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Abstract: Machine protection is a core task of real-time image diagnostics aiming for steady-state
operation in nuclear fusion devices. The paper evaluates the applicability of the newest low-power
NVIDIA Jetson Xavier NX platform for image plasma diagnostics. This embedded NVIDIA Tegra
System-on-a-Chip (SoC) integrates a Graphics Processing Unit (GPU) and Central Processing Unit
(CPU) on a single chip. The hardware differences and features compared to the previous NVIDIA
Jetson TX2 are signified. Implemented algorithms detect thermal events in real-time, utilising the
high parallelism provided by the embedded General-Purpose computing on Graphics Processing
Units (GPGPU). The performance and accuracy are evaluated on the experimental data from the
Wendelstein 7-X (W7-X) stellarator. Strike-line and reflection events are primarily investigated, yet
benchmarks for overload hotspots, surface layers and visualisation algorithms are also included.
Their detection might allow for automating real-time risk evaluation incorporated in the divertor
protection system in W7-X. For the first time, the paper demonstrates the feasibility of complex real-
time image processing in nuclear fusion applications on low-power embedded devices. Moreover,
GPU-accelerated reference processing pipelines yielding higher accuracy compared to the literature
results are proposed, and remarkable performance improvement resulting from the upgrade to the
Xavier NX platform is attained.

Keywords: graphics processing unit; general-purpose computing on graphics processing units; image
processing; plasma diagnostics; embedded system

1. Introduction
1.1. Problem Statement

Machine protection is one of the primary challenges in the current and future large-
power fusion devices operating with plasma pulses longer than 30 min, such as Wendelstein
7-X (W7-X), ITER and DEMO. Protection systems prevent machine damage that would lead
to downtime and impose significant repair costs [1]. In addition, a machine control system
has to intelligently mitigate the overheating threat so that discharges are not prematurely
terminated and an optimal fusion efficiency is attained. Various plasma diagnostics are
applied to identify and analyse risks [2]. Nowadays, Visible Spectrum (VIS) and Infrared
(IR) cameras are fundamental components of vision diagnostics. Image plasma diagnostics
in thermonuclear fusion rely on information acquired from processed images to perform
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protection and control actions. Therefore, hard real-time image acquisition and processing
systems are essential to provide effective machine operation. Both the suitable hardware
platform and efficient software contribute towards complying with the time constraints.
Reliable detection of overloads is a basis for the prevention of permanent damages to
Plasma Facing Components (PFCs). The supplementary classification and analysis of
thermal events and their ontology (see Figure 1) aid in estimating risk and avoiding alarms
due to false positives.

Figure 1. Detected thermal events in the 20171114.053 (AEF20) dataset. The strike-line visible on
the vertical divertor, the top one, is a reflection of the other strike-line, according to simulations
conducted by [3].

Thermal events identified in the W7-X stellarator primarily entail hotspots [4], leading
edges [5], reflections [6], surface layers [4] and strike-lines [7]. Similar patterns are observed
in tokamaks, yet certain thermal events vary due to the differences between devices. In Joint
European Torus (JET), different sources of overheating are distinguished, i.e., severe such
as fast particle losses, and those that might lead to false positives, e.g., dust particles,
delaminations, surface layers [8,9]. In W Environment in Steady-state Tokamak (WEST),
vision systems detect hotspots and recognise thermal events based on their location and
evolution, including electrical arcs, B4C flakes and fast ion losses [10]. Since fusion devices
will reach long discharges in future, e.g., 30 min in W7-X, new challenges emerge that
might affect the robustness of image-processing methods. Throughout a long discharge,
machine and plasma conditions will volatilely evolve. The algorithms will have to adapt
to challenges such as the emissivity of tungsten PFCs changing due to temperature [11]
or surface erosion [12]. Therefore, the application of Artificial Intelligence (AI) techniques
might facilitate long discharge scenarios. Exemplary image-based AI applications in nuclear
fusion are outlined in Section 2.2. However, deterministic image-processing systems should
retain their grounded position in fallback safety systems due to the black-box characteristics
of AI systems and their heavy dependence on available data.

The field of General-Purpose computing on Graphics Processing Units (GPGPU) is con-
stantly evolving and offers hardware acceleration of Computer Vision (CV) tasks. Graphics
Processing Units (GPUs) are also utilised in fusion experiments to provide hardware accel-
eration for efficient computations [13,14]. New System-on-a-Chip (SoC) platforms provide
accelerated edge computing on low-power embedded systems.
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1.2. Research Objective

In this paper, the authors evaluate the newest embedded NVIDIA Jetson Xavier NX
platform [1] and implement GPU-accelerated real-time algorithms for thermal events detec-
tion. The algorithms are implemented based on the literature and the W7-X experimental
data to execute on SoC platforms with limited resources. The assumed real-time constraint
of 110 ms is the same as in the W7-X stellarator [15]. The paper focuses on the evaluation
of performance and some accuracy aspects of the developed image processing system for
plasma diagnostics presented in Figure 2.

