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Abstract: Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on
current and state of charge. The modelling of lithium-ion batteries is therefore complicated and
model parametrisation is often time demanding. Grey-box models combine physical and data-
driven modelling to benefit from their respective advantages. Neural ordinary differential equations
(NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical
laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of
NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as
a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor
circuit, including its dependency on current and state of charge, is implemented as a NODE. After
training, the grey-box model shows good agreement with experimental full-cycle data and pulse
tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one
consisting of half cycles and one dynamic load profile representing a home-storage system. The
dynamic response of the battery is well captured by the model.

Keywords: neural ordinary differential equations; grey-box model; equivalent circuit model; lithium-
ion batteries

1. Introduction

Lithium-ion batteries are a key technology for electric vehicles, portable devices and
stationary applications such as home-storage systems. With the increasing usage of lithium-
ion batteries in complex fields of application, the demand for battery models is growing as
well. Battery models are necessary to predict the dynamic voltage and current behaviour
and to monitor internal states, particularly the state of charge (SOC) and the state of health
(SOH). There are many different types of battery models [1,2]. Depending on the required
purpose, they can be selected as a compromise between accuracy and simplicity. We
introduce here a grey-box (GB) modelling approach that uses a simple equivalent circuit
model (ECM) as a basis.

Digitisation has been progressing rapidly in the past decades, and with it the amount
of available data increases. This has boosted the development of artificial intelligence and
especially neural networks. Neural networks are an important representative of black-
box (BB) models. They learn relations between inputs and outputs of systems based on
data [3–6]. However, BB models require a huge amount of training data. Therefore, it is
reasonable to consider other modelling techniques. White-box (WB) modelling uses prior
physical, chemical or engineering knowledge in the form of mathematical equations to
describe the behaviour of the corresponding system. WB models are therefore limited to
the understanding of the underlying processes. GB models combine WB and BB modelling
techniques to benefit from their respective advantages [3–6].
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There are many examples in current research where neural networks are used to
model lithium-ion batteries. In Ref. [7] a feedforward network with two hidden layers
approximates the SOC of a battery based on the actual voltage, current and time. The
authors of Ref. [8] predict the SOC of a battery with a recurrent neural network (RNN). The
last three values of SOC, battery current, battery voltage and the values of four temperature
sensors are taken into account. RNNs enable time series prediction. The authors of
Ref. [9] perform online predictions of the remaining capacity of a lithium-ion battery
with a long short-term memory network, a special form of RNN. The measured voltages
during constant current (CC) charging above a certain battery voltage and the charge
throughput till reaching the charge cut-off voltage serve as inputs. The authors of Ref. [10]
use neural networks for battery design. They generate their training data with a pseudo-
two-dimensional model of a lithium-ion battery by varying different design parameters.
The first neural network classifies whether the given parameter combination leads to a
possible battery configuration or not. A second neural network estimates the specific energy
and the specific power of the battery with the chosen parameters. In Ref. [11] a feedforward
network is used for end-of-line prediction. The unmeasured physical battery parameters are
estimated by a neural network. The aforementioned approaches represent BB models. The
following articles focus on GB modelling of lithium-ion batteries. The authors of Ref. [12]
estimate the SOH of a battery with a neural network that takes the fitted parameters of
an ECM as input. In Ref. [13] a reduced-order physics-based model is supplemented with
two neural networks to predict what the authors call "nonideal voltages" of the positive
and negative electrode. An additional Bayesian network approximates the influence of
ageing on the battery resistance and the amount of cyclable lithium. The authors of Ref. [14]
build GB models of dynamic systems including external variables with neural ordinary
differential equations (NODEs). In contrast to the original contribution [15], they call the
combination of NODEs and differential equations “universal differential equations”. In
Refs. [16,17] NODEs are used for GB modelling of lithium-ion batteries. The authors of
Ref. [16] focus on physical battery modelling in combination with NODEs. They consider
ageing effects such as solid electrolyte interface formation, lithium plating and active
material isolation as well as the increase in the internal resistance. NODEs approximate
the remaining deviation between the physical model and the experiment. In our previous
work [17] an ECM serves as a basis for a GB model of a lithium-ion battery. NODEs model
the voltage drop across the included resistor–capacitor (RC) circuit.

In the present contribution, we continue our previous work [17] by further improving
the GB model. For this purpose, we increased the amount of physical knowledge in the
model. In contrast to the former contribution, the focus of the current study is on modelling
the dynamic properties of the battery. We used additional training data from charging
and discharging with pulsed currents to train the time constant of battery dynamics.
Furthermore, we tested the trained GB model against two test profiles covering more
realistic battery operation. So far we have neither considered temperature dependencies
nor ageing effects.

The target battery studied here is a large-format 180 Ah prismatic commercial lithium-
ion cell with lithium iron phosphate (LFP)/graphite chemistry. This type of cell is used in
stationary storage systems. We have previously investigated the experimental properties
of this cell in great detail [18]. LFP cells are attractive for stationary storage applications
because they have shown a high cyclic and calendaric lifetime [19,20]. However, their state
diagnosis is challenging due to a flat, plateau-like discharge voltage curve and charge–
discharge voltage hysteresis [21]. One of the goals of the present study is therefore to
investigate the applicability of GB models to this type of cell.

