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Abstract: The technology of microseismic monitoring, the first step of which is event recognition,
provides an effective method for giving early warning of dynamic disasters in coal mines, espe-
cially mining water hazards, while signals with a low signal-to-noise ratio (SNR) usually cannot
be recognized effectively by systematic methods. This paper proposes a wavelet scattering decom-
position (WSD) transform and support vector machine (SVM) algorithm for discriminating events
of microseismic signals with a low SNR. Firstly, a method of signal feature extraction based on
WSD transform is presented by studying the matrix constructed by the scattering decomposition
coefficients. Secondly, the microseismic events intelligent recognition model built by operating a
WSD coefficients calculation for the acquired raw vibration signals, shaping a feature vector matrix of
them, is outlined. Finally, a comparative analysis of the microseismic events and noise signals in the
experiment verifies that the discriminative features of the two can accurately be expressed by using
wavelet scattering coefficients. The artificial intelligence recognition model developed based on both
SVM and WSD not only provides a fast method with a high classification accuracy rate, but it also
fits the online feature extraction of microseismic monitoring signals. We establish that the proposed
method improves the efficiency and the accuracy of microseismic signals processing for monitoring
rock instability and seismicity.

Keywords: mining water hazard; microseismic monitoring; intelligent recognition; feature extraction;
support vector machine; classification model

1. Introduction

Intelligent mining is the only way to achieve the safe and efficient production of coal
in mines [1]. With the depth of mining, multifactorial compound disasters, such as the
mining water hazards and others, become more frequent under high ground stress and
some other conditions. At the same time, the rapid development of intelligent mining
technology has put forward a new development opportunity for coal geological guarantee
technology to be used to avoid more hazards. Coal geological guarantee technology runs
through the whole cycle of coal mine production [2,3] and plays an important role in water
disaster prevention and intelligent mining, especially the exploration and treatment of
hidden disaster-causing geological factors in coal mines [4].

Generally, microseismic monitoring technology is one of the important technologies
adopted for the dynamic monitoring of mine geological information, which can monitor
the rock rupture phenomenon in real time and has a large monitoring range. To detect and
explain the interior of the working surface by using microseismic monitoring technology,
the online monitoring of the top and bottom plate damage of the working surface and the
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description of the whole process of the water guide channel from gestation and develop-
ment to the final instability can be realized. We use the theory of the interference stress
distribution of the surrounding rock to reveal the construction change law of the stress
field, playing a key factor in water prevention and control, decreasing water and many
other coal mining hazards [5,6].

A single microseismic event with a very short duration lasts tens of milliseconds.
The highly accurate recognition of such an event requires careful discrimination between
the microseismic and noise events [7]. However, because of the influence of extractive
perturbation and the increased amount of monitoring data, the traditional methods of
microseismic monitoring data collection and processing are slow and have a low level of
accuracy. It is acknowledged that microseismic events and noise can be discriminated easily
by the human senses, however, it is extremely difficult to do using automatic recognition
methods [8]. Usually, the monitoring station is terribly disturbed by the surrounding noise,
and sometimes microseismic events are even be submerged into noise. Along with the
properties of microseismic signals, different researchers have proposed some discrimination
methods in previous studies.

Mainly, methods based on both the sliding window and the threshold value are
considered to be traditional events recognition algorithms. Some commonly used methods
are the STA/LTA (the short-term average to long-term average ratio) algorithm [9–11], as
well as multi-window techniques [12] and the modified energy ratio method [13]. This
method, with an operation speed that is extremely fast, is an ordinary discrimination
process for the detection of the first arrival of a seismic phase [7]. However, the obstruction
signal is considered active, that is, the noise resistance characteristics of the process are
invalid. The AR-AIC algorithm is another method used to calculate an autoregressive
model of two signals combined in different time windows that use the Akaike Information
Criterion (AIC). When the AIC value reaches its minimum, a pick of one microseismic
event can be declared [14–16].

In these algorithms, because of an increased sensitivity to amplitude mutation, it
is a common shortcoming that noise and its energy are portrayed as much larger than
microseismic events. This is even more likely when the noise has a frequency content
similar to that of a microseismic event. Recently, within the workings of the proposed
calculation methods, some intelligent algorithms have been principally applied to the
recognition of microseismic events, resulting in a lower efficiency of the processing of
collected data, the discordance of recognition standards, and misjudgment.