Figure 2. Developed image processing pipeline. Algorithms described in the article have bolded
edges, i.e., strike-line segmentation, reflection detection and visualisation.

Overload hotspot and surface layer detection algorithms were described and bench-
marked in [16]. Correction and calibration algorithms, i.e., Non-Uniformity Correction
(NUC), Bad Pixel Correction (BPC) and thermal calibration, are not examined in the paper
since they shall be executed on a Field-Programmable Gate Array (FPGA) for the highest
performance due to their simplicity. Although real-time aspects are essential for machine
protection and control systems in nuclear fusion, there are almost no benchmarks available
in the literature to validate the performance and quality of newly developed solutions
against previous literature findings. Therefore, the paper reports the obtained real-time
performance on distinct setups and actual experimental data for further comparisons.
A hypothesis is that the current computing power and algorithms enable real-time machine
protection based on image processing on embedded devices. The first innovative applica-
tion of a low-power embedded platform for relatively complex real-time image processing
for plasma diagnostics will be investigated and evaluated in order to verify the hypothesis.

2. Hardware Platform
2.1. Nvidia Jetson Xavier NX

NVIDIA Jetson series covers low-power embedded platforms suitable for GPU-
accelerated computing. The NVIDIA Jetson Xavier NX module [17] integrates both a
Central Processing Unit (CPU) and a GPU on a single chip of size 70 mm × 45 mm. The de-
vice specifications are listed in Table 1. The image-processing software was developed on
the Linux for Tegra (L4T) Operating System (OS) using custom Compute Unified Device
Architecture (CUDA) kernels and software libraries with CUDA support in the C++ program-
ming language.

The SoC module mounted in the carrier board [18] used for the evaluation is shown in
Figure 3.
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Table 1. NVIDIA Jetson Xavier NX technical specification.

Feature Description

GPU 384-core Volta @ 1.1 GHz (memory shared with RAM)
CPU 6-core NVIDIA Carmel ARM v8.2 @ 2 × 1.9 GHz | 6 × 1.4 GHz (NVPModel)
RAM 8 GB 128-bit LPDDR4x @ 1600 MHz | 51.2 GB/s
PCIe Gen 4
Power Up to 15 W

Figure 3. NVIDIA Jetson Xavier NX Developer Kit.

2.2. Features Relevant to Image Processing

NVIDIA Jetson Xavier NX features I/O coherency contrary to its predecessor, the
NVIDIA Jetson TX2 [19]. The I/O coherency enables one-way caching in a CPU cache,
removing the overhead of coherency management. As a consequence, repetitive access to
the same page-locked buffer from a CPU is efficient (see Figure 4), and the page-locked
memory might be used as an alternative to the unified memory in order to achieve one-way
caching behaviour in Tegra.

Figure 4. Visualisation of data accessibility and caching of pageable and pinned buffers for integrated
Graphics Processing Unit (GPU) and Central Processing Unit (CPU) on the System-on-a-Chip (SoC)
platform supporting I/O coherency.

Furthermore, NVIDIA Jetson Xavier NX accommodates a Programmable Vision Accel-
erator (PVA) that support a set of predefined CV algorithms, e.g., Harris Corner Detector or
Gaussian Pyramid Generator. It is separate hardware consisting of a Cortex-R5 CPU core,
dedicated vector processing units, its own memory and a Direct Memory Access (DMA)
engine [17]. Nevertheless, the available Application Programming Interface (API) does not
allow one to define custom functions. According to the benchmarks of exposed Vision Pro-
gramming Interface (VPI) (https://docs.nvidia.com/vpi/algo_performance.html, accessed

https://docs.nvidia.com/vpi/algo_performance.html
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on 15 November 2021), the PVA does not provide superior performance to the GPU but
offloads it by concurrently executing supplementary operations.

