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Abstract: Owing to their simple construction, cost effectiveness, and high thermal efficiency, pulsating
heat pipes (PHPs) are growing in popularity as cooling devices for electronic equipment. While
PHPs can be very resilient as passive cooling systems, their operation relies on the establishment and
persistence of slug/plug flow as the dominant flow regime. It is, therefore, paramount to predict the
flow regime accurately as a function of various operating parameters and design geometry. Flow
pattern maps that capture flow regimes as a function of nondimensional numbers (e.g., Froude, Weber,
and Bond numbers) have been proposed in the literature. However, the prediction of flow patterns
based on deterministic models is a challenging task that relies on the ability of explaining the very
complex underlying phenomena or the ability to measure parameters, such as the bubble acceleration,
which are very difficult to know beforehand. In contrast, machine learning algorithms require limited
a priori knowledge of the system and offer an alternative approach for classifying flow regimes. In this
work, experimental data collected for two working fluids (ethanol and FC-72) in a PHP at different
gravity and power input levels, were used to train three different classification algorithms (namely
K-nearest neighbors, random forest, and multilayer perceptron). The data were previously labeled
via visual classification using the experimental results. A comparison of the resulting classification
accuracy was carried out via confusion matrices and calculation of accuracy scores. The algorithm
presenting the highest classification performance was selected for the development of a flow pattern
map, which accurately indicated the flow pattern transition boundaries between slug/plug and
annular flows. Results indicate that, once experimental data are available, the proposed machine
learning approach could help in reducing the uncertainty in the classification of flow patterns and
improve the predictions of the flow regimes.

Keywords: two-phase flow; pulsating heat pipes; flow pattern maps; machine learning; classification
algorithms

1. Introduction

The lifespan and reliability of a wide range of electronic components and electro-
mechanical assemblies are often compromised by the poor performance of the thermal
control system (TCS). Cooling capacity, weight, and cost requirements are becoming very
challenging in high-density PCBs, microprocessors, photovoltaic solar arrays, and actuators,
not only limiting the expected performance [1] but also creating safety issues, as in EV
battery systems [2]. On the other hand, energy consumption for cooling purposes has
critically increased in recent years. Data centers consume 200 TWh each year worldwide [3],
where 38% (76 TWh) is estimated to go toward cooling processes. There are a wide variety of
available cooling processes for electronics. The most common methods based on two-phase
flow are flow boiling [4-10], pool boiling [11-14], and impinging jets [15-18].

Pulsating heat pipes (PHPs) can play a leading role in reducing cooling costs due to
their resulting equivalent thermal conductivity that is several times higher than that of pure
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copper [19]. Furthermore, no pumping power is required for the circulation of the working
fluid. This results in a sensible reduction in complexity, volume, and weight of the TCS.
The PHP is a thermally driven heat transfer device patented in the 1990s [20,21], which
has seen a growing research interest since then. It is simpler in its construction and more
cost-effective, compared to other similar heat transfer devices (e.g., heat pipes, loop heat
pipes). It is composed either of a tube bent in several turns or of two plates welded with a
serpentine-like path milled on one of the surfaces. Once filled and sealed, a working fluid
resides in the PHP as an alternation of liquid slugs and vapor plugs due to the dominant
effect of capillary forces with respect to buoyancy. When heat is applied to the evaporator
zone, the fluid motion inside the tube is activated, and the pressure fluctuations drive
a self-excited [22] oscillating motion of liquid plugs and vapor bubbles, also identified
as oscillating Taylor flow. This condition significantly enhances the heat transfer [23] by
exploiting both sensible and latent heat.

1.1. Flow Patterns in PHPs

Whilst PHPs are drawing the attention of a growing number of research groups, includ-
ing both experimental and numerical approaches, the industrialization of such technology
is still in its preliminary phase, and examples of off-the-shelf PHPs are not yet common
and limited to specific applications. The complex interplay of evaporation/condensation
phenomena, surface tension, and inertial effects has been the object of several numerical in-
vestigations with the aim of developing a robust modeling tool. Nikolayev [24] developed
one of the first models able to describe the chaotic self-sustained oscillations in a PHP with
an arbitrary number of branches and arbitrary number of bubbles. Further improvements
of the same model led to the implementation of the effect of the tube conductivity on the
start-up phase [25] and the impact of the PHP orientation on the overall performance [26].

The operation of a PHP is strongly linked to the existence of a dominant slug/plug
flow throughout the required range of operating conditions. Due to the variation of flow
direction, pressure drop, and liquid film thickness in a PHP, several flow patterns have been
observed [27], showing transitions between slug/plug, semi-annular, and annular flow
(Figure 1). For a given geometry, the flow pattern is highly influenced by filling ratio and
power input [28], due to the effect on the vapor quality, showing a higher ratio of bubble
length over tube diameter [29]. As a result, the slug/plug flow pattern can transition into
an annular flow, which in the long run can lead to a reduction in thermal performance
and a stoppage of the oscillation due to critical drying out of the evaporator. The flow
pattern has been extensively investigated in flow boiling in millimeter-scale channels, and
it is the result of the interaction of interfacial, inertial, viscous, and gravitational forces.
Without an exhaustive knowledge of the flow pattern, the correct thermal and hydraulic
design parameters cannot be calculated properly. Despite the crucial role played, the
majority of the available flow boiling pressure drop correlations have been formulated
without reference to the flow pattern condition they covered [30]. It is also known that
the available heat transfer correlations are very sensitive to the flow pattern condition [31].
Frequently, the expected flow pattern is roughly linked to the dimension of the channel. A
rough classification proposed by Kandlikar [32] fixed 3 mm as the transition limit between
macro-channels and micro-channels, not considering fluid properties, inertial effects, and
gravity levels. In varying gravity conditions, a transition from a thermosyphon mode (semi-
annular dominant) to PHP mode (slug/plug dominant) impacts the thermal performance,
operating range, and start-up power [33].
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Figure 1. Flow patterns observed in the adiabatic section of a 1.6 mm ID PHP filled with ethanol
during a series of experiments [9]. S: slug/plug; SA: semi-annular; A: annular.

