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Abstract: In this work, two methods were investigated for determining the composition of carbon-
ate solvent systems used in lithium-ion (Li-ion) battery electrolytes. One method was based on
comprehensive two-dimensional gas chromatography with electron ionization time-of-flight mass
spectrometry (GC×GC/EI TOF MS), which often enables unknown compound identification by
their electron ionization (EI) mass spectra. The other method was based on comprehensive two-
dimensional gas chromatography with flame ionization detection (GC×GC/FID). Both methods were
used to determine the concentrations of six different commonly used carbonates in Li-ion battery
electrolytes (i.e., ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC),
diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC) in model
compound mixtures (MCMs), single-blind samples (SBS), and a commercially obtained electrolyte
solution (COES). Both methods were found to be precise (uncertainty < 5%), accurate (error < 5%),
and sensitive (limit of detection <0.12 ppm for FID and <2.7 ppm for MS). Furthermore, unlike the
previously reported methods, these methods do not require removing lithium hexafluorophosphate
salt (LiPF6) from the sample prior to analysis. Removal of the lithium salt was avoided by diluting
the electrolyte solutions prior to analysis (1000-fold dilution) and using minimal sample volumes
(0.1 µL) for analysis.

Keywords: lithium-ion batteries; electrolyte; two-dimensional gas chromatography (GC×GC); mass
spectrometry (MS); flame ionization detector (FID); analytical techniques

1. Introduction

Lithium-ion (Li-ion) batteries are the predominant energy storage and conversion
device in various applications, such as portable consumer electronics, electric vehicles
(EVs), grid storage, space applications, and military applications [1–3]. Li-ion batteries
offer several advantages over other rechargeable batteries, such as high energy density
and power density, low self-discharge rate, and long life [4]. However, decomposition
reactions occur within Li-ion batteries under certain operating conditions, which negatively
impact the performance of the battery and impose safety hazards by generating toxic and
flammable compounds. For instance, under abuse conditions, decomposition reactions
generate a significant amount of heat and gaseous products, leading the cell into thermal
runaway. Thermal runaway is frequently accompanied by the release of flammable and
toxic gases during the venting process and afterward. The rates and pathways of these
decomposition reactions, the composition and amount of the gaseous products, and heat
generation rates are affected by the solvent(s) used within the electrolyte solution, which
can vary significantly [5]. The most common electrolytes used in Li-ion batteries comprise
a conducting salt such as lithium hexafluorophosphate (LiPF6) dissolved in a mixture of
organic carbonate solvents.
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Accurate analytical methods for determining the composition of solvent systems used
in Li-ion batteries are needed to better understand decomposition processes occurring
within Li-ion batteries and their effects on battery performance and safety. Recovering
organic carbonate compounds during recycling may also benefit from accurate analytical
methods to verify the solvent composition [6]. Several studies have implemented different
analytical methods to identify and quantify electrolyte components. For example, in a
qualitative study, Horsthemke et al. [7] used gas chromatography combined with mass
spectrometry (GC/MS) to identify electrolyte components and aging products for various
commercially available Li-ion cells. A headspace solid-phase microextraction (SPME)
technique was used to prevent the injection of salts into the GC column [7]. On the
other hand, Ellis et al. [8] have used Fourier-transform infrared (FTIR) spectroscopy to
determine the concentrations of LiPF6 and common solvents in Li-ion battery electrolytes.
An FTIR spectral database of known solutions with known concentrations was first created.
Machine learning was then used to quantify unknown electrolyte solutions by interpolating
data in the FTIR spectral database [8]. Further, Gachot et al. [9] have used the GC/MS
technique to identify the compounds within the Li-ion battery electrolytes after cycling
and heating. A postcapillary column was used to preserve the ion source from HF and the
bleeding of the first column. The same research group has coupled gas chromatography
with mass spectrometry and Fourier transform infrared spectroscopy (GC/MS-FTIR) to
identify electrolyte compositions. This method was used to characterize volatile compounds
released during thermal runaway and gaseous and soluble volatile products in a swollen
battery [10]. Schultz et al. [11] have employed high-performance liquid chromatography
(HPLC) coupled to tandem mass spectrometry (LC/MS/MS) for the identification and
quantification of components of Li-ion battery electrolytes. The method was then used to
quantify chemical species produced under different aging processes [11]. Petibon et al. [12]
have developed a semi-quantitative approach based on the GC/MS technique for the
determination of the consumption and transesterification of additives and solvents after
formation cycles and storage at high potential. Liquid–liquid extraction was used to
remove LiPF6 prior to analysis [12]. However, liquid–liquid extraction is time-consuming
and may introduce additional uncertainty in the measurement. Terborg et al. [13] have
employed GC/MS and GC/FID to identify organic solvents in Li-ion battery electrolytes.
Thompson et al. [14] have used GC/MS to analyze the changes in the composition of the
carbonates within the battery electrolytes after cycling at different cutoff potentials. The salt
was extracted from the samples using liquid–liquid extraction and centrifuge [14]. Weber
et al. [15] have used a GC–MS-based analytical method to identify phosphorous/organic
degradation products in aged cells that are known to be toxic. Quantification of dimethyl
phosphorofluoridate (DMPF) and diethyl phosphorofluoridate (DEPF) has been done using
calibration curves [15]. Finally, several previous studies have used gas chromatography
to investigate venting behavior and venting gas composition of lithium-ion cells during
thermal runaway [10,16–19].