Deep Learning (DL) model training and inference are significantly accelerated in
NVIDIA Jetson Xavier NX as it offers additional Tensor Cores, NVIDIA Deep Learning
Accelerators (NVDLAs) as well as supports a reduced precision mode—INT8. DL and clas-
sical Machine Learning (ML) techniques are widely applied in image processing, including
image plasma diagnostics for thermonuclear fusion. As an example, the Cascade Region-
Based Convolutional Neural Network (R-CNN) algorithm detects and classifies thermal
events in IR images in WEST [20]. VIS images are used to classify disruptive discharges in
Korea Superconducting Tokamak Advanced Research (KSTAR) [21]. Heat-flux images with
strike-lines on horizontal and vertical divertors are taken as input to control a coil current
with a CNN [22], and descriptors are computed from IR images to reconstruct magnetic
configuration in W7-X [23]. Two-dimensional data from a bolometer diagnostic is used
to predict disruptions and detect anomalies in JET using supervised and unsupervised
methods, respectively [24].

NVIDIA Jetson Xavier NX is suitable for MicroTCA.4 architectures since it is equipped
with a Peripheral Component Interconnect Express (PCIe) interface and consumes below
80 W. MicroTCA.4 is a common solution in large-scale physics experiments [25–28]. PCIe
Gen 4 provides higher acquisition performance due to the increased throughput and
reduced latency compared to previous generations. Modern GPUs based on the same
Volta architecture—Tesla V100 and Quadro GV100—still have PCIe Gen 3. As a result, the
NVIDIA Jetson Xavier NX is a cost-effective, low-power solution for MicroTCA.4 systems.

The NVIDIA Jetson Xavier NX features two distinct CPU power modes that affect
the maximum performance at 15 W (see Table 2) due to the differences in online cores and
core frequencies.

Table 2. NVIDIA Jetson Xavier NX maximum performance CPU modes.

NVPModel ID Online Cores Core Frequency [MHZ]

0 2 1900
2 6 1400

An optimal power mode selection depends on a specific application. A user has to
decide between more parallel threads and higher frequencies. A power mode does not
affect the performance of the embedded GPU.

3. Infrared Image Processing

Thermal events detection is based on the W7-X experimental data (discharge 20171114.
053–AEF20), i.e., 16-bit IR videos with a resolution of 1024 × 768. Each dataset contains the
scene model that stores additional pixel-wise information on the observed components,
e.g., Field of View (FoV), a stellarator Computer-Aided Design (CAD) model and PFC
labels. The details regarding the selection of C++/CUDA algorithms, implementation and
optimisation are described in the following paragraphs. The further minor characteristics
of datasets, scene models and software dependencies are described in [16].

3.1. Strike-Line Segmentation

A strike-line is an elongated heat load pattern established due to the power emitted by
plasma that arrives at the divertors. The detection of this event facilitates the control of the
strike-line position with the control coils in order to prevent the excessive heat load onto
delaminated components [5]. For the purpose of strike-line segmentation, a morphological
image processing approach based on the max-tree algorithm [7] was investigated. It was
initially proposed within the H2020 EUROfusion project (EUROfusion ITER Physics WP
S1: Preparation and Exploitation of W7-X Campaigns, P.2: Specific diagnostics, software
and component reparation (Tasks S1.P2.T6-T7)).
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3.1.1. Max-Tree Representation

The max-tree algorithm creates a hierarchical representation of an image in the form
of connected components based on pixel values in the immediate surrounding of each
pixel. The constructed tree is traversed in order to compute attributes and propagate
them from leaves towards the root. It allows nodes to be filtered based on the computed
descriptors. These three steps are disjunctive, e.g., various attributes might be computed
once the max-tree is constructed (see Figure 5).

Figure 5. Max-tree processing pipeline.

In Figure 6, an example presenting an output of the canonical max-tree algorithm com-
puted with the implemented procedures is shown. The canonical max-tree is represented
as a 2D parenthood matrix of indices and a 1D vector of ordered indices. The vector defines
traversal order from a tree root to leaves.

Figure 6. Resulting max-tree representation (parent, traverser) and the pruning result (pruned) for
the exemplary source image (source).

The connectivity used in the example is a four-way connection, i.e., top, down, left and
right pixels are considered neighbours. The attribute computation algorithm propagates
the maximum value from the leaf to the root with the constraint that the parent value
remains above 50% of the current maximum; otherwise, it is set to 0. The direct filter is
performed for a threshold equal to seven. As a consequence, the pruned image contains
only the continuous line where source values are above the threshold and are connected
to values ≥ truncate( 1

2 ∗ 7) = 3. The above case resembles a simplified strike-line segmen-
tation since a temperature is also not uniform and fluctuates across a strike-line. It is
noteworthy that the max-tree representation enables the detection of nested thermal events
inside a strike-line, e.g., leading edges, due to its hierarchical structure.