One of the main limitations of the available numerical tools is the inability to define
the dominant flow pattern given a set of operating conditions. The flow pattern is assumed
a priori, and only static criteria are considered. Bond number (Bo = pgd? /), or its relevant
form considering the wettability through the contact angle (6 < 90°) (Bo = pgd?/ (ccosf)),
and the confinement number (Co = 1/Bo'/2) are implemented to establish whether the
initial existence condition for slug/plug flow are met. Once the motion is activated,
there is no real control of the transitions of the flow pattern, mainly ignoring inertial
effects. Break-ups and coalescence events were reviewed in a numerical investigation from
Andredaki et al. [34]. An approach to the development of flow pattern maps for oscillating
flows based on dimensionless numbers was proposed by Pietrasanta et al. [29], drawing the
attention to break-up and coalescence phenomena in a simplified PHP loop, suggesting the
effective use of the actual bubble acceleration rather than the static, nominal g value (i.e.,
gravitational acceleration) and the actual bubble velocity to describe the transition between
slug/plug and semi-annular flow. This last methodology, even if much more accurate than
the use of Bond number and other dimensionless numbers such as Weber or Reynolds
number, has the disadvantage that it cannot be used for design purposes, but only for a
posteriori validation of numerical codes.

Therefore, despite the great effort shown so far, the development of comprehensive
design tools, validated over a wide range of operating conditions and able to assist thermal
engineers, is not yet complete.

1.2. Machine Learning Algorithms for Two-Phase Flow Heat Transfer

Machine learning is a rapidly growing field that allows data-driven optimization, and
it has been recently extended to flow identification and design of cooling devices at different
scales, considering the most significant design parameters as inputs and flow regimes or
thermal resistance as outputs, depending on the application. The use of these algorithms
is predominant in regression problems for heat transfer coefficients and pressure drop,
although the classification of flow patterns can still be found in the available literature.

Several challenges related to two-phase flow heat transfer have been addressed via
the use of machine learning techniques. The prediction of flow patterns using support
vector machines (SVMs) was proposed by Guillén-Rondon et al. [35]. Here, the authors
trained an SVM with a large two-phase flow pattern dataset and achieved on average 95%
prediction accuracy when testing the algorithm on different groups and combinations of
flow patterns. Another interesting contribution is within flow boiling and condensation
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heat transfer. The prediction of heat transfer coefficients for both phase changes is a
challenging task, and the use of machine learning has proven to be beneficial for facilitating
these estimations. An example is the work by Zhu et al. [36] which proposed the use
artificial neural networks (ANNSs) to predict flow boiling and condensation heat transfer
coefficients for micro-channel systems with serrated fins. The authors were able to identify
the most relevant geometrical and operational parameters to minimize the prediction error
and evaluate the influence of specific operational parameters such as mass and heat flux
into the prediction accuracy of the ANN. The results were promising, showing that the
relative deviation from experimental data was on average 11.4% and 6.10% for flow boiling
and condensation, respectively. The use of ANN is also useful in image recognition and
analysis. A recent study published by Suh et al. [37] established an automated framework
for determining boiling curves from high-quality bubble images using convolutional neural
networks (CNNs). The image analysis performed by the neural network was able to capture
relevant physical features used for its training and learning of the underlying statistics
between bubble dynamics and corresponding boiling curves. The prediction error was
reported to be 6% on average.

In terms of the identification of flow patterns in PHP systems, few attempts were found.
Most efforts focused on common heat pipes and two-phase systems. Hernandez et al. [38]
developed a decision-tree-based classifier to identify flow regimes and select appropriate
predictive models for several two-phase flow systems. Zhang et al. [39] proposed two
different machine learning classification algorithms for two-phase nuclear systems. The
first one was designed for real-time flow regime identification based on SVMs, and the
second classifier was designed for transient flow regime classification using CNNs. Both
classifiers performed with high accuracy, allowing for a fast response when dealing with
complex two-phase systems. Note that the above-mentioned contributions are related to
two-phase flow systems, where no pulsating phenomenon occurs, and the transition from
one flow regime to another may be less rapid than when the flowrate and its direction are
not controlled (as it is the case with PHP systems).