Otherwise, spectral analyses of the different types of seismic waveforms, such as
reflection and refraction tomography, have been adopted to provide more information
concerning the source [17,18]. Almost all of these methods are achieved through the Fourier
transform theory [19], a theory using orthogonal basis functions having perfect localization
in frequency but infinite extent in time. The antileakage least-squares spectral analysis
method, a method regularizing irregularly spaced data series, is an iterative one that
estimates the statistically significant spectral peaks in the spectrum [20,21]. Because the
frequency content is quite time-dependent, this may not be an appropriate way to process
seismic signals. To address this issue, an approach called time–frequency transforms,
such as wavelet transform, has been widely used in geophysical data processing and
interpretations [22–24]. Features in the time–frequency domain are also applied for the
automatic processing of microseismic signals [25]. However, it is easily changed by the time
changing and can miss signal features, so it is not suitable for the analysis of time-varying
non-stationary signals and the construction of a feature matrix.

The wavelet scattering decomposition (WSD) transform theory is mainly used to
perform an analysis of the complexity of a signal sequence, achieving a nonlinearity anal-
ysis because of its high robustness as a rapid and common algorithm, which makes the
analysis of time sequences more functional. For example, Mallat and Bruna [26] enabled
the identification of audio signals, handwritten text, and image textures by constructing
a wavelet scattering decomposition transformation network. Anden and Mallat [27,28]
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extracted the effective feature information through the wavelet scattering decomposition
transformation network from the classical music data set GTZAN and the voice call data
set TIMIT, achieving good classification results and applying the same method to the
analysis of arrhythmia data in the same year. Based on the properties of wavelet scat-
tering, Wiatowski et al. [29] demonstrated the superiority of this method by a process of
rigorous mathematical derivation and generalization, achieving good results in different
wavelet frameworks. Wang et al. [30] used a wavelet scattering transformation network
to extract the features of synthetic aperture radar images, effectively identifying mobile
and fixed targets. Li et al. [31] proposed an algorithm for cardiac tone signal classification,
using the wavelet scattering transformation network to obtain cardiac tone signal char-
acteristics, which were able to effectively express the feature information corresponding
to the signal, and then obtained the feature matrix of the signal used for support vector
machine classification. Recently, artificial intelligence algorithms have been widely used
in the research involving the recognition of microseismic events in order to improve the
efficiency and accuracy of microseismic signal processing for the monitoring of rock insta-
bility and seismicity [32,33]. The powerful artificial intelligence classification algorithm of
the support vector machine (SVM) constructs the hyperplane with the largest margin in
multi-dimensional space, separating different cases of each category label [34,35]. The SVM
algorithm is explicitly designed to perform binary (two cluster) classifications and is an
influential supervised machine learning algorithm that is widely used in image recognition,
text detection, and protein classification. Here, we have successfully adapted the SVM
algorithm to intelligently discriminate microseismic signals into microseismic events and
noise ones with a higher degree of accuracy.

In this study, not only was an intelligent recognition method for microseismic events
based on the support vector machine classification algorithm proposed, but wavelet scatter-
ing decomposition transform theory was also introduced into the field, used in performing
a study of the influence of quality factors based on the characteristics of the collected
data. The feature extraction method was performed based on the microseismic signals’
features of the wavelet scattering decomposition transform. Combined with the SVM
algorithm, we built the recognition model fitting low signal-to-noise ratio signals. The
historical monitoring sample signals applied to experimental verification were determined
in order to confirm the effectiveness and instantaneity of this model. Our results suggest
that WSD is able to explain the different characteristics of the two classes of signals; that
the established WSD-SVM model is able to discriminate microseismic events from noise
has been identified. Overall, these studies taken together have revealed the significant
discovery that the speed of the calculation process of this model is faster and more useful
for real-time online recognition.

The rest of this paper is organized as follows. In Section 2, the effective microseismic
signals classification model we proposed is presented. Then, the results of both testing and
genuine signals are presented in Section 3. In Section 4, a comparison with other existing
methods is presented and analyzed. Finally, our conclusions are given in Section 5.

2. Methods and Model Training
2.1. Methods
2.1.1. Wavelet Scattering Decomposition Theory

Wavelet transformation is an effective tool for time-varying non-stationary signal
analysis [36]. Because of its scale variability and multi-resolution, it can describe both
the time and frequency domain characteristics of the signal, so the local analysis of the
signal has good results [37]. For signals in continuous finite time, the wavelet transform
is defined as:

W(a, t) =
1√
a

∫ ∞

−∞
y(t)ψ ∗

(
t− b

a

)
dt (1)
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where a is a scale factor or frequency factor, and b is a translation factor or time factor,
and the movement of the main wave is along t. Judging from the above formula, wavelet
transformation does not have translation invariance.