The authors implemented and benchmarked two distinct max-tree algorithms. In both
variants, to optimise performance, image indices are pre-sorted using GPU-accelerated
radix sort based on pixel values. Moreover, the max-tree is computed in a Region of
Interest (RoI) that contains only components that are affected by strike-lines, i.e., divertors
and adjacent baffles (x: 86; y: 276; width: 867; height: 404 for 20171114.053–AEF20). The
coordinates may vary for different discharges and camera ports, yet they are calculated by
taking a bounding box over the masks of analysed components available in a scene model.
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3.1.2. Sequential Implementation

The sequential implementation is based on Berger’s immersion algorithm [29] for
max-tree construction and extended with attribute computation and direct filter procedures
proposed in [30]. The union-by-rank technique is used at the cost of extra space com-
plexity [30], a Lookup Table (LUT) of neighbouring pixels is pre-computed for all indices,
and the iterative findRoot function is used instead of a recursive one to enhance performance.

3.1.3. Parallel Implementation

The parallel implementation is based on the flooding non-recursive Salembier’s al-
gorithm [30], the subtree merging procedure described in [31] and the concurrent direct
filter [32]. Two optimisations are introduced to obtain higher performance. Radix sort is
computed concurrently with max-tree construction since sorted indices are necessary only
for the attributes calculation step. Asynchronous radix sort is provided by NVIDIA’s CUB
1.12.1.0 (https://docs.nvidia.com/cuda/cub/, accessed on 16 November 2021). Max-tree
construction is modelled using mapping and reduction transformations. An image is split
row-wise, and each chunk is mapped to a subtree that is concurrently reduced (merged)
as soon as two adjacent chunks are available (see Figure 7). Parallelisation, e.g., an opti-
mal splitting strategy and thread scheduling, is orchestrated by Intel’s oneAPI Threading
Building Blocks (oneTBB) 2021.3.0 (https://oneapi-src.github.io/oneTBB/, accessed on 16
November 2021).

Figure 7. Example of the parallel max-tree mapping and reduction transformations. A source image
is split into two parts of sizes 12 and 13, then two chunks are mapped to two subtrees and merged
into the final result. Graph nodes contain image indices.

3.1.4. Segmentation Algorithm

The processing pipeline for the segmentation algorithm is visible in Figure 8. The FoV
mask substitutes values outside the camera lens with 0’s since there is only irrelevant noise.
By subtracting the background frame, the influence of ambient temperature is decreased.
The first frame in a dataset is taken as a background frame since there is no heating present
at this point. The median filter is applied to eliminate salt noise, i.e., high transient values
due to a neutron hitting the lens. Quantization and top-hat filters reduce the number of
unique values and their range in the image. As a consequence, the number of nodes and
depth of the max-tree created in the next step decreases, which is particularly important
since the algorithm has to operate on 16-bit images that encode values from 0 to 65,535.

https://docs.nvidia.com/cuda/cub/
https://oneapi-src.github.io/oneTBB/
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Figure 8. Strike-line segmentation algorithm pipeline. The algorithm returns the mask containing
continuous segmented regions of elevated temperature corresponding to strike-lines and hot-spots.
Each step is annotated as to whether a CPU or GPU is used for computations.

Morphological operations such as erosion and dilation that are used for the top-hat
transform are based on the van Herk/Gil-Werman (vHGW) algorithm [33,34]. The algo-
rithm computes 1D image erosion and dilation, which in turn allows one to construct more
complex image morphology operators. Assuming that the structuring element is symmetric,
then a 2D operator is obtained by applying a 1D operator row-wise, followed by applying
the same operator column-wise on the result from the first operation. The vHGW method
relies on a parallelisable scan operation that accumulates minimum or maximum (erosion
or dilation) values across predefined segments. As a consequence, it requires only two
comparisons to determine pixel value regardless of structuring element size. The applied
structuring element size for the top-hat transform is 13 × 13, and the quantisation factor
is 15.