In the context of PHP devices, most research attempts have dedicated their efforts
to the prediction of key design parameters, such as thermal resistance and pressure drop.
Jokar et al. [40] presented a novel approach for simulation and optimization of PHPs, based
on a multilayer perceptron (MLP) neural network. According to the authors, PHPs, as
a complex system, can be successfully simulated by means of artificial neural networks.
Jalilian et al. [41] extended the study to the optimization of a flat plate PHP for application
in a solar collector. The trained network was validated with experimental data and used to
evaluate the objective function to maximize the thermal efficiency of the system. A compre-
hensive discussion of the thermal performance prediction of PHPs based on an artificial
neural network (ANN) and regression/correlation analysis (RCA) was proposed by Patel
and Metha [42]. The authors investigated the influence of nine major input variables, con-
sidering more than 1600 experimental points from the literature. Wang et al. [43] proposed
a similar predicting model based on ANN for the optimization of the effects of different
working fluids, extending the current state-of-the-art approaches. Table 1 summarizes the
main input parameters and machine learning approaches adopted in the abovementioned
work. Note that the implementation of these machine learning algorithms is rather recent,
indicating that there are still further studies to perform, although promising results have
been obtained.
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Table 1. Relevant studies on machine learning applied to PHPs.
Author Year Model Description Input Output Prediction
Parameters Accuracy
Combination of ANN and GA
2 hidden layers (50 and 40 .Hea.t fux Equivalent thermal  Relative errors of
Jokar et al. [40] 2016 neurons) Inclination angle resistance 5129,
Batch learning method Filling ratio ’
70% of data used for training
ANN to describe behaviour of Solar radiation
. . PHP evaporator length . Root-mean-square
Jalilian et al. PHP in solar collectors i . Heat gained by
2016 L . Filling ratio error between 7%
[41] GA for optimizing design collector o
Water tank temperature and 13%
parameters of solar collector Inclinati
nclination angle
Correlation
ANN as a prediction model Geometrical parameters coefficient of 0.89
Patel and RCA to find correlation among Al pare Thermal for ANN and 0.95
2018 . Working fluids . .
Mehta [42] input and outputs Overational parameters resistance for RCA with
Data collected from 2003 to 2017 P P dimensionless
numbers
General model for varied . .
. . o Dimensionless numbers
working fluids and conditions Mean square error
- related to heat transfer
Use of ANN for prediction Thermal of 0.014 and
Wang et al. [43] 2019 . . and system geometry - .
Evaporation and condensation resistance correlation

temperature estimated from

Ratio of evaporation

coefficient of 0.98

model length and diameter

On the basis of the findings shown in Table 1, there is still a need for understanding the
complex phenomenon of flow regime transition in PHP systems, and for the classification
of the flow pattern when the device is in operation. The capability of identifying the flow
regime for a set of operating conditions allows for a more accurate prediction of design
parameters and for useful insights regarding the behavior of the system during operation.
Within this context, the use of machine learning is beneficial, as it leverages the abundance
of significant sets of data. The advantages of machine learning techniques, namely, the
direct use of data, the variety of methods for specific purposes, and their equation-free
nature, provide unique characteristics that can improve the optimization of experiment
design, speed in experimental analysis, and scaling to different scenarios.

This work proposes, for the first time, the use of machine learning classifiers to
identify flow patterns and flow pattern transition in a single-loop PHP system with two
different working fluids and in varying gravity conditions using data from the European
Space Agency Parabolic Flight Campaigns [11,25]. Since the single-loop PHP allows the
visualization of flow patterns, this makes the present analysis unique in understanding
if ML can be successfully trained to recognize PHP flow patterns. The selection of the
most suitable classifier is carried out by comparing the accuracies of such classifiers when
predicting the flow regime on unseen data (or testing sets). The selected classifier is used
for devising flow pattern maps for both working fluids, to identify the location of the
flow regime transition zone. It is expected that this capability provides a more systematic
approach when identifying flow regimes, reducing observation uncertainty (when used).

2. Methodology

This work was carried out in two stages. First, the experiments were performed, where
the data used for the machine learning implementation were generated. Second, these
data were preprocessed and prepared for the deployment of machine learning tests and
analysis. Velocity measurements were used to estimate acceleration, as described in the
work done by Pietrasanta et al. [44]. The length of bubbles was also measured. Pressure
measurements also took place in both thermal terminals of the device (i.e., condenser
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and evaporator). These measurements were used to estimate physical properties for the
calculation of dimensionless numbers such as Reynolds (Re), Weber (We), Froude (Fr),
and Bond (Bo) numbers, as defined in Pietrasanta et al. [29]. The labeling process was
conducted visually while analyzing the high-speed images. These values, along with the
label for each observation, were used to train the machine learning algorithms. Note that
the entire set of data was split into a training and testing subsets. Cross-validation within
the training set was also implemented for hyperparameter selection.

2.1. Experimental Setup

The experimental campaign was conducted on a simplified passive heat transfer loop
under varying gravity level and power inputs; ethanol and FC-72 were selected as the
working fluid, mainly due to their significant differences in surface tension, density, and
latent heat of vaporization. The main fluid properties are listed in Table 2. The varying
gravity level was obtained via access to the ESA parabolic flight microgravity platform [45].
The main controlled and observed experimental parameters selected for the setup are
detailed in Table 3.

Table 2. Main properties of the two working fluids at 20 °C.

Fluid o (N/m) p (kg/m®) hi» (kJ/kg) u (Pa-s) d¢y (mm)
Ethanol 0.0224 789.59 927.57 1.22 x 1073 3.40
FC-72 0.0118 1701.6 94.024 0.72 x 1073 1.69

Table 3. Experimental matrix with controlled parameters and parameters observed.