The actual collected microseismic signals are usually much disturbed; even if overall
there is no qualitative change, local changes will disturb the extracted signal features, thus
affecting the analysis and recognition of the signal. Therefore, a signal analysis and feature
extraction method with both translation invariance and local deformation stability is exactly
what is needed.

With a module operation included, the operator |Wm|, which removes the complex
phase of all wavelet coefficients, can be obtained. Convolution with the input signal yields
a non-linear wavelet modulus:

|W|x = (x ∗ φ,
∣∣x ∗ ψj

∣∣) (2)

where φ refers to the low pass filter, so Sm(x) = x ∗ φ refers to a local translation invariant
descriptor of the signal x, the scattering coefficients, and the input signal with translation
invariance, extracting the low-frequency information of the input signal and removing
all high-frequency information. ψj represents a high-frequency wavelet. High-frequency
information is recovered by the modulus transformation Uj(x) =

∣∣x ∗ ψj(x)
∣∣, which rep-

resents the high-frequency information on scale j and obtains deformation stability by
module operation on the nonlinear wavelet transform. Therefore, the low-frequency infor-
mation (scattering coefficients) and high-frequency information of the wavelet scattering
transformation of order 0 are as follows:

S0(x) = x ∗ φ
U1(x) =

∣∣x ∗ ψj1

∣∣ (3)

The 0-order high-frequency information section U1(x) is used as input for the first
order scattering transformation; this can be denoted as follows:

|W1|
∣∣x ∗ ψj1

∣∣ = (
∣∣x ∗ ψj1

∣∣ ∗ φ,
∣∣∣∣x ∗ ψj1

∣∣ ∗ ψj2

∣∣). (4)

Then, the first order scattering coefficients are indicated as follows:

S1(x) =
∣∣x ∗ ψj1

∣∣ ∗ φ (5)

and so on; repeating the iterative procedure above can be done to obtain a scattering
coefficient of an arbitrary order.

For arbitrary j ≥ 1, the wavelet module transformation convolution of the signal can
be expressed as follows:

Ujx =
∣∣∣∣∣∣x ∗ ψj1

∣∣ ∗ . . .
∣∣ ∗ ψjn

∣∣. (6)

As the next order input, Ujx is low pass filtered to obtain the order m scattering coefficient:

Smx =
∣∣∣∣∣∣x ∗ ψj1

∣∣ ∗ . . .
∣∣ ∗ ψjn

∣∣ ∗ φ = Ujx ∗ φ (7)

Applying |Wm+1| to Ujx, both Smx and Uj+1x can be computed simultaneously. This
can be expressed as:

|Wm+1|Ujx = (Smx, Uj+1x). (8)

The highest-order l of the scattering decomposition can be defined by initializing
U0x = x, when 0 ≤ m ≤ l and 1 ≤ j ≤ n, with the iteration of Equations (1)–(8).

Eventually, a feature vector is formed by the scattering coefficients on 0 ≤ m ≤ l:
Sx = {S0x, S1x, . . . , Smx}, known as Sx = {S0x, S1x, . . . , Smx}.

In conclusion, the process of wavelet scattering transformation can be described as a
scattering transform iteration on the wavelet module operator |Wm|; convolution calculates
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the wavelet model transform Ujx a value of m times and outputs the scattering coefficients
Smx after low-pass filtering (Figure 1).
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2.1.2. Support Vector Machine Theory

In recent years, as one of the small sample algorithms based on supervised machine
learning theory mainly adopted in image identification, text detection, and other fields,
support vector machine theory (SVM) and possesses great advantages in the solving
of nonlinear, high dimensional and small sample pattern discrimination problems and
is becoming an effective classification algorithm. Usually, SVM employs an iterative
training algorithm, where an optimal hyperplane with the maximum margin in multi-
dimensional space can be constructed and applied to minimize an error function, as seen
in Figure 2 [32,33]. In our case, we define the feature extraction of microseismic signals
as a binary and nonlinear classification problem, which is an extremely significant step in
the proposed algorithm for judging whether a vibration signal is a microseismic event or
not. In this study, the given training vectors xj ∈ R, j = 1, . . . , N in two classes and a label
vector including Microseismic events (defined as M) and Noise (defined as N) are used and a
quadratic optimization problem is solved by this model:

min
β,b,ξ

(
1
2

β′β + C
N

∑
j=1

ξ j

)
(9)

which is subject to the constraints:

yj
(

β′φ
(
xj
)
+ b
)
≥ 1− ξ j

ξ j ≥ 0, j = 1, . . . , N
(10)

where β is the normal vector to the hyperplane, b represents a constant. To avoid over-
fitting, the penalty parameter C is defined on the training error. Note that ξ j is the smallest
non-negative number satisfying yj

(
β′φ
(
xj
)
+ b
)
≥ 1− ξ j. With the kernel φ adapted to

convert the input data into the feature space, the kernel function G(x1, x2) = φ(x1) · φ(x2)
is supposed to be a dot product of the input data, mapping into the higher dimensional
feature space by the process of transformation φ.
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Figure 2. Schematic diagram of SVM. “d” means the largest diatance between the support vector
and hyperplane.

