The sediment volume gradually
decreases from the center to the edges of the mined-out area: With coal seam mining, the
surface subsidence gradually radiates in the direction of the work surface, and the peak
settlement position gradually shifts from the center to the back of the mined-out area.
The early stage of mining has a greater impact on surface subsidence. During coal seam
mining, partial positive vertical displacement occurs. At the beginning of coal seam mining,
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positive vertical displacement is concentrated at the edges of the mining area and at the
edges of the model. In the mid to late stages of mining, positive vertical displacement
is more distributed at the edges of the surface subsidence, which is because the stress
is redistributed during the surface subsidence, resulting in the formation particles being
squeezed and the upward vertical displacement occurring.

Energies 2022, 15, x FOR PEER REVIEW 8 of 15 
 

 

stress is redistributed during the surface subsidence, resulting in the formation particles 
being squeezed and the upward vertical displacement occurring. 

The statistical average and maximum sedimentation curves of the surface after coal 
seam mining are shown in Figure 8. As seen from the figure, the average and maximum 
surface settlement volume gradually increase with the work surface, and after the coal 
seam is mined out, the average surface settlement volume is about 0.837 mm, and the 
maximum settlement volume is about 1.841 mm. 

The sediment characteristics of the surface measuring line are shown in Figure 9, 
and the corresponding settlement monitoring curve is shown in Figure 10. According to 
Figure 9, after coal seam mining, the surface subsidence parallel to the mined-out area is 
presented as asymmetrical distribution, the settling pattern is similar to the spoon type, 
the central settlement of the mined-out area is larger, the edge settlement is smaller, the 
sedimentation slope is larger, the slope is steeper on the open-off cut side, the sedimen-
tation slope is smaller, and the slope is relatively slower on the working face side. 

vertical displacement 
/mm

 

vertical displacement 
/mm

 

(a) (b) 
vertical displacement 

/mm

 

vertical displacement 
/mm

 
(c) (d) 

vertical displacement 
/mm

 
(e) 

Figure 6. Cloud map of cumulative settlement of the model: (a) first mining; (b) second mining;
(c) third mining; (d) fourth mining; (e) fifth mining.



Energies 2022, 15, 1927 9 of 16

Energies 2022, 15, x FOR PEER REVIEW 9 of 15 
 

 

Figure 6. Cloud map of cumulative settlement of the model: (a) first mining; (b) second mining; (c) 
third mining; (d) fourth mining; (e) fifth mining. 

 

 
Figure 7. Schematic diagram of the model measuring line. 

0.127

0.229

0.398

0.576

0.837

0.974

1.318
1.423

1.611

1.841

first mining
second mining

third mining
fourth mining

fifth mining
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of mining

A
ve

ra
ge

 su
rfa

ce
 su

bs
id

en
ce

 / 
m

m

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

M
ax

im
um

 su
rfa

ce
 su

bs
id

en
ce

 / 
m

m

 
Figure 8. Statistical curve of surface settlement. 

 
Figure 9. Three-dimensional strip diagram of surface measuring line settlement. 
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The statistical average and maximum sedimentation curves of the surface after coal
seam mining are shown in Figure 8. As seen from the figure, the average and maximum
surface settlement volume gradually increase with the work surface, and after the coal
seam is mined out, the average surface settlement volume is about 0.837 mm, and the
maximum settlement volume is about 1.841 mm.
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Figure 8. Statistical curve of surface settlement.

The sediment characteristics of the surface measuring line are shown in Figure 9,
and the corresponding settlement monitoring curve is shown in Figure 10. According to
Figure 9, after coal seam mining, the surface subsidence parallel to the mined-out area is
presented as asymmetrical distribution, the settling pattern is similar to the spoon type,
the central settlement of the mined-out area is larger, the edge settlement is smaller, the
sedimentation slope is larger, the slope is steeper on the open-off cut side, the sedimentation
slope is smaller, and the slope is relatively slower on the working face side.
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3.2.2. Transfer Law of Surface Subsidence in Coal Seam Mining

In order to compare the impact of coal seam mining on the sediment at different areas
of the surface, the surface range right above the five mining stages is divided into five areas
to analyze the changes in the measuring line sediment in the five regions, as shown in
Figure 11. The analysis shows that:
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Figure 11. Region division for surface analysis.

(1) The changes in average sedimentation in different surface regions are shown in
Figure 12. As seen from the figure, all the surface regions saw an increase in the amount
of sedimentation, and the increase gradually decreased. After the stability of the strata,
the total settlement is the largest in area II, with an average of 1.323 mm, and the smallest
overall settlement is observed in area V, with an average of 0.334 mm. Therefore, the early
middle stage of the surface in the mined-out area is the area with the largest amount of
settlement, and measures need to be taken to focus on prevention and control.
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Figure 12. Histogram of average sediment volume change in different regions of the surface.