The paper is organised as follows. In Section 2, we describe the fundamentals of the
ECM, the NODEs and the combination of both for GB modelling of lithium-ion batteries. In
Section 3, we show and discuss the application of the proposed GB model to the simulation
of lithium-ion batteries. The training and test results are given as well as their dependencies
on hyperparameters, the user-defined parameters of a neural network. Hyperparameters
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such as the learning rate or the number of hidden layers of a neural network control the
learning process. At the end of the paper, we summarise the results and give an outlook.

The measurement data and the code are available in Zenodo. See ‘Data Availability
Statement’ for further information.

2. Methodology

In this section, we introduce NODEs and explain how to use them for modelling
dynamic systems. We present an ECM of a lithium-ion battery and derive the GB model
from the ECM. Furthermore, we describe the initialisation, normalisation and training
procedures as well as the experimental basis used for training and testing.

2.1. Background: Neural Ordinary Differential Equations

Besides the standard feedforward network, a number of other neural network archi-
tectures have been developed for different areas of application. The interested reader is
referred to Ref. [22] for a detailed overview of neural networks.

RNNs are used for time series prediction. In contrast to feedforward networks, RNNs
have recurrent connections. The outputs of a neuron can be used as inputs of a neuron in
the same or a previous layer. In Ref. [23] RNNs learn multivariate time series with missing
values. The authors of Ref. [24] include external variables in RNNs.

The authors of Ref. [25] introduce residual neural networks (ResNets) to overcome
problems with the degradation of the training loss with an increasing number of hidden
layers in deep neural networks. ResNets have additional short-cut connections which allow
direct addition of the input of a neuron to its output.

In Ref. [26] the connection between ResNets with shared weights (the same weights
are used in each layer of the neural network) and special forms of RNNs is established.
ResNets can be used for time series prediction as well.

The following recursive formula applies to the state transformation from layer t to
layer t + 1 in a ResNet [25]:

~zt+1 = ~zt + ~f
(
~zt,~θt

)
, t = 0, ..., T − 1 (1)

where,~zt ∈ Rd is the vector of the hidden states at layer t,~θt the learned parameters of layer
t and ~f : Rd → Rd a learnable function. The vector~θt of learned parameters summarises the
learned weights and biases. Parameter sharing across the layers (~θt = ~θ for t = 0, ..., T − 1)
results in the explicit Euler discretisation of the initial value problem [15,27–32],

d~z(t)
dt

= ~f
(
~z(t), t,~θ

)
, ~z(0) = ~z0. (2)

Herein the continuous change in the states~z(t) is given by the learnable function ~f that
represents a neural network. Therefore, the differential equation according to Equation (2) is
called NODE. Starting from the initial state~z(0) a differential equation solver can calculate
the output state~z(T) [15,29,30,32].

Originally, NODEs were developed for initial-value problems. The authors of Ref. [14]
expanded the approach to solving differential equations with constraints. In our previous
work [17], we showed how to consider external variables ~u(t) (here, the dynamic battery
current as input variable) directly based on a simple application example. The differential
equation according to Equation (2) is generalised:

d~z(t)
dt

= f
(
~z(t),~u(t), t,~θ

)
, ~z(0) = ~z0. (3)

The external variables are inputs of the NODE. Therefore, we have to provide a function
describing the change in the external variables with time. We could for example interpolate
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the measured data [17]. Figure 1 illustrates how to use NODEs with external variables
schematically.

Ԧ𝑧0 ∫ d𝑡Ԧ𝑓( Ԧ𝑧0, 𝑢0, 𝑡0, Ԧ𝜃)
Ԧ𝑧1

𝑢1

Ԧ𝑓( Ԧ𝑧1, 𝑢1, 𝑡1, Ԧ𝜃)

𝑢0

∫ d𝑡
Ԧ𝑧2

𝑢2

Figure 1. NODEs with external variables;~zt represents the state variables at time t and ~ut represents
the respective external variables. Adapted from Figure 1 in [17], which is licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/, accessed on 23 February 2022).

As stated in Refs. [14,17], NODEs can be used for GB modelling. The differential
equations derived from physical insights in the system and NODEs can be combined in one
equation system. A WB model is used as a basis for GB modelling. Single dependencies
or entire equations in the differential equation system are then replaced with learnable
parameters and neural networks. The respective ODEs are transformed into NODEs.
Additional assumptions going beyond the physical insights in the system can be added. A
differential equation solver delivers the corresponding values of the state variables at the
considered time points. Additional algebraic model equations can also be modified using
learnable parameters and neural networks.

2.2. Equivalent Circuit Model

Equivalent circuit modelling is a common approach to model lithium-ion batteries.
ECMs describe battery dynamics with only a few states and parameters. Due to their
simplicity, they are often used to predict the SOC or the SOH of batteries [33,34]. There is
no agreement in the literature about the type of equivalent circuit to be used for lithium-ion
batteries [2]: Simple empirically oriented versions of ECMs model battery dynamics with a
voltage source, a serial resistor and one or more RC elements [33,35–40]. Electrochemically
oriented models will typically include a Warburg diffusion element (either in series with
the RC element or within the RC element). A more detailed analysis, particularly in the
context of the present combination with NODEs, is out of the scope of the present study.