Controlled Parameters Value
Working fluid Ethanol, FC-72
Diameter 2 mm
Gravity level ~102 g ~lg ~2g
Total power input (W) 9,15,18, 24
Observed parameters Range
Wall temperature (°C) from 20 to 43
Heat flux (W/cm?) from 6.5 to 13.6
Absolute fluid velocity (m/s) from 0 to 0.6
Absolute fluid acceleration from0to20g

The device can be defined as a hybrid pulsating heat pipe/closed loop thermosyphon
depending on the working fluid used and on the gravity level. The setup is equipped with
wall-side thermocouples, glass tubes for high-speed shadowgraph visualization of the flow
pattern, and pressure transducers, and the power input is supplied via three heaters coiled
around three sections of the evaporator. The temperature at the condenser is kept constant
with an external cooling loop. A detailed description of the experimental apparatus is
provided in [29] and a rendering of the experimental setup is depicted in Figure 2. As
discussed in [29], the threshold between confined and unconfined flow is conventionally
defined through Bo or Co numbers. In both cases, the limit between stratified or unstratified
displacement of the fluid (observable if the tube is in a horizontal position), is a function of
the diameter, the surface tension, the density of the phases, and the gravity acceleration.
When the gravity acceleration is reduced, the confinement conditions (or unstratified
displacement of the fluid) are easy to reach. This is due to a change in the hierarchy of the
forces acting on the fluid, where capillarity becomes dominant over gravitational forces.
The opposite behavior is observed under hyper gravity conditions.
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Figure 2. Rendering of the single-loop PHP with position of sensors and camera [45]. Reproduced
with permissions.

2.2. Classification Algorithms

Classification is a type of supervised learning. Here, a set of relevant features is
associated with a set of categories, which are already labelled (this makes classification
a supervised method). This allows for a confident training of the classification model
and, later, accurate predictions. When classifying features, different approaches can be
implemented, and the specific method for relating features and labels varies from algorithm
to algorithm. Hence, evaluating the performance of such algorithms is of great importance,
given the context. In this work, three different classification algorithms (namely, K-nearest
neighbors, multilayer perceptron, and random forest) are tested and compared. The
selection of these methods was based on the fact that each of them presents distinct features
that make them unique. This provides a suitable path to cover a wide range of alternatives
when classifying an unknown set of features.

The K-nearest neighbors algorithm is a distance-based method, where each data point
is put to the test and the distance between such point and its K-nearest neighbors is saved
and later compared. Note that no training stage is strictly needed.

The second algorithm, namely, the multilayer perceptron, is an artificial neural network
that minimizes a cost function, which allows for accurate predictions once the classification
problem is properly trained. The minimization of the cost function can be achieved through
a variety of methods, where backpropagation and gradient descent algorithms are popular
and accurate choices.

Lastly, the random forest algorithm is an ensemble of decision trees. In this case,
predictions are made on the basis of the training of multiple classifiers, and a final prediction
takes place via the most repeated forecast of such classifiers. This is applied to improve the
robustness of the classification model.

The accuracy of each algorithm is evaluated using the accuracy score function, given
in Equation (1).

1 n—1 .
score = - ) 1(Ji = i), 1)
i=1
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K-nearest neighbours

New data query

where 7 is the number of samples, ; is the predicted categorical value, y; is the true
categorical value, and function 1(x) is the indicator function, which outputs 1 when 1; = y;
and 0 otherwise. A brief description of the algorithms considered in this work is presented
below. In addition, a summary of the functionality of each algorithm is depicted in Figure 3,
where the logic behind each method is shown via block diagrams. Note that these diagrams
are only general, as details regarding the architecture and specific parameters of each
algorithm depend on the final configuration of each method, which depends on further
studies that decide the suitable values of parameters.

Random forest Multilayer perceptron
Training data sample Inputs

A4 4

i

Choose number of
neighbours k

Decision tree 1 ] [ Decision tree 2 ] Decision tree n

Estimation of input
weights and bias

Distance between
data query and
k neighbours

Take the k nearest
neighbours based on
calculated distance

Count classes for
those k neighbours

Classify data query
with the class that is
more frequent among

the k neighbours

Prediction 1 Prediction 2 Prediction n weights

I ! I Elll

Hidden layers ] [ Re-estimation of ]

Estimation of output
weights and bias

Majority voting

Final prediction

Predicted outputs

Final prediction

(b) (c)

Figure 3. Schematics of selected classification algorithms. (a): K-nearest neighbors, (b): random
forest, (c): multilayer perceptron.

2.2.1. K-Nearest Neighbors

This classification algorithm is fundamentally simple but exhibits relative high per-
formance. The underlying intuition is based on classifying the information from specific
features from the categories of its closest neighbors [46]. The number of neighbors (k) can be
user-defined or it can vary depending on the local density of the neighborhood. Likewise,
to quantify the proximity of such neighbors, different measures of distance can be used,
such as Euclidean or Manhattan distance. The distance from a close neighbor can also be
weighted so that it provides a higher influence than a farther one.

Major limitations of this algorithm are its lack of performance when dealing with high-
dimensional data and its high prediction times for large datasets. The reader is referred
to [47] for a deeper description of this algorithm.

2.2.2. Random Forest

The random forest algorithm is based on decision trees, where the data are split into
different branches that are created on the basis of specific data subsets. Random forest
consists of creating multiple decision trees and randomizing the set of features these trees
are fed into [48]. This approach is a trademark for what is known as ensemble learning. The
response of each tree is then compared, and, in the case of classification, the mode of the
outputs is considered as the categorical prediction. The diverse nature of the random forest
algorithm, i.e., the use of multiple classifiers to find a robust prediction, allows for low-
variance responses, which is a desired characteristic in any machine learning method [49].
The predictions are also expected to be unbiased.

A particularity of this method is the identification and ranking of the most relevant
features in the datasets with respect to the categorical responses. This can be useful as a
complement for the study of the effect of single features on the output response.