2.2. Data Preparation and Model Training

Firstly, we selected equal numbers of microseismic events and noise sequences, oper-
ating the calculation of the wavelet scattering coefficients on the two signals and extracting
the feature vectors of each one to form the feature matrix called the training set. Making
use of the software package for SVM, the classifier, which assists in the classification of
the testing signal samples, was built by training the set of selected sample signals. The
workflow framework for the best performance and the establishing of our intelligent recog-
nition model, as well as the iterative training and optimization of the predictive model was
designed and is shown in Figure 3.
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To ensure that the classification model is able to differentiate microseismic events
from noise in a low SNR environment, appropriate historical samples were selected to
compose a strong data set. Because of the complexity of the microseismic monitoring
environment in coal mines, the selected historical samples for training needed to meet the
following criteria:
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1. Samples selected for training the model should be a series of microseismic vibration
signals, achieving clear waveform and obvious jumping.

2. An equal number of noise samples easily expressed as microseismic events should be
selected in order to describe the noise features precisely.

The intelligent recognition algorithm based on the WSD and SVM of microseismic
signals is as follows:

Input: the data set S, time invariance scale, transform times and quality factor
Output: the classification results.

1. Step 1: Sample selection. Because of the above-mentioned criteria, the input data set S
for training can be made up of n (n ≥ 50) samples. The data set S is composed of the
same percent (50%) of the two types of signals.

2. Step 2: Feature extraction. The feature matrix of S is obtained by the calculation of
scattering coefficients taking into account the certain number of the time invariance
scale, the transform times and the quality factor.

3. Step 3: Cross validation. The k-fold cross validation method can be used to avoid
over-fitting, evaluate classifier performance, and estimate the error rate or loss. Taking
the level of computational efficiency into consideration, k in this study is 5.

4. Step 4: SVM classification. In this step, we fit a one-vs-one SVM to the training data
only and then use the trained model to make predictions concerning the 30% of the
data withheld for testing.

Large amounts of continuous microseismic signals were collected by stations and
geophones working in environments with a high level of noise. It is a formidable task
to discriminate the microseismic events contained in those signals with precision using
previous methods. Many events submerged in the noise cannot help with source location
and other processes. The purpose for the construction of the WSD-SVM model used for
the processing of monitoring vibration signals obtained from certain stations is to improve
the recognition accuracy of microseismic events through processes so that the data can be
identified precisely.

3. Results
3.1. Testing Results

The data samples designed to fit the experiment were obtained from the KJ959 mi-
croseismic monitoring system, which has a sampling frequency designated as 1 kHz, a
standard widely adopted in coal mine inrush water hazards prediction and prevention.
These samples provided an effective series of microseismic vibration signals. In addition,
we chose single component detection sensors with a frequency response range from 10 Hz
to 1 kHz as the geophones. A total number of 108 raw signals regarded as data set S
were collected using automatic pick-up technology. For ease of analysis, 108 signals were
interpreted as segments of equal length, with each segment consisting of 7000 sampling
points. The data set S was split into S1, containing 54 microseismic events with an obvious
jump, and S2, comprising 54 noise signals. After that, they were categorized into M (for
microseismic events)and N (for noise). For convenience, one segment from S1 and another
from S2 were picked for analysis; they are shown is Figure 4.

The time invariance scale i = 6, transform times t = 3, the quality factor q = 3, 2, 1 and
the calculation of scattering coefficients for the two signals are shown in Figure 5, showing
the distinctive differences between events and noise. The features of all the signal segments
in data set S can be expressed by the feature matrix consisting of the scattering coefficients
using the proposed method.
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To achieve better performance in the defined WSD-SVM model, 70 percent of the data
in each class were randomly devoted to the formation of the training set STr which was
trained in order to obtain the SVM classifier. Meanwhile, the remaining 30 percent was
withheld for testing and assigned to the test set STe. As is known, the performance of a
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supervised machine learning algorithm is largely dependent on the training percent of
the data set. The above process was repeated with different training percents, and the
corresponding classification accuracy rates were calculated as shown in Figure 6.
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Figure 6. Recognition accuracy rates for different training percents.