One can take into account that the circuit parameters may depend on SOC, tempera-
ture, the battery current, and the cycle number [36,40].

As in Ref. [17], we used a simple ECM as a basis for battery modelling. The chosen
ECM is shown in Figure 2. It is composed of an SOC-dependent voltage source, a serial
resistor, and one RC circuit. The open-circuit voltage of phase-change active materials such
as LFP is known to exhibit a path dependency [21]: The measured voltage is different after
discharge with a subsequent rest phase or after charge with a subsequent rest phase at the
same SOC. To describe this effect with our model, we included a hysteresis voltage drop
representing the particular feature of the studied LFP cell.

The following equation system describes the chosen ECM including parameter depen-
dencies on battery current and SOC:

dSOC
dt

= − 1
Cbat

ibat (4)

dvRC1

dt
=

1
C1
·
(

ibat −
1

R1(SOC, ibat)
· vRC1

)
(5)

vbat = vOC(SOC)− vhys · sgn(ibat)− RS · ibat − vRC1, (6)

where Cbat is the battery capacity, RS the serial resistance, R1(SOC, ibat) the charge-transfer
resistance in the RC circuit depending on SOC and battery current, and C1 the double-
layer capacitance (which, in our case, may include other physical contributions to voltage
dynamics, for example, solid-state diffusion). It should be noted that considering a non-
constant C1 could improve the approximation capability of the model. However, we

https://creativecommons.org/licenses/by/4.0/
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decided to use a constant double-layer capacitance at the present stage because we wanted
to focus on the most important effects which we expect from the charge-transfer resistance
and its dependency on the battery current and the SOC. The SOC-dependent open-circuit
voltage (OCV) is labelled vOC(SOC) and the hysteresis voltage drop is given by vhys times
the signum function of the battery current sgn(ibat). The hysteresis voltage drop could have
also been modelled by the current- and SOC-dependent resistance R1. However, we did
not include the voltage hysteresis into R1 to maintain the physical characteristics of both
vhys and R1. The battery voltage vbat is the output of the dynamic system and the battery
current ibat is the external variable. We define the current positive for battery discharge
and negative for battery charge. Note that Equations (4) and (5) represent ‘standard’,
physics-derived ordinary differential equations (ODEs).

vhys

vOC (SOC)

ibat

RS

vRS

R1 (SOC, ibat)

vhys

C1

vbat

vRC1

Figure 2. ECM of a battery consisting of an SOC-dependent voltage source, a hysteresis voltage drop,
a series resistor, and an RC circuit.

2.3. Grey-Box Model

We took the ECM given by Equations (4) to (6) as a basis for GB modelling. The
nominal capacity of a battery is usually given by the manufacturer. It indicates the capacity
of a fresh cell. However, the real (experimentally observed) battery capacity Cbat can
deviate from the manufacturer’s claims. For this reason, we considered the capacity Cbat in
Equation (4) as a learnable parameter. In Equation (5) the double-layer capacitance C1 and
the charge-transfer resistance R1, as well as its dependency on SOC and battery current,
are unknown. Therefore, we introduced a second learnable parameter to represent the
capacitance C1. As we wanted to take into account that the charge-transfer resistance may
have different values and characteristics during charging and discharging (as observed
experimentally [18]), R1 is described by two learnable functions. Depending on the sign of
the battery current, one of these functions is chosen; at zero current (ibat = 0 A) the mean
is taken. In the output Equation (6) we had to establish a link between OCV and SOC. The
manufacturer usually only provides finite-rate charge/discharge curves. Therefore, we
derived vOC(SOC) from dedicated measurements (so-called quasi-OCV measurements).
The hysteresis voltage drop vhys and the serial resistance RS are assumed constant in
Equation (6). We introduced two more learnable parameters to approximate these two
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values. Overall, using these assumptions, the ECM according to Equations (4) to (6) leads
to the following GB model:

dSOC
dt

= − 1
ω0

ibat (7)

dvRC1

dt
=

1
ω1
·
(

i− 1
R1(SOC, ibat)

· vRC1

)
(8)

R1(SOC, ibat) =


f
(

SOC, ibat,~θ f

)
∀ ibat < 0

g
(

SOC, ibat,~θg

)
∀ ibat > 0

1
2

(
f
(

SOC, ibat,~θ f

)
+ g
(

SOC, ibat,~θg

))
else

(9)

vbat = vOC(SOC)−ω2 · sgn(ibat)−ω3 · ibat − vRC1. (10)

Here, ω0, ω1, ω2 and ω3 represent learnable parameters. The functions f and g represent
feedforward networks with their respective learnable parameters ~θ f and ~θg. We chose
neural networks with one hidden layer and rectified linear unit (ReLU) activation for f and
g. We varied the number of neurons in the hidden layer between 10 and 300. Both networks
had two inputs, the SOC and the battery current, and one output, the ohmic resistance R1.