Energies 2022, 15, 1970

9 of 20

The main disadvantage of this algorithm is the large computational time required for
implementation, which increases with the number of trees to build (defined by the user).
More details regarding the algorithm can be found in [50].

2.2.3. Multilayer Perceptron

A multilayer perceptron (MLP) is a type of artificial neural network. It consists of
an input layer that receives the data, a set of hidden layers that process the data, and an
output layer that contains the response of the classification [49]. The network is trained
via backpropagation, which is an optimization technique where a cost function (related to
the difference between predictions and true values) is minimized. The function learned by
the neural network consists of the linear combination of a set of two parameters, namely,
weights and biases. The use of this method allows for flexibility, as linear and nonlinear
systems can be fitted to the network and in cases where online predictions are needed.

Major drawbacks of this algorithm are its strong dependence on hyperparameters
(i.e., number of neurons, number of hidden layers, etc.) and the presence of local minima
when using hidden layers. This means that, when more hidden layers are used to increase
accuracy, there is a major risk of deviating from a global optimal solution. A deeper
description and the advantages of this algorithm can be found in [51].

3. Results and Discussion

Three different classifiers were built for each of the working fluids (ethanol and FC-
72) using the experimental data. These data comprise 9841 observations for ethanol and
8590 observations for FC-72. The input features considered for all classifiers and both
working fluids are the modified versions of Weber, Froude, and Bond numbers, represented
by Wej, Fr{, and Bo;, respectively. These numbers were defined using actual bubble
lengths, velocities, and accelerations, estimated via specific image analysis methods. More
details regarding the definition of each number and data pre-processing can be found in
Pietrasanta et al. [29]. The categorical output data indicate whether a specific observation is
classified as slug/plug flow or semi-annular flow, and it was conducted visually. For each
working fluid and classifier, the steps described below were carried out.

3.1. Data Splitting

Datasets were randomly split into training and testing sets. This was applied to avoid
using entire datasets for training stages, as this could lead to overfitting. The proportion
of data used in the training stage was fixed to 70%. This proportion of data splitting is
commonly used, along with similar splitting ratios such as 80% or 67%. There is no optimal
splitting ratio in machine learning applications (in general), and the decision is based on
the original datasets. In this work, the datasets for both working fluids were large enough
to perform the selected data split, leading to the values presented in Table 4.

Table 4. Split of data samples for ethanol and FC-722.

Data Sample Total Data Points  Training Set Data Points = Testing Set Data Points

Ethanol 9841 6888 2953
FC-72 8590 6013 2577

3.2. Data Scaling

The values of the input features in the training and testing set were scaled (i.e., nor-
malized) to avoid issues from different orders of magnitude among feature values. This
was achieved by estimating the expected value and standard deviation of the training and
testing sets and applying the normalization formula shown in Equation (2), where z; is the
normalized data point, x; is the original data point, 7 is the sample’s mean or expected
value, and sd is the sample’s standard deviation. The result from this normalization proce-
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dure is a transformed dataset that presents an expected value of 0 and a standard deviation
of 1.

z=5"F @)

3.3. Classifier Creation

The training set was used to train the classifier and then test it with the testing set. The
accuracy score was estimated and stored. At this point, default values for each algorithm’s
parameters were used. The selection of the most suitable set of parameters for each method
was completed later (see Section 3.6).

3.4. Cross-Validation

The training set was further used in cross-validation. This method provides a more
general indication of the classification performance. In this work, cross-validation was
implemented via the so-called k-fold cross-validation method. Here, the training set was
further split into k subsets, which were smaller than the training set. This was followed by
subsequent trainings of the classification algorithm using k — 1 subsets as the training set,
while the remaining data were set aside for testing. The accuracy score was then estimated
for all folds and averaged to get a representation of the overall performance of the classifier.
This allowed for a higher training/testing split, as a validation set is not necessary when
using cross-validation. A schematic of the k-fold method is depicted in Figure 4.

| )

‘ Training data ’ Testing data
=
‘ Fold 1 H Fold 2 ] [ Fold n ]
Split 1 ‘ Fold 1 ’ ‘ Fold 2 ‘ Fold n

- Cross-validation

SplltZ‘ Fold 1 ’ Fold 2 ’ Fold n ’

Split n Fold 1 ‘ Fold 2 H Fold n ‘

-/
Model evaluation { Test classifier

Figure 4. The k-fold cross-validation procedure with n folds.

3.5. Accuracy Assessment

The accuracy score of the created classifier and the mean score from the cross-validation
procedure were compared to assess the general performance of the classifier. This com-
parison was only for understanding the robustness of the initial classifier. Normally, large
differences are expected, leading to the conclusion that the initial set of parameters for each
classifier (among other factors such as split ratio, amount of total data, and/or number of
input features) should be adjusted.

3.6. Selection of Hyperparameters

To increase classification performance, and to select the most suitable set of parameters
for a fair comparison (i.e., comparing only classifiers presenting maximum accuracy), a deep
analysis was carried out. This is achieved using a grid search. This procedure consisted
of choosing a combination of various values for specific parameters within a classifier
and exhaustively performing a cross-validation for each combination of parameters. The
accuracy score for each of these combinations was stored for comparison, and the set of
parameters with the best (maximum in this case) output value of accuracy score was chosen.