For max-tree attributes computation, the identity operator is applied since pixel values
are used for filtering. To propagate an attribute from a child to a parent, the operator shown
in Formula (1) is applied. The direct filter threshold is 20 K:

f (vparent, v) =

{
0, if vparent < 15%v
max(vparent, v), otherwise

(1)

3.2. Reflection Detection

Reflections are typically observed on reflective materials, e.g., metallic surfaces, as op-
posed to highly emissive materials, e.g., carbon surfaces. Due to the high temperature
measured on divertors and the proximity of other PFCs, divertors might be potential
sources of reflections. The correlation of temporal temperature evolution between hotspots
on a source (S) and destination (D) PFCs is measured using Normalised Cross Correlations
(NCC) on a Sliding Time Window (SWNCC) with Formula (2) proposed by [35]:

SWNCC(S, D) =
1
T

t

∑
u=t−T

(S(u)− µS)(D(u)− µD)

σSσD
, (2)

where the maximum hotspot temperature is used in calculations, as well as statistical
parameters average (µ) and standard deviation (σ) over a window of length T to detect
reflections (see Figure 9). The adaptive Gaussian filter extracts clusters having a higher
temperature than the surrounding pixels that are candidates for reflection or a source of
reflection. The FoV mask is utilised for the same reason as in the previous pipeline.
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Figure 9. Reflection detection algorithm pipeline. The algorithm returns correlated blob pairs between
two selected Plasma Facing Component (PFC) corresponding to reflections. Each step is annotated as
to whether a GPU or GPU is used for computations.

Blob analysis is performed in parallel for source and destination PFCs. Blob tracking is
performed with the correspondence criteria that match blobs between consecutive frames
by evaluating the relative change in overlap and area [16,36]. The GPU Block-based Union
Find (BUF) algorithm [37] is used for Connected Component Labelling (CCL). The au-
thors benchmarked various algorithms available in Yet Another Connected Components
Labelling Benchmark (YACCLAB) [38], and no significant difference in performance was
observed. Due to the inherently sequential nature of the CCL algorithm, the speed-up
offered by a GPU is restricted. However, it allows data to remain in the GPU’s memory
effectively, reducing the number of costly transfers between a host and device. Two blobs
are classified as correlated when the SWNCC factor is ≥0.95.

The observed reflections between the divertors and the wall heat shields are shown
in Figure 10. Although the wall heat shields were made of graphite during Operational
Phase (OP) 1.2, which has low reflectivity, the reflections might still occur on this PFC,
according to the reflection map [6] generated for W7-X with a Monte-Carlo Ray-Tracing
model by [39].

Additional reflections are detected between the divertors and the vertical baffle (see
Figure 11). The reflection blob coloured in red is not a reflection but the extension of
the vertical divertor strike-line towards the vertical baffle [40]. Thus, the correlation to
the other strike-line parts is high. The region where two blobs, coloured in green and
blue, were detected has a high ratio between reflected flux and total flux according to the
reflection model.

Figure 12, along with the supplementary labelling, shows SWNCC evolution between
the exemplary blob on the wall heat shields and all source blobs on the divertors that are
part of the strike-lines. The initial correlation spike and the eventual convergence resembles
the results presented in [35]. All normalised correlation coefficients between source and
destination blobs are above the threshold; therefore, it is presumed that the reflections
originated from strike-lines.
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Figure 10. Detected reflections between the divertors (upper components with red outline) and the
wall heat shields (lower components with blue outline) at timestamp 2017.11.14 16:39:49.696,637,440
UTC. The highly correlated blobs are connected by lines.

Figure 11. Detected reflections between the divertors and the vertical baffle at timestamp 2017.11.14
16:39:49.696,637,440 UTC.

Figure 12. Normalised Cross Correlations (NCC) on a Sliding Time Window (SWNCC) evolution
between blob R on the wall heat shields and blobs A–F on the divertors.

It is noteworthy that there are also parallel divertor units monitored by another
IR camera that might also contribute to the observed reflections. It would require an
architecture that delivers both images simultaneously to compute the correlation from
blobs originating on both divertor units. In addition, a heating profile might also influence
the correlation characteristics between blobs.
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3.3. Visualisation

Typically, IR images encode a measured surface temperature in more than 8-bits;
therefore, in order to display those images in a meaningful way (see Figure 13), image
processing is mandatory (see Figure 14). The CAD model of the stellarator is included in
the scene model [13]. It is prepared by diagnosticians for each viewport and aligned with
monitored PFCs. Properly visualised images might aid experts in the manual detection of
certain events in order to control a machine from a control room or prepare annotations.
Annotated data are necessary to quantitatively evaluate algorithms or train supervised ML
and DL models [7].

Figure 13. (a) Source calibrated frame normalised to 8-bits for display purposes. (b) Processed frame
in the range 100 °C to 700 °C.

Although step three could be performed concurrently to the execution of consecutive
steps on a PVA to offload a GPU, the maximum operation is not currently supported in
VPI. The global maximum temperature is used to plot a temperature evolution throughout
a discharge. The implemented algorithm visualises frames that resemble the images shown
in [40].