It is worthwhile recognising that, mathematically, this model combines physics-based
ODEs and machine-learning-based NODEs in one equation system. The combined equa-
tions are solved simultaneously within a single numerical framework.

2.4. Experiments

We applied the proposed GB modelling approach to a single lithium-ion battery
cell. All experiments were carried out using a commercial single cell of the Chinese
manufacturer CALB, model CA180FI. The large-format prismatic cell has a nominal capacity
of 180 Ah and a nominal voltage of 3.2 V. It uses LFP at the positive electrode and graphite
at the negative electrode. The cell was investigated experimentally under a controlled
laboratory environment (climate chamber CTS 40/200 Li) using a battery cycler with four-
wire measurement (Biologic VMP3). Details on the cell and characterisation methods can
be found in our previous publication [18]. Here we carried out additional measurements
for GB model parameterisation and testing.

We measured experimental data sets representing several different operation scenarios.
Constant current constant voltage (CCCV) charge and discharge curves were measured
with different C-rates of 0.1 C, 0.28 C and 1 C (corresponding to 18 A, 50 A and 180 A,
respectively) during the CC phase. The upper and lower cut-off voltages were 3.65 V and
2.5 V, respectively, and a cut-off current of the CV phase of C/20 was used. Additionally,
one charge and one discharge curve were acquired with included current pulses: During
50 A CC operation, every two SOC-percent the current was reduced to 25 A for 30 s. This
gives rise to two dynamic voltage answers, one at beginning and one at end of pulse.

Furthermore, two independent measurements for model testing were carried out.
Firstly, the cell was cycled with 50 A between 25% and 75% SOC for around 44 h after fully
charging, in the following referred to as half cycles. We started from a fully-charged cell and
a first discharge to 25% SOC. The SOC cycling range was controlled by Coulomb counting.
After 40 half cycles it was fully charged again. Secondly, the cell was fully charged and
afterwards subjected to a dynamic load profile over 48 h representing a home storage battery
in a single-family house. The synthetic load profile was taken from Ref. [41] (obtained
with a load profile generator [42]), where a battery system of 5 kWh was investigated, and
downscaled to the energy of the present cell (576 Wh). All measurements were carried out
at an ambient temperature of T = 25 °C.

The number of data points per measurement series was large. Therefore, beginning
from the first value, we decided to only keep measurement values if the current varied
by |∆ibat| ≥ 0.5 A or the measured voltage varied by |∆vbat| ≥ 0.5 mV between two subse-
quent values. Table 1 summarises the characteristics of the used measurement data. The
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number of used measurement values and the total duration are given for the different series.
It is worth mentioning that these values vary widely. The shortest data set for training only
spans t = 3932 s. The longest training data set takes t = 41,846 s. The test data sets cover
much longer durations.

Table 1. Measurement data for training and testing the model.

Data Set Number of Values Time Duration/s

discharge 0.1 C 5014 38,148
charge 0.1 C 4492 41,846
discharge 0.28 C 2177 13,787
charge 0.28 C 2181 17,418
discharge 1 C 898 3932
charge 1 C 3120 3936
pulsed discharge 15,575 14,479
pulsed charge 12,660 16,300
half cycles 77,548 162,754
synthetic load profile 69,541 190,231

The measurement data were made available and used as voltage versus time and
current versus time series. The measured battery current served as the external input of
the model. As proposed in [17], we interpolated the measured current values linearly for
providing values at arbitrary times as required by the numerical solver (cf. below).

2.5. Normalisation and Initialisation

The normalisation and initialisation are crucial for the training of the GB model with
NODEs. It is recommended to scale the inputs of neural networks [43]: The average of
the input variables over the training set should be close to zero (note that this condition is
fulfilled for a rechargeable battery, as negative currents for charge and positive currents for
discharge integrate to zero). Additionally, their covariances should be about the same.

As the SOC is in the range of 0 to 1, we decided to scale all inputs to values between−1
and 1. Additionally, we normalised the output values of the neural networks to the same
value range. We did not use different learning rates for different parameters. Therefore,
we also scaled the learnable parameters according to the respective value range and the
expected deviation from the chosen initial value.

According to the manufacturer, the cell has a nominal capacity CN = 180 Ah. However,
integration of the measured current over time for a whole charging or discharging process
leads to an approximate charge throughput of Q ≈ 191.5 Ah. As the manufacturers usually
give lower values for the nominal capacity to be on the safe side, we decided to set the
initial value to ω0 = 191.5 Ah. In the model, we used SI units. Therefore, we had to include
a conversion factor.