Energies 2022, 15, 1970

11 of 20

The updated classifier was then tested using the testing set, and a prediction (testing)
accuracy score was stored. Note that, in order to apply this procedure to each selected
classifier, a set of different hyperparameters was chosen. Table 5 shows the parameters,
which were selected on the basis of the authors’ criteria and availability within the syntax
and structure of the applied algorithms (i.e., Sci-kit learn module in Python).

Table 5. Selected hyperparameters for grid search and cross-validation procedures.

KNN Random Forest MLP
Leaf size Number of trees in the forest Max1mum r'1umber of
iterations
Number of neighbors Criterion for split quality Number of hidden layers
Distance metric Criterion for maximum features per split Activation function
) Minimum samples to split an internal Optimization solver
node
- Minimum samples to be at a leaf node Regularization parameter
- Bootstrap Boolean (resampling) Learning rate

3.7. Classification Results

Once all classifiers were trained and tested with the default parameters, cross-validation
and grid search methods were implemented to select the set of parameters that output the
maximum accuracies. On the basis of the list of hyperparameters presented in Table 6, the
selected ones for the most accurate classifiers are shown in Tables 6-8 for the K-nearest
neighbors, random forest, and multilayer perceptron, respectively. These classifiers were
used for comparing accuracy using the testing set in later stages. Note that these optimal
parameters varied when choosing a different working fluid, as the results for ethanol could
not be extrapolated to those for FC-72. Nevertheless, slight differences could be seen,
especially with those classifiers that do not depend on a large number of hyperparameters,
such as the K-nearest neighbors classifier. For this classifier, a training set was split even
though it was not strictly needed. This was for the sake of consistency when comparing all
three classifiers.

Table 6. Optimal hyperparameters for K-nearest neighbors classifier.

Parameter Value—Ethanol Value—FC-72
Leaf size 1 1
Number of neighbors 25 26
Distance metric Manhattan distance Manhattan distance

Table 7. Optimal hyperparameters for random forest classifier.

Parameter Value—Ethanol Value—FC-72
Number of trees in the forest 100 100
Criterion for split quality Entropy Entropy
Criterion for ma;;g;um features per Squared root of features Squared root of features
Minimum samples to split an internal
10 2
node
Minimum samples to be at a leaf node 2 2
Bootstrap Boolean (resampling) True True

To assess the performance of individual classifiers after identifying the best set of
hyperparameters, normalized confusion matrices were used to visualize the distribution
of correct and incorrect classifications on the testing set. A confusion matrix depicts the
fraction of correct and incorrect labeled points over the total number of true labels. Thus,
a matrix entry of 1, for a specific label, indicates that all points in such a dataset are
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categorized with the expected label. Normalized values were used for more interpretable
visual results.

Table 8. Optimal hyperparameters for multilayer perceptron classifier.

Parameter Value—Ethanol Value—FC-72
Maximum number of iterations 1000 100
Number of hidden layers 2 2
Activation function ReLU ReLU
Optimization solver Adam Adam
Regularization parameter 0.0001 0.0001
Learning rate adaptive adaptive

The confusion matrices for the three algorithms in the case of ethanol as the working
fluid are shown in Table 9. In general, all algorithms performed similarly, where the
classification of slug/plug flow was significantly higher than that of semi-annular flow.
This could be due to the increase in observation errors while classifying semi-annular
flow or to the innate nature of this flow pattern, which could have led to more erroneous
observations.

Table 9. Confusion matrix results for ethanol.

Actual Slug/Plug Actual Semi-Annular

KNN Predicted slug/plug 0.89 0.32
Predicted semi-annular 0.11 0.68

Predicted slug/plug 0.88 0.32

Random Forest Predicted semi-annular 0.12 0.68
MLP Predicted slug/plug 0.90 0.30
Predicted semi-annular 0.10 0.70

In the case of ethanol, the multilayer perceptron exhibited a slightly higher number
of correct classifications, considering both slug/plug and semi-annular flow. These low
differences among the three classifiers suggest that, given the available data and selected
input features (limited by design and, thus, subject to potential improvements), a fixed
order of accuracy could be reached by all algorithms, with the highest provided by MLP.

In the case of FC-72, the highest fraction of correct classifications was also found
using the MLP classifier. The major difference across classifiers was seen in the slug/plug
category. The confusion matrices for FC-72 are illustrated in Table 10. As in the case of
ethanol, the MLP classifier tended to present the highest accuracy among the algorithms
with the testing set, after selecting the most suitable set of hyperparameters.

Table 10. Confusion matrix results for FC-72.

Actual Slug/Plug Actual Semi-Annular

KNN Predicted slug/plug 0.90 0.33
Predicted semi-annular 0.10 0.67

Predicted slug/plug 0.89 0.34

Random Forest Predicted semi-annular 0.11 0.66
MLP Predicted slug/plug 0.91 0.33
Predicted semi-annular 0.09 0.67

The overall classification performance is reflected in the value of the accuracy score.
These values are reported in Tables 11 and 12, respectively. These values represent the
accuracy of those classifiers that presented the highest cross-validated score when selecting
the most suitable set of hyperparameters. In accordance with the confusion matrices,
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the results suggest that the use of MLP provided the highest performance. The lowest
performance was shown by the random forest algorithm. In this work, this accuracy score
was chosen as a selection criterion for the most suitable classification method; however, it
is acknowledged that additional criteria such as computational time or performance when
dealing with larger datasets could be included.

Table 11. Accuracy score for each algorithm: ethanol.

Classifier Accuracy (%)
K-nearest neighbors 82.8
ANN 83.9
Random forest 82.2

Table 12. Accuracy score for each algorithm: FC-72.