Microseismic events and noise can be classified by the WSD-SVM algorithm effectively,
as shown in Figure 6. As the following ten experiments illustrate, the recognition accuracy
rates increased as the training percent became larger, reaching 99.6% in five experiments.

3.2. Application in Genuine Signals

We sought to verify the validity of the above algorithm, so a continuous microseismic
signal with a duration of 56 s was selected for the experiment. Data were obtained using the
monitoring equipment installed in a coal mine in northwestern China; results are shown in
Figure 7.

Because the monitoring station is disturbed by ambient noise, the signal segment in
Figure 7 shows a low SNR. There are 8 microseismic events in total in the sequence. Judging
by the software, 3 (E2, E5, E7) of these have a clear waveform and can be verified directly,
and another 5 (E1, E3, E4, E6, E8) events are covered by the noise. All 8 events are designed
to be detected by the theory of STA/LTA and our trained model. Both the results of the
detected event numbers and the corresponding time consumptions of the two methods are
recorded in Table 1.

Only four microseismic events (E1, E4, E5, E7) were able to be recognized by the
STA/LTA method with a lower threshold, while our proposed algorithm could recognize
all eight events effectively. Taking the time consumption of the two algorithms into consid-
eration, it took 2.488 s for the WSD-SVM model to recognize all eight events, irrespective
of the training time, which is a little slow for calculation. In contrast, the method we
proposed was able to recognize low SNR microseismic events accurately with little sacrifice
in calculation time.

Table 1. Comparison of the method performance.

Method Number of Detected Events Time Consumption/s

STA/LTA 4 1.358
Algorithm in this paper 8 2.488
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4. Discussion
4.1. The Recognition Ability of WSD-SVM

In order to further confirm the universality of our proposed method, ten microseismic
signals were achieved from four unique monitoring stations as experimental sample data
and were analyzed using the STA/LTA method and the method employed in this paper.
Using professional software, the time–frequency analysis of the ten signals was observed
and 28 events were concluded. The number of microseismic events successfully recognized
is presented in Table 2, which shows that 28 microseismic events were detected from
the selected samples for experiments, the recognition accuracy rate was 92.86%, and the
recognition accuracy was better than that of the STA/LTA method.

4.2. The Influence of the Transform Times on the Classification Results

Whenever the WSD-SVM algorithm is used to recognize microseismic events, the
selection of the appropriate transform times is a critical step, determining the level of
classification accuracy. To work out the influence of the transform times on the classification
results, 54 event samples and 54 noise samples from Section 3.1 were selected, as well as
the WSD-SVM algorithm when i = 6 and q = 1, 2, 3, 4, 5.



Energies 2022, 15, 2326 11 of 13

Table 2. Comparison of the two methods.

No. Duration of Signals/s Number of
Microseismic Events

Number of Events Recognized
by the STA/LTA Method

Number of Events
Recognized by the
Proposed Method

1 15 2 0 2
2 23 3 1 3
3 10 1 1 1
4 26 2 1 2
5 36 5 3 4
6 20 3 2 3
7 12 1 0 1
8 29 4 2 3
9 32 4 3 4

10 30 3 1 3
Total 233 28 14 26

As we can see from Table 3, when the transform time is l or 2, it takes less time to
complete the process of classification with a lower accuracy. However, when the transform
time is greater than 4, it results in a higher level of accuracy with an extremely high level of
time consumption because of the complexity of calsulation. A small number of transform
times is not adequate to express the complexity of the samples, though it takes less time,
but an excessive number introduces large time consumption. Therefore, according to these
results, the best, most acceptable number of transform times is 3.

Table 3. Relationship between transform times and classification accuracy.

Transform Times Classification Accuracy Time Consumption/s

1 58.50 0.95
2 58.71 1.57
3 99.21 3.1
4 99.21 19.968
5 99.80 476.206

5. Conclusions

To conquer the noise problems in the microseismic monitoring data, a novel intelligent
recognition method for microseismic signals with a low SNR was proposed in detail,
consisting of the use of a support vector machine classifier in combination with the feature
extraction method of wavelet scattering decomposition transform. Though the selected
signals are expected to be further processed by the algorithm in this paper, the validity of
and the favorable results for the WSD-SVM model have already been demonstrated by
the accurate discrimination of genuine microseismic events from noise events. In addition,
the scattering coefficients for each signal are shown to be useful as features for training
the distinctive model. The recognition accuracy rate of the samples for experiments using
the model reached 92.86%, showing that the model could be applied to recognize the
microseismic events in the monitoring area. The increased utilization of a smaller feature
matrix and an effective feature extraction method is the future direction of microseismic
event classification.
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