To get more information about the ohmic resistances and the capacitance in Equations (5) and (6),
or rather their learnable representation in Equations (8) to (10), we examined the mea-
surement data from the pulse tests more closely. Figure 3 shows a detailed view of the
current versus time and voltage versus time plot for the charging process with a pulsed
current. At t = 7264 s, there is a current step of ∆ibat = −25 A during charging. The
battery follows this current step with an ohmic voltage drop ∆vbat,serial ≈ 7 mV. The
ohmic voltage drop is modelled through the serial resistance in Equation (6), or rather
the learnable parameter ω3 in Equation (10). For discharging we found similar absolute
values. Therefore, ω3 = |∆vbat,serial|/|∆ibat| = 0.28 mΩ should be a good starting point for
the learnable parameter. We introduced the normalised parameter ω∗3 = 1000 ·ω3 instead
and initialised it as ω∗3 = 0.28Ω. The value for ω3, which is the approximation of RS,
is then calculated according to ω3 = 1/1000 · ω∗3 . The further course of the battery volt-
age following the ohmic voltage drop is modelled through the RC circuit in the ECM.
We estimated the time constant τ of the RC circuit by applying a tangent to the voltage
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curve. We found τ ≈ 15 s. The final battery voltage drop caused by the RC circuit is
∆vbat,RC ≈ 8 mV. In the ECM the ohmic resistance R1 models this voltage drop. It can
be approximated as R1 = |∆vbat,RC|/|∆ibat| = 0.32 mΩ. The capacitance C1 was estimated
according to C1 = τ/R1 = 15 s/320 µΩ = 47 kF. One has to take into account that the ohmic
resistance R1 in Equation (5) or (8) depends on SOC and battery current. Therefore, this is
only a rough reference point. We expected it to be much higher than the estimated value
for low and high values of SOC. Again, we introduced normalisation factors to simplify
the later training process. The current input to the neural networks f ∗ and g∗ was nor-
malised in relation to the maximum absolute current. The outputs of the neural networks
f and g were generated as follows: f

(
SOC, ibat,~θ f

)
= 1/100 · f ∗

(
SOC, ibat/180,~θ f ∗

)
, and

g
(

SOC, ibat,~θg

)
= 1/100 · g∗

(
SOC, ibat/180,~θg∗

)
. We initialised the weights and biases of f ∗

and g∗ from the uniform distribution U
(
−
√

k,
√

k
)

, where k = 1
l with l ∈ N the number of

inputs to the respective layer (cf. Ref. [43]). The learnable parameter ω1 was represented
by ω1 = 105 · ω∗1 , where the normalised parameter ω∗1 was initialised as ω∗1 = 0.5 F. We
implemented the non-linear vOC(SOC) curve according to the measurements of Ref. [18]
as look-up table. The vOC(SOC) relationship needed in Equation (10) was obtained from
the look-up table via linear interpolation. Due to inaccuracies of the current measurement
and the choice of the initial SOC value it could be possible that the calculated SOC was
sometimes slightly larger than 1 or slightly lower than 0. In these cases we provided the
OCV values for SOC = 1 or SOC = 0, respectively. We approximated the hysteresis voltage
drop to find a good initial value as follows. We subtracted the voltage drops over the
resistances RS and R1 from the difference between the OCV and the measured battery
voltage at a medium SOC for ibat = −50 A, yielding vhys ≈ 15 mV. We introduced the
respective normalised learnable parameter ω∗2 = 10 ·ω2. We initialised it to ω∗2 = 0.15 V.

7200 7300 7400 7500 7600 7200 7300 7400 7500 7600
3.33

3.332

3.334

3.336

3.338

3.34

3.342

3.344

3.346

3.348

3.35

true
learned

Figure 3. Simulation results using NODEs for grey-box modelling of a lithium-ion battery in compar-
ison to experimental data at T = 25 °C. The focus is on charging with a pulsed current at a medium
SOC; (left): battery current versus time; (right): battery voltage versus time.
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Applying these modifications, the following equations describe the final GB model:

dSOC
dt

= − 1
3600 s/h ω0

ibat (11)

dvRC1

dt
=

1
105 ·ω∗1

·
(

i− 1
R1(SOC, ibat)

· vRC1

)
(12)

R1(SOC, ibat) =


1

100 · f ∗
(

SOC, ibat/180,~θ f ∗
)

∀ ibat < 0
1

100 · g∗
(

SOC, ibat/180,~θg∗
)

∀ ibat > 0
1

200

(
f ∗
(

SOC, ibat/180,~θ f ∗
)
+ g∗

(
SOC, ibat/180,~θg∗

))
else

(13)

vbat = vOC(SOC)− 1
10
·ω∗2 · sgn(ibat)−

1
1000

·ω∗3 · ibat − vRC1, (14)

where ω0, ω∗1 , ω∗2 , and ω∗3 are learnable parameters and the functions f ∗ and g∗ represent
neural networks. They were built in analogy to the neural networks f and g in Equation (9).
We used feedforward networks with one hidden layer and ReLU activation. The number
of hidden neurons was varied.

2.6. Simulation and Optimisation Methodology

We implemented our model in Python (version 3.7.6). We used the open-source ma-
chine learning framework PyTorch (version 1.9.0) [44]. PyTorch provides two main features:
Tensor computing and automatic differentiation for deep neural networks. Furthermore,
we used the torchdiffeq library (version 0.2.1) [45] which builds on PyTorch. It allows
solving ODEs and backpropagation through the solutions of the ODEs.

The differential Equations (11) and (12) were solved with the Dopri8 method. Back-
propagation was performed with the standard odeint method from torchdiffeq. Finally, an
Adam optimiser minimised the loss function.