Classifier Accuracy (%)
K-nearest neighbors 75.8
ANN 77.1
Random forest 75.6

An alternative and complementary method for evaluating the performance of each
classification algorithm is the analysis of learning curves. A learning curve shows the
sensitivity of a particular performance metric (i.e., accuracy score, mean squared error, etc.)
with respect to the size of the training set. This allows the user to identify (i) whether it is
necessary to include more data samples in the training set, and (ii) whether the classifier
under study presents a bias error or a variance one. Generally speaking, a bias error
indicates that the classifier could be overly simple/complex with respect to the training
set, leading to either overfitting or underfitting cases. Similarly, a variance error indicates
that the classifier could vary drastically or remain unaffected when moving from training
(seen data) to testing (unseen data). This also leads to overly simplistic/complex models
depending on the case [49].

Both these concepts are related, as machine learning models with high/low bias
present low /high variance, exhibiting a tradeoff that should always be taken into ac-
count [49]. To evaluate this tradeoff in both training and validation stages, the learning
curves for each classifier and working fluid were created. Once the hyperparameters of
each algorithm were selected via grid search, different sizes of training data were chosen
(as a proportion of the initial training set size; see Table 4), and the training accuracy score
was estimated for each training set size. For the validation curve, cross-validation was used
once again (via k-fold cross-validation, as described in Section 3.5), and, for each training
set size, accuracy scores were also calculated. The learning curves for all three algorithms
and both working fluids are depicted in Figure 5.

Figure 5 reveals that the training error for the KNN classifier in both working fluids (a
and d, respectively) was equal to 1, denoting perfect accuracy. Although this might seem
like a successful result, there was a relatively large gap between the training score trend
and that for the validation set. This gap is indicative of variance error, as the classifier
performed well only during training. The accuracy score in both datasets was within
the range of 83% to 100% for both working fluids, suggesting a small bias error in both
stages. A similar case was seen in the random forest classifier. However, in this case, the
variability of the accuracy score in the training set behaved differently as the size of the
training set increased for both working fluids. A minimum accuracy score was reached
with ethanol as a working fluid, whereas an oscillating trend was seen when working with
FC-72. The accuracy score in the validation set was seemingly improved with the increase
in data samples. In general, the random forest algorithm presented a lower bias error than
KNN. On the other hand, the MLP classifier presented a smaller gap between training
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and validation stages, indicating a good balance between variance and bias errors, as the
accuracy score for both stages was within the range of 84% to 85%. This suggests that the
tradeoff for this method was the most balanced.
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Figure 5. Training and cross-validation curves: (a) KNN with ethanol; (b) MLP with ethanol;
(c) random forest with ethanol; (d) KNN with FC-72; (e) MLP with FC-72; (f) random forest with
FC-72.

3.8. Flow Pattern Maps

The classification results from the most accurate classifier (MLP in this case) were
used to develop a flow pattern map for both ethanol and FC-72. Once the classifier
predicted the classes for each data point in the testing set (those in the training set were
already stored during training), these points were used to estimate the values for the flow
pattern maps. As a result, the maps can be used as a graphic tool for visualizing the
outcomes from the classification methods. The x-axis corresponds to Bo?>, and the y-axis
corresponds to F 7?5 We?'ZS, in accordance with the correlation between process conditions
(velocity and acceleration) and the effect of the different forces acting on the fluid (namely,
inertial, external, and related to the surface tension) proposed by Pietrasanta et al. [29].
The resulting flow pattern maps for both fluids developed by the authors are illustrated
in Figure 6. These maps can act as a reference for comparison with the flow pattern maps
from the MLP classifier.

For both working fluids, a much clearer transition zone was found when comparing
the previous flow pattern maps and those based on the MLP classifier. This was due to the
inherent improvements brought about by the use of the MLP method, as this algorithm
provides a more systematic mean for classification compared to visual categorization or
empirical correlations with physical properties.

Figure 7 shows the flow pattern map for ethanol. The map clearly shows a thresh-
old value where the transition from slug/plug to semi-annular flow took place, located
approximately where the x-axis was equal to 4. Higher values along this axis indicate semi-
annular flow, where surface tension no longer dominated the fluid flow, and the increased
acceleration led to higher bubble lengths. Semi-annular flow can be further identified on
the y-axis, where for values of Fr)°We-* lower than 2, a relatively high density of points
classified as semi-annular flow was encountered. Lower values on both axes indicated the
presence of slug-plug flow, either because the PHP device was not active or because the
external forces were not strong enough to prevail over the surface tension of the working
fluid while operating.
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Figure 6. Flow pattern maps for ethanol (a) and FC-72 (b) proposed by Pietrasanta et al. [29].
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In the case of FC-72, its corresponding flow pattern map is shown in Figure 8. Similar
to the case of ethanol, a threshold value for the transition zone was found. Here, the
threshold was located approximately when Bo) = 9. This means that slug/plug flow
prevailed for higher velocities and bubble lengths when FC-72 was used as working fluid.
This can be explained by the differences in the surface tension of both fluids. FC-72 has a
lower surface tension than ethanol; hence, for the same dynamic conditions (fluid velocity
and acceleration), greater numbers of Bo{-> would be reached before the flow regime
transition. Abnormal points were found within the slug/plug region for FC-72, which were
classified as semi-annular. This phenomenon could have been caused by the propagation
of visual errors, as discussed previously. This would also mean that the choice of Bo; did
not properly reflect the surface tension effects, since this number could not capture the
regimes for both fluids.