Figure 14. Visualisation algorithm pipeline. The algorithm returns a coloured image with improved
visibility of heat loads on the PFCs. Each step is annotated as to whether a GPU or GPU is used
for computations.

4. Results
4.1. Algorithm Performance

Benchmarks were performed for the three presented algorithms, as well as the two
algorithms, overload hotspot detection and surface layer detection, previously described
in [16]. For comparison, the measurements also include the setup with a discrete GPU (see
Table 3).
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Table 3. Technical specification of the benchmark setup based on the NVIDIA Quadro P4000.

Feature Description

GPU 1792-core Pascal Quadro P4000 8 GB GDDR5 @ 1.7 GHz
CPU 4-core Intel Core i7-4771 @ 3.50 GHz
RAM 2 × 4 GB 64-bit DDR3 @ 1333 MHz
PCIe Gen 3
Power 105 W (GPU) + 84 W (CPU)

The algorithms were benchmarked in the corresponding most computationally de-
manding intervals marked in Figure 15.

Figure 15. Evolution of the maximum temperature throughout the pulse 20171114.053 (AEF20) with
the signified intervals. The temperature was sampled inside the Field of View (FoV) after applying a
3 × 3 median filter that refers to steps one to three in the visualisation algorithm.

The strike-line segmentation, overload hotspot detection and reflection detection
algorithms were benchmarked during the peak temperature from timestamps E to F.
The surface-layer detection algorithm was benchmarked during the rapid temperature rise
from timestamps C to D. The visualisation algorithm was benchmarked over the entire
pulse from timestamps A to B. For the reflection detection, the performance of the detection
between the divertor and the baffle components was measured.

In order to evaluate the speed-up resulting from applying the GPU, alternative parallel
CPU pipelines were also implemented, i.e., all the steps are performed on the CPU. Most of
the alternative CPU steps are highly optimised OpenCV functions with the oneTBB parallel
framework to fully utilise computational resources. Measurements were performed after
several warm-up iterations to minimise initialisation overhead. The execution time per
frame is averaged over the selected discharge interval and repeated 20 times to compute the
standard deviation and mean. The overhead of data migration between devices is included
in the GPU benchmarks [16].

The results for the five algorithms measured on both configurations for two corre-
sponding implementations—CPU-only and GPU-accelerated—are visible in Figure 16.
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Figure 16. Average runtime measurements for the implemented Infrared (IR) image-processing
algorithms. Black horizontal lines represent a standard deviation of an average runtime.

On the NVIDIA Quadro P4000 configuration, the parallel max-tree implementation
(9.59 ms) is faster compared to the sequential implementation (16.43 ms). However, on the
NVIDIA Jetson Xavier NX, the sequential implementation is slightly faster (29.37 ms in
comparison to 33.12 ms).

For the NVIDIA Jetson Xavier NX, all the algorithms have the highest performance in
NVPModel 0. One exception is the strike-line segmentation based on the parallel max-tree
implementation (see Table 4).

Table 4. Performance of the sequential and parallel strike-line segmentation algorithms for different
power modes and GPU/CPU implementations on the NVIDIA Jetson Xavier NX.

GPU [ms] CPU [ms]

Implementation NVPModel 0 NVPModel 2 NVPModel 0 NVPModel 2

µ σ µ σ µ σ µ σ

Sequential 29.37 1.057 36.82 0.878 55.80 1.051 71.81 0.968
Parallel 41.34 2.526 33.12 1.458 60.26 1.473 60.73 1.515

Although the parallel max-tree implementation in the strike-line segmentation al-
gorithm benefits from more active cores, it does not compensate for the reduced core
frequencies in other operations.

4.2. Filter Performance

In the strike-line segmentation algorithm, the second most computationally intensive
operation after the max-tree is the top-hat morphological operation. GPU-accelerated im-
plementations provided by NVIDIA Performance Primitives (NPP) and OpenCV libraries
deteriorate the performance of the entire segmentation process (see Table 5).
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Table 5. Performance of the top-hat morphological filter for an 8-bit image of a resolution of 1024 ×
768 and a structuring element of size of 13 × 13 on the NVIDIA Jetson Xavier NX.

Implementation Device µ [ms] σ [ms]

OpenCV GPU 10.48 0.065
NPP GPU 10.11 0.063

vHGW (CUDA kernel) GPU 1.33 0.057
OpenCV CPU 3.60 0.993

4.3. Algorithm Accuracy

The F1 and the F2 scores shown in Formulas (3) and (4) are used to evaluate strike-line
binary segmentation quality in regard to the ground-truth masks:

F1 = 2× precision× recall
precision + recall

(3)

F2 = 5× precision× recall
4× precision + recall

(4)

The recall and precision measures are computed according to Formulas (5) and (6):

recall =
TP

TP + FN
(5)

precision =
TP

TP + FP
, (6)

where TP is the number of pixels correctly segmented as 1, FN refers to the number of
pixels incorrectly segmented as 0 and FP corresponds to the number of pixels incorrectly
segmented as 1.