2.7. Training

The model has a large number of unknown parameters that need to be identified
by mathematical optimisation: The four learnable parameters ω0 to ω∗3 , and 4 · n + 1
parameters~θ∗f and~θ∗g each in the two learnable functions f ∗ and g∗ with n the number of
hidden neurons.

Due to the small amount of available training data, we split the training into two
consecutive steps: First, we trained a static network with the CCCV data. Afterward,
we used the pulsed data to take the battery dynamics into account. One has to keep in
mind that all current flows through the charge-transfer resistance R1 of the RC circuit
at steady-state operation. The double-layer capacitance C1 is used to capture transient
phenomena.

In detail, in the first step we neglected the double-layer capacitance. Therefore, the
differential Equation (12) was converted into the algebraic equation

vRC1 = R1(SOC, ibat) · ibat. (15)

We trained the resulting simplified GB model using the data covering the six CCCV charging
and discharging processes with different C-rates. We initialised the learnable parameters
ω0, ω∗2 , and ω∗3 and the learnable functions f ∗ and g∗ of the simplified model as discussed
above. As we have chosen a constant hysteresis voltage for non-zero battery currents, it
is important to provide appropriate values for low currents. We decided to set currents
with an absolute value |ibat| < 0.25 A to zero. Additionally, we had to provide the initial
SOC value. As there was a rest phase before the start of each data set, we assumed that the
battery is initially at equilibrium and therefore represented by the OCV curve. We inverted
the OCV(SOC)-curve to determine the respective SOC value from the initial voltage. As
mentioned above, the Dopri8 method was used to solve Equation (11) with an absolute
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tolerance of 10−5 and relative tolerance of 10−3. We performed backpropagation with the
standard odeint method from torchdiffeq. An Adam optimiser with a decaying learning
rate between 10−2 and 10−3 minimised the loss function. The loss function was defined
as the sum of the root mean squared error (RMSE) between the simulated battery voltage
and the measured battery voltage and an additional penalisation term. Approximated SOC
values lower than 0 or higher than 1 were taken into account. Their hundredfold absolute
deviation from 0 or 1 was used as the penalisation term. As we had already initialised
the other learnable parameters according to the insights from the measurement data, we
only optimised~θ f ∗ and~θg∗ during the first 50 training epochs. The total number of training
epochs was varied. It is a hyperparameter of the training process that controls the number
of complete passes through the training data set. During each training epoch, the six data
sets were given to the model in random order. All time series were used completely. The
optimisation steps were carried out with stochastic gradient descent. The parameters were
stored when the total training loss during one epoch decreased.

In the second step, we used the complete GB model according to Equations (11) to (14)
for further training. Therefore, we initialised ω∗1 as stated previously. The other parameters
were taken from the pre-trained model. The initial SOC was determined as before. Addi-
tionally, we had to provide an initial value for the voltage drop vRC1 across the RC circuit.
Due to the proceeding rest phase we assumed vRC1(t = 0) = 0 V. The standard odeint
backpropagation was used again. We chose Dopri8 as differential equation solver with an
absolute tolerance of 10−5 and relative tolerance of 10−3. As before, the loss function was
defined as the sum of the RMSE loss of the model output compared to the measured voltage
and the penalisation term. The training loss was minimised by an Adam optimiser with a
learning rate of 10−3. During the first ten training epochs, we only considered the data from
the charging and discharging processes with a pulsed battery current. Afterwards we also
considered the data from charging and discharging with the CCCV protocol. Additionally,
we froze all learnable parameters except ω∗1 during the first 20 training epochs. Overall, we
carried out 30 training epochs with batch gradient descent.

To further test our approach, we investigated GB models with different numbers of
neurons in f ∗ and g∗. Furthermore, we varied the number of training epochs in the first
training step between 100 and 1000, leaving training step two unchanged. The results of this
study will be discussed in Section 3. We decided to take the trained model with 100 hidden
neurons in f ∗ and g∗ and 300 training epochs in training step one as the final version.

2.8. Test

We tested the final GB model against the two remaining experimental data sets (half
cycles and synthetic load profile). Again, we used the standard odeint backpropagation
method from torchdiffeq. We tried to solve the differential equation system using Dopri8
with an absolute tolerance of 10−5 and relative tolerance of 10−3. However, for the half
cycles, this resulted in a step size underflow. Therefore, we changed the absolute tolerance
to 10−3 for the half cycles.

For both test data sets, we had to provide initial values for the SOC and vRC1. We
initialised these values as before during training: We set vRC1(t = 0) = 0 V and derived the
initial SOC from the battery voltage.

3. Results and Discussion

The training and test results are discussed in the following sections. First, the focus
is on the training results, with the goal of selecting an appropriate number of hidden
neurons in f ∗ and g∗ and of training epochs. Secondly, we compare the training results to
the measurement data. Finally, simulations with the GB model are compared against the
further test data sets.
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3.1. Training

In total, eight experimental time series of the LFP cell were available and used for
training the GB model. In particular, six time series represent charge and discharge with a
CCCV protocol at different C-rates, and two time series represent charge and discharge
with pulsed current.