10° FC-72 flow pattern map

o Slug-plug flow
1021E Semi-annular flow
10']
101

10, = 2

10 10 10

Figure 8. Flow pattern map for FC-72: multilayer perceptron.

To overcome the effect of different surface tension in both working fluids, a modified
term was used on the x-axis of both flow pattern maps. The term Bo)-> was scaled using the
ratio U%, where 0; represents the surface tension of the working fluid, and ¢, is a reference
surface tension, which in this case was that of ethanol. Surface tension for both fluids
was estimated via validated correlations that depend on key operating conditions such as
saturation temperature [29]. This correction ratio was calculated for each observation, and
updated flow pattern maps for both fluids were developed (using the MLP classifier). Note
that, since ethanol was used as reference, no changes were found in its flow pattern map.
The updated flow pattern maps for ethanol and FC-72 are depicted in Figures 9 and 10,
respectively.

The updated flow pattern maps exhibited more consistent threshold values on both
axes, for both working fluids. In the case of ethanol, these values were 6 for the x-axis and 2
for the y-axis, whereas, for FC-72, these limits were located at 5 for the x-axis and 1 for the
y-axis. These values allowed for more interpretability, as it was now possible to cluster the
observations and determine their corresponding flow regime on the basis of their relative
location to the threshold values, with a margin of only +1 unit on each axis.

Overall, the predictions presented good correspondence with experimental results,
and the use of modified numbers plus scaling allowed for a clearer differentiation of flow
regimes. However, it is worth noting that, although a relatively large number of data were
used, this only represents a single PHP design (e.g., the single-loop PHP). Therefore, any
attempt to implement these classifiers in a different system would most likely provide less
accurate predictions, and a more extensive dataset would be needed.
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Figure 9. Updated flow pattern map for ethanol: multilayer perceptron.
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Figure 10. Updated flow pattern map for FC-72: multilayer perceptron.

4. Conclusions

For the purpose of proposing accurate data-driven methods for the flow regime clas-
sification in PHP systems, three different machine learning algorithms were tested on
experimental data from a PHP device, for two different working fluids (namely, ethanol
and FC-72). Both datasets were labeled with their corresponding flow regimes, and the
most relevant input features were identified and embedded into specific groups of dimen-
sionless numbers that accurately captured the physical phenomena. All three classifiers
showed good performance, whereby the classification of the ethanol data was more ac-
curate than that of FC-72, indicating that the process of labeling the data may have been
more challenging in the latter case. The use of the multilayer perceptron (MLP) exhibited
the highest performance for both working fluids, whereas the random forest algorithm
presented the lowest accuracy, although all algorithms performed similarly. The prediction
results from the most accurate classifiers were used to build a flow pattern map for each
working fluid. In both cases, clear thresholds were identified, where the transition from
slug/plug to semi-annular flow took place. These bounds were obtained after scaling
the values of the modified Bond number with those of surface tension for both working
fluids. The use of a trained and an automatic classifier in this context could provide a more
accurate and less demanding classification of flow regimes. Considering a larger set of
data with heat fluxes and geometrical parameters, since effective bubble accelerations and
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velocities would be dependent variables in this case, this method could effectively offer the
chance of overcoming the rough use of Bond numbers to predict confined slug/plug flows
in PHPs.

Further extensions of this work include the use of more diverse data, which will
improve the robustness of the classification algorithms. In addition, the use of unsupervised
learning could be a next step and a significant upgrade. In this way, the labeling process
would not be needed, and an appropriate algorithm would identify different clusters of
data that may correspond with the flow regimes the clusters belong to. Note that the
selection of input features is still of great importance, and the use of the modified Weber,
Froude, and Bond numbers can be validated from the results of the clustering.

The use of accurate classifiers in this context allows for a more straightforward identi-
fication of flow regimes. This enables the correct selection of models to be used for design,
simulation, and optimization of PHP systems. Additionally, regression algorithms can be
integrated to the current framework to estimate thermal resistance, which would provide a
substantial input for estimating the thermal performance of PHP devices. The results can
reveal a clear and robust path to define operational regimes in PHP devices. Moreover, the
use of more data from other experiments with different geometries, fluids, and materials
can provide a useful resource to improve the applicability of classifiers.
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Abbreviations
Nomenclature
a Fluid acceleration (m/s?) Q Heat load input (W)
Bo Bond number [y Density (kg/m?)
Co Confinement number score  Accuracy score
d Diameter (mm) sd Standard deviation
f Frequency (Hz) o Surface tension (N/m)
Fr  Froude number T Temperature (°C)
g Gravitational acceleration (m/s2) 0 Angle (°)
h Enthalpy (J/kg) u Velocity (m/ms)
) length (m) We Weber number
u  Dynamic viscosity (Pa-s) X; Data point
#  Expected or average value Yi True categorical value
N Number of turns Ui Predicted categorical value
n  Total number of data points Z Normalized data point
P Pressure (Pa)
Subscripts
b Bubble I Liquid
c Condenser Lo Liquid to vapor
cr  Critical ref Reference value
e Evaporator v Vapor
f  Fluid w Wall
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Abbreviations
ANN  Artificial neural network PCB  Printed circuit board
ESA  European Space Agency PHP Pulsating heat pipe

FR Filling ratio RF Random forest
KNN  K-nearest neighbors TC Thermocouples
ML Machine learning TCS  Thermal control system
MLP  Multilayer Perceptron TS Thermosyphon
p Parabola
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