The results of strike-line detection at the maximum temperature with the implemented
8-way canonical max-tree algorithm, segmented masks obtained in the literature [7] and
the ground-truth masks are visible in Figure 17. The ground-truth mask was manually
created under the supervision of an expert in [7].

Figure 17. (a) Our results; (b) Results from the literature optimised for F2-score; (c) Ground-truth
masks. Images from the 20171114.053 (AEF20) dataset are in the top row, images from the 20180927.025
(AEF20) dataset are in the bottom row. White (1’s) pixels correspond to positive and black (0’s) to
negative segmentation labels.

Both masks were computed at the time when the heating process had just stopped.
This timestamp is denoted as T4 in the datasets. In the 20171114.053 (AEF20) dataset, it
is timestamp 2017.11.14 16:39:49.701,240,461 UTC that corresponds to frame 259. In the
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20180927.025 (AEF20) dataset, it is timestamp 2018.11.27 11:00:19.149,848,901 UTC that
corresponds to frame 1635, and the RoI applied for this supplementary dataset is (x: 78;
y: 277; width: 868; height: 402).

The actual ground-truth mask and the mask for comparison were not available in
full resolution. The masks were manually extracted from the referenced paper and recon-
structed. As a consequence, the comparison is not entirely accurate due to certain offset
and resizing errors. A mask optimised for an F1 score has too low resolution in [7] to make
a meaningful comparison with the implemented algorithm. The F-scores computed for
both images are summarised in Table 6.

Table 6. F-score metrics for the result computed with the implemented algorithm and the result from
the literature.

Discharge F1 F2

Our implementation

20171114.053 (AEF20) 0.81 0.83
20180927.025 (AEF20) 0.56 0.52

R. Clemente [7]

20171114.053 (AEF20) 0.76 0.75
20180927.025 (AEF20) 0.48 0.67

5. Discussion

The paper expands the research and development presented in the authors’ previous
publication [16] by describing more advanced algorithms for strike-line segmentation and
reflection detection. Another low-power, embedded hardware platform was investigated
and compared to the setup with the dedicated GPU.

All the benchmarked algorithms compute a result within the real-time constraint,
i.e., 110 ms. The performance measured on the NVIDIA Jetson Xavier NX is higher for
the algorithms described in [16]. There is a 30% latency reduction in the overload hotspot
detection and a 15% reduction in the surface layer detection on the newer platform. There-
fore, the performance of the NVIDIA Jetson Xavier NX is higher compared to the NVIDIA
Jetson TX2. It is noteworthy that the price range and power consumption are the same
for both SoC platforms, yet the NVIDIA Jetson Xavier NX offers superior performance,
a smaller form-factor and additional features outlined in Section 2.2. Moreover, the I/O
coherency reduces the efforts when porting the code from the configuration with a discrete
GPU as page-locked buffers are cached on the CPU on the newest Tegra, as well as discrete
GPUs. Even though the majority of the algorithms performed better in NVPModel 0, it is
still advised to benchmark the target application on the NVPModel 2 to select the most
optimal mode, especially for highly parallel CPU workloads, i.e., the parallel max-tree
implementation has a higher performance when more cores are active.

As a result of incorporating a GPU, the implemented algorithms were notably ac-
celerated on the NVIDIA Jetson Xavier NX. The latency was reduced for the strike-line
segmentation and reflection detection by 47% and 64%, respectively. On the NVIDIA
Quadro P4000 configuration, the execution time was decreased by 42% and 69%. It is
observed that some GPU-accelerated implementations supplied by libraries are subop-
timal and offer worse performance than their highly optimised CPU counterparts [16].
The authors applied the separable vHGW morphological dilation and erosion operations
to implement the top-hat transform that has 87% lower latency compared to the NPP and
OpenCV implementations. Not only does the article confirm the hypothesis that real-time
image processing is achievable in nuclear fusion applications, but also the embedded
low-power SoC devices provide sufficient performance when appropriate algorithms and
techniques are integrated. If GPU acceleration is applied, it is feasible to execute all the five
algorithms sequentially (62 ms) within real-time constraints on the NVIDIA Jetson Xavier
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NX. However, the algorithms shall be executed concurrently in a real system to allocate
more time to other essential activities, e.g., acquisition and feedback control.