The neural networks representing the functions f ∗ and g∗ were used to approximate
the dependency of the charge-transfer resistance R1 on current and SOC. We performed
the training with different network sizes for f ∗ and g∗. Additionally, we varied the number
of training epochs in the first training step. Training step two was not changed. Figure 4
shows the results after completing the whole training process. Here the obtained value for
R1 is plotted as a function of SOC for charging with ibat = −50 A. The results shown in
the left panel of Figure 4 were obtained from the evaluation of function f ∗ with different
numbers of neurons in the hidden layer and 100 epochs during the first training part.

With only 10 hidden neurons, the result takes the form of a combination of two linear
branches representing the charge-transfer resistance over the whole range of SOC. With
an increasing number of neurons, the dependency of R1 on SOC gets more complicated.
The results vary only slightly when increasing the number of hidden neurons from 100 to
up to 300, however at the cost of longer training times. Using a standard notebook and
training on the CPU the training time for the first training part with 100 epochs increased
from about 15.5 min to about 16.8 min when changing the number of hidden neurons from
100 to 300. Therefore, we decided to choose 100 hidden neurons for f ∗ and g∗.
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Figure 4. Simulation results: approximation results for R1 for ibat = −50 A derived from evaluation
of function f ∗; (left): results for a varying number of hidden neurons in f ∗ and 100 training epochs in
the first training part; (right): results for 100 hidden neurons in f ∗ and a varying number of training
epochs in the first training part.

We additionally varied the number of training epochs in the first training step. The
right panel of Figure 4 illustrates the final results for R1 at a battery current ibat = −50 A
obtained with the neural network f ∗ with 100 hidden neurons and a varying number
of training epochs. With an increasing number of training epochs, the neural network
produces more complex behaviour of R1 as function of SOC.
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After training with more than 300 training epochs, the right panel of Figure 4 shows
changes in R1 for low SOC values. We believe that this is due to overfitting. As there were
few data available, we did not split off a validation data set. However, we took a closer
look at the training and test losses (note that the test results will be discussed in more detail
in Section 3.3). We calculated the RMSE between the measured and the approximated
battery voltage for all training and test data sets. The overall training and test losses were
defined as the average of the RMSE losses of the individual data sets. Figure 5 shows
the results as a function of the number of training epochs. The training loss decreases
with an increasing number of training epochs in the first training step. However, the test
loss reaches a minimum at around 300 training epochs. These results made us choose
300 training epochs in the first training step.

As a final result from this analysis, we represented f ∗ and g∗ with neural networks
with one hidden layer with 100 hidden neurons each. We carried out 300 training epochs in
the first and another 30 epochs in the second training step.

100 200 300 400 500 600 700 800 900 1000
12

14

16

18

20

22

24
Training
Test

Figure 5. Average training and test losses as a function of the number of training epochs in the first
training part.

Figure 6 illustrates the final training results for R1. The left panel shows the results
for charging (ibat < 0 A) as evaluated with f ∗. The right panel shows the results for
discharging (ibat > 0 A) as evaluated with g∗. The charge-transfer resistance is in the range
of up to several milliohms. It decreases with an increasing absolute battery current for
both charging and discharging, and reaches higher values for low and high SOC values
compared to a medium SOC. The resistance shows a pronounced asymmetry between
charge and discharge: During charge the highest values occur when the cell is (nearly) full.
During discharge the highest values occur when the battery is (nearly) empty. This is a
typical behaviour observed from lithium-ion batteries with LFP cathode [18]. However, it is
difficult to interpret electrochemical details into a simple equivalent circuit. In Ref. [46] the
overpotentials of a lithium-ion cell were deconvoluted. The results show that lithium-ion
batteries are co-limited by reaction, diffusion, and ohmic losses. In the present paper,
the battery is operated at rather low currents (up to 1 C), where diffusion limitations are
expected to be not dominant. For a single charge-transfer reaction, the charge-transfer
resistance decreases exponentially with increasing direct current in the Tafel region [47].
Therefore, the observed decrease in resistance with increasing current is physically realistic.
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After completing the training procedure, the learnable parameters had the following
values:

ω0 = 191.5 Ah

ω∗1 = 0.5069 F

ω∗2 = 0.1125 V

ω∗3 = 0.2814Ω.

This results in the following ECM parameters:

Cbat = 191.5 Ah

C1 = 50.69 kF

vhys = 11.25 mV

RS = 281.4 µΩ.
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Figure 6. Simulation results: approximation results for R1 as a function of SOC for different battery
currents; (left): charging, (right): discharging.

3.2. Comparison of Model against Training Data

The measurement data are given as current versus time and voltage versus time series.
The current served as the external input of the model which approximated the battery
voltage. Figure 7 shows the training results in the form of voltage versus SOC, which
allows a better comparison for different C-rates than a voltage versus time plot. The left
panel shows the measured and the learned battery voltage as a function of SOC. The right
panel shows the approximation error relative to the measured voltage. Figure 7a shows the
complete SOC range while Figure 7b focuses on a medium SOC. The simulation results
are in good agreement with the experiments over the complete SOC range and for all
investigated C-rates. The absolute value of the deviation is smaller than 1% relative to the
measured voltage for a wide range of SOC. Only for very low and very high SOC values,
the absolute value of the relative approximation error reaches up to around 3%, which is
still acceptable. In these ranges the OCV(SOC) curve (shown in blue in Figure 7a,b) is very
steep. Therefore, higher approximation errors can be expected.
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(a)

(b)

Figure 7. Simulation results using NODEs for grey-box modelling of a lithium-ion battery in compar-
ison to experimental data; left: charge and discharge curves for different C-rates at T = 25 °C. The
lower branches represent discharge (time progresses from right to left), while the upper branches
represent charge (time progresses from left to right); right: relative approximation error; (a) the whole
SOC range (b) focus on medium SOC.