(2) The radar map of the average sedimentation for the different surface regions
is shown in Figure 13. With the exception of area I, each area settles when the coal
seam corresponds to the previously mined area, and the amount of advanced settlement
caused by coal seam mining in areas II to V is 0.309 mm, 0.118 mm, 0.105 mm, 0.091 mm,
respectively, with an overall decreasing trend being observed. At the same time, during
the third mining operation, area V shows a mild response, indicating that as the range of
the mined-out area increases, the degree of surface subsidence advance that is caused by
the continuously advancing working surface is gradually reduced, but the advance impact
range gradually increases.
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(3) Different coal seam mining stages have different degrees of influence on the
corresponding surface. The settlement increments caused by coal seam mining right
under the five areas are 0.464 mm, 0.424 mm, 0.441 mm, 0.249 mm, and 0.253 mm, and
exceed the settlement increments caused by coal seam mining in other areas. Taking
area III as an example for analysis, the surface subsidence caused by the first two, the
third and fourth, and the fifth mining simulations accounted for 11.6%, 79.3%, 9.1% of
the total subsidence, respectively. The analysis shows that the surface subsidence is the
superposition of advanced settlement caused by coal seam mining, disturbance settlement
caused by subsurface coal seam mining, and prolonged post-mining subsidence. The
settlement caused by the disturbance of subsurface coal seam mining is the dominant factor
in total surface subsidence.

4. Field Engineering Validation

In order to analyze the surface subsidence characteristics of coal seam filling mining
in the Tangshan mine, a regional surface subsidence observatory was established in the
corresponding surface area. The station layout is shown in Figure 14 and has a total of
87 observation points, the average observation point spacing is 30 m, the total length of
the measuring line is 2700 m, and both ends of the measuring point distance from the
T3292 working surface boundary are located about 750 m or so away [34].
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Surface subsidence observation line B was established in the main section and was
located on both sides of the main section of the working surface and had a total length of
470 m as well as a total of 19 observation stations from B1 to B19. The average distance
between the observation positions was 26 m, and the surface subsidence caused by mining
on the T3292 working surface was observed.

By studying the influence range of the surface subsidence of the working surface and
analyzing the long-term observation results of each measuring point of measuring line B,
the settlement vs. time curve of some observation positions could be obtained, as shown
in Figure 15.
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In order to study the surface subsidence response process, we take observation posi-
tions B11, B14s, and B16 as examples. The advanced influence surface subsidence process
can be divided into four stages, as shown in Figure 16.
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Combined with field engineering tests, the field engineering situation and the analysis
of the device test results are consistent. The study reveals the following:

(1) Stage A—No settlement stage. Before the working surface advances to 240 m, each
measuring point settlement value is small, fluctuating around the threshold value, and
the average value is lower than the surface subsidence threshold value (10 mm). Multiple
observations on the surface lasting more than a dozen months showed small changes in
the settlement, indicating that the observation area is far away from the mining area and
that it is only slightly affected by the advance.

(2) Stage B—Slight settlement stage. When the working surface advances to the
position of 240-60 m ahead of the measuring point, the curve slope increases, the settle-
ment increased to 30 mm, exceeding the threshold of surface subsidence (10 mm), the
surface of the observation area begins to be affected by the advance, and displacement
settlement occurs.

(3) Stage C—Significant settlement stage. After the working surface advances to the
position of 60 m ahead of the measuring point, the settlement exhibits a major increase as
the working surface advances. After mining, the settlement continues to increase over time,
with the final settlement of each measuring point increasing to more than 70 mm.

(4) Stage D—Residual settlement stage. After experiencing significant growth, the
settlement of each observation point and the ground surface gradually reach a stable state;
the stabilized subsidence value is affected by the location of the measuring point and the
surface situation, which has a larger stabilized subsidence value near the strike of the
working surface inclination and is close to the middle position.

5. Conclusions

(1) A “three-dimensional test device for simulating surface movement in underground
coal mining” was self-designed and developed. The overall structure of the device consisted
of an outer frame, pressurization unit, pulling unit, and coal seam simulation portion
that can effectively simulate the law of surface subsidence caused by underground coal
seam mining.

(2) The final surface subsidence state is the superposition of advance settlement caused
by coal seam mining, disturbance settlement caused by subsurface coal seam mining, and
prolonged post-mining subsidence. The surface subsidence caused by the three mining
stages accounted for 11.6%, 79.3%, and 9.1% of the total surface subsidence, respectively.
The settlement caused by the disturbance of subsurface coal seam mining is the dominant
factor in the total surface subsidence.

(3) The device model test was effectively combined with actual engineering practices.
The field engineering tests and model test results analysis are consistent, and a conclusion
can be drawn: after coal seam mining, the surface subsidence comprised four stages,
including a no settlement stage (ahead of 240 m), a slight settlement stage (ahead of
240~60 m), a significant settlement stage (ahead of 60 m ~ the end of mining), and a
residual settlement stage (after the end of mining), with the settlement from the significant
settlement stage accounting for more than 60% of the total settlement.
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