In the first dataset, the obtained F-score for the strike-line segmentation algorithm is
higher than the results described in the literature. Moreover, it is organoleptically visible
that the obtained mask reassembles the ground-truth target more accurately, e.g., the strike-
line is continuous, details at the top of the frame are not lost. In the second dataset, only
the F1 score is higher since the literature result significantly over-segments the strike-lines.
It is also visible by comparing the notable spread between the F1 (0.48) and the F2 (0.67)
scores for the literature result. It is justified to claim that the result obtained for the second
dataset is also superior since it has remarkably higher granularity compared to the ground-
truth mask, e.g., visible leading edges on the divertor tiles in the form of vertical spikes.
The selection of parameters for the segmentation was not optimised to maximise any metric,
and all the parameters were uniform across both datasets. If either recall or precision is
prioritised, then it is advised to optimise the parameters, e.g., increase a top-hat kernel
size or reduce a minimum propagation temperature percentage in Formula (1) to improve
recall. The disadvantage of a deterministic image processing algorithm in image plasma
diagnostics is the requirement of adjusting the parameters of several low-level algorithms
to reflect discharge conditions.

The developed system is suitable for further extensions and qualitative comparison as
a reference with future solutions. The authors plan to develop an efficient way of extracting
nested thermal events inside a segmented strike-line. In addition to the online analysis,
the image processing algorithms might also be applicable in an initial semi-automated
offline data labelling for the AI models’ training. As a consequence, it is planned to explore
applications of AI in image plasma diagnostics for adaptive machine protection and control.

6. Conclusions

For the first time, the paper demonstrates the feasibility of applying low-power SoC
devices for relatively complex real-time image processing for image plasma diagnostics,
including the first real-time capable implementation of strike-line segmentation for W7-X.
Furthermore, it provides the reasons for selecting cost-efficient and power-efficient embed-
ded Tegra devices for image plasma diagnostics, especially in MicroTCA.4 architectures.
The GPU-accelerated processing pipelines consisting of selected and implemented image-
processing algorithms are proposed based on the previous strategies [7,35] to segment
and detect strike-lines and reflections in the W7-X stellarator. Their detection might allow
for automating real-time risk evaluation incorporated in the divertor protection system
in W7-X. A reduction in latency up to 64% was observed, owing to the application of
the embedded GPU. The undertaken optimisation process covered a proper selection of
algorithms, their parameters, data migration techniques and allocation of GPU–CPU re-
sources to maximise performance on the embedded architecture. In addition, the strike-line
segmentation algorithm yields higher accuracy in comparison to the literature results due
to the improved selection of the pre-processing algorithms, as well as the max-tree filtering
criteria. Moreover, the paper illustrates the superiority of the new NVIDIA Jetson Xavier
NX over the previous NVIDIA Jetson TX2 in terms of functional and computational capa-
bilities [16]. Although the algorithms were tested on the W7-X experimental data, they are
also applicable in different fusion devices equipped with IR monitoring systems, e.g., JET
or WEST, after the adjustment of the algorithm parameters.
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AI Artificial Intelligence
API Application Programming Interface
BPC Bad Pixel Correction
BUF Block-based Union Find
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CCL Connected Component Labelling
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
CV Computer Vision
DL Deep Learning
DMA Direct Memory Access
FN False Negative
FoV Field of View
FP False Positive
FPGA Field-Programmable Gate Array
GPGPU General-Purpose computing on Graphics Processing Units
GPU Graphics Processing Unit
IR Infrared
JET Joint European Torus
KSTAR Korea Superconducting Tokamak Advanced Research
L4T Linux for Tegra
LUT Lookup Table
ML Machine Learning
NPP NVIDIA Performance Primitives
NUC Non-Uniformity Correction
NVDLA NVIDIA Deep Learning Accelerator
oneTBB oneAPI Threading Building Blocks
OP Operational Phase
OS Operating System
PCIe Peripheral Component Interconnect Express
PFC Plasma Facing Component
PVA Programmable Vision Accelerator
RAM Random-Access Memory
R-CNN Region-Based Convolutional Neural Network
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RoI Region of Interest
SoC System-on-a-Chip
SWNCC Normalised Cross Correlations (NCC) on a Sliding Time Window
TP True Positive
vHGW van Herk/Gil-Werman
VIS Visible spectrum
VPI Vision Programming Interface
W7-X Wendelstein 7-X
WEST W Environment in Steady-state Tokamak
YACCLAB Yet Another Connected Components Labelling Benchmark
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