Figure 3 compares the training results for a pulsed current charge with the measured
voltage. Here, we have chosen a temporal representation. The pulses in Figure 3 are in
the area of a medium SOC. The model reproduces the dynamic voltage response of the
battery following a current step in a qualitatively correct way. Quantitatively, the absolute
voltage drop after the pulse is underestimated by the model. The characteristics of the
time behaviour are also different in the simulation compared to the experiment. While the
simulation shows an exponential behaviour resulting from the first-order dynamics of the
RC element (Equation (12)), the experiment shows a

√
t behaviour resulting from the solid-
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state diffusion inside the electrode materials, also referred to as Warburg diffusion [48].
Still, given the relative simplicity of the GB model, the comparison between model and
experiment is adequate. Note that we also achieved similar results for other SOC values
and for the discharge branch.

In conclusion, the training results show that the GB model can reproduce the training
data very well.

3.3. Comparison of Model against Test Data

After finishing the training process we wanted to test the model against data not
included in the training. The first test data set consists of consecutive half cycles. The
results are shown in Figure 8. Figure 8a shows the test results for the complete time series.
In this complete view, the test results are very good. In Figure 8b the focus is on the last
three half cycles of the time series. One can see that the dynamics of the battery voltage
are modelled well on this scale, although there are deviations between simulation and
experiment particularly at the beginning of each half cycle.
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Figure 8. Test results in comparison to experimental data at T = 25 °C for half cycles; (a) the complete
time series; (b) focus on the last three half cycles.
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We tested the model against a second test data set, a synthetic load profile of a home-
storage battery. The results are shown in Figure 9. Figure 9a covers the complete time series,
whereas Figure 9b focuses on the segment in the middle covering faster dynamics. The
simulations show good agreement with experimental data for the complete load profile.
The highest relative approximation errors occur in the area of high SOC values. This was
expected because the training error is high at high values of SOC. It is worth mentioning
that this synthetic load profile covers the longest measuring time with t = 190,231 s. The
longest training time series spanned only t = 41,846 s. Nevertheless, the test results are
good for the complete time series.
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Figure 9. Test results in comparison to experimental data at T = 25 °C for a synthetic load profile;
(a) the complete time series (b) focus on the segment in the middle.
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4. Summary and Conclusions

In this article we have presented the development and application of a GB modelling
framework for lithium-ion batteries based on a coupling of NODEs and physics-based
ODEs. The model was trained and tested using experimental data of an LFP battery cell
used in home-storage applications. The main findings can be summarised as follows.

We showed how to derive a GB model from a physics-based ECM with appropriate
choice of learnable functions and parameters. We emphasised the importance of normali-
sation and initialisation of the parametric parts of the model. The training was split into
two training steps: first, a simplified static model was trained where the capacitance of the
RC element was neglected. In the second step, the pre-trained parameters were used to
train the short-term battery dynamics. When choosing the hyperparameters, especially the
number of hidden neurons in f ∗ and g∗ and the number of training epochs, care had to be
taken to avoid long training times and overfitting.

The model trained this way was able to reproduce the complete set of training data (CCCV
charge and discharge curves as well as pulse tests) with good accuracy (typically < 1% deviation
between predicted and measured voltage). In contrast to the GB model proposed in our previous
work [17], the present model can approximate the fast (1 s to 30 s) dynamics of the battery. The
model was tested against two data sets, half cycles and a synthetic load profile. The simulations
showed good agreement with the experimental data. The highest but still acceptable errors
occur in the area of low and high SOC values where the OCV curve is very steep. It is worth
mentioning that the training database was rather small: only eight time series covering charging
and discharging processes were available for training; and the test data sets spanned a much
longer time duration than the training data sets.

As an outlook it would be interesting to use more training data, especially from pulse
tests with different current steps. Additional data would also improve model validation.
For example, a k-fold cross validation could deliver insights into the robustness of the
model against the chosen training data. Moreover, the comparison of a WB model and a
GB model using NODEs would be of interest.

In conclusion, we have shown that the use of NODEs can be a powerful methodology
for modelling lithium-ion batteries.
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Abbreviations
The following abbreviations are used in this manuscript:

BB Black-box
CC Constant current
CCCV Constant current constant voltage
ECM Equivalent circuit model
GB Grey-box
LFP Lithium iron phosphate
NODE Neural ordinary differential equation
OCV Open-circuit voltage
ODE Ordinary differential equation
RC Resistor–capacitor
ReLU Rectified linear unit
ResNet Residual neural network
RMSE Root mean squared error
RNN Recurrent neural network
SOC State of charge
SOH State of health
WB White-box
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