Most of the previously reported techniques required removing LiPF6 salt from the
samples prior to analysis because it is well known that the conductive salt reacts with the
silicon coating of the GC column and results in excessive column bleeding [7]. However,
salt removal is time-consuming, introduces additional costs, and reduces the precision of
the method.

Comprehensive two-dimensional gas chromatography (GC×GC) coupled with FID
(GC×GC/FID), or mass spectrometry detection (GC×GC/EI TOF MS) is a powerful ana-
lytical technique due to its high resolution and high peak capacity. MS can often be used
for the identification of unknown compounds based on a comparison of their electron ion-
ization (EI) mass spectra to mass spectral libraries, while FID is often used for compound
quantification because of the similar response of FID to different types of compounds. In
this paper, two methods are described for the determination of the compositions of sol-
vent systems used in Li-ion battery electrolytes, one based on GC×GC/FID and the other
GC×GC/EI TOF MS. GC×GC has been widely used to analyze complex mixtures related
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to food, petrochemical, environmental, biomedical, hardware, and software industries [20].
However, to the best of the authors’ knowledge, determination of the compositions of
the solvent systems used in Li-ion battery electrolytes has not been performed based on
GC×GC/FID or GC×GC/EI TOF MS. The purpose of the present work was to determine
the accuracy and precision of these two analytical techniques when analyzing compounds
found in electrolyte solutions of Li-ion batteries. To quantify and compare the performance
of the two analytical techniques, the limit of detection (LOD), limit of quantification (LOQ),
uncertainty, and repeatability were determined.

2. Experimental
2.1. Chemicals

Ethylene carbonate (EC; ≥99%), propylene carbonate (PC; ≥99%), dimethyl carbonate
(DMC; 99.9%), diethyl carbonate (DEC; ≥99%), ethyl methyl carbonate (EMC; 99.9%), viny-
lene carbonate (VC; 99.5%), a commercially available Li-ion battery electrolyte comprised
of a 1.0 M (±0.1 M) LiPF6 solution in 50/50 (v/v) (±5%) EC and DMC, a commercially
available Li-ion battery electrolyte comprised of a 1.0 M (±0.1 M) LiPF6 solution in 50/50
(v/v) (±5%) EC and DEC, and a commercially available Li-ion battery electrolyte comprised
of a 1.0 M (±0.1 M) LiPF6 solution in 50/50 (v/v) (±5%) EC and EMC were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Dichloromethane (DCM) (ACROS Organics;
≥99.9%) and acetone (Honeywell Burdick & Jackson; ≥99.9%) were purchased from Fisher
Scientific (Branchburg, NJ, USA). Isopropanol (IPA; 99.8%) was purchased from Techspray
(Kennesaw, GA, USA). All chemicals were used as received.

2.2. Carbonate Mixtures and Li-Ion Battery Electrolyte

Various model mixtures of known carbonates were used to determine the accuracy
and precision of the GC×GC/FID and GC×GC/EI TOF MS methods. Model compound
mixtures (MCMs) with three different compositions were prepared and analyzed (MCM #1,
MCM #2, and MCM #3; Table 1). One MCM was prepared and analyzed on three different
days (MCM #1A MCM #2A, and MCM #3A; Table 1) to determine the intraday repeatability
of the methods. A commercially obtained electrolyte solution (COES) of 1.0 M LiPF6 solu-
tion in 50:50 (v/v) (±5%) EC and DMC was purchased from Sigma-Aldrich and analyzed
using both methods (Table 1). Two single-blind samples (SBSs) were also analyzed (using
both methods) that were prepared by members of a different laboratory with compositions
that were revealed only after they were analyzed (SBS; Table 1). SBS #1 was prepared with
pure EC (≥99%), EMC (≥99.9%), VC (≥99.5%), and isopropanol (IPA; 99.8%). SBS #2 was
prepared from an electrolyte solution in 50:50 (v/v) (±5%) EC and EMC, an electrolyte
solution in 50:50 (v/v) (±5%) EC and DEC, and pure VC (≥99.5%). SBS #1 and SBS#2 were
shipped (~3 h) then stored (up to 6 months) prior to preparation and injection. Samples
were prepared by diluting 10 µL of each mixture in 10 mL DCM or acetone. Each sample
was injected 10 times into both instruments with an injection volume of 0.1 µL and a split
ratio of 24.

Table 1. Composition of various mixtures analyzed by GC×GC/FID and GC×GC/EI TOF MS
methods.

Mixture
Volume Percentages %

EC EMC DMC DEC PC VC LiPF6 IPA

MCM
#1A - 20.0 20.0 20.0 20.0 20.0 - -

MCM #1B - 20.0 20.0 20.0 20.0 20.0 - -
MCM #1C - 20.0 20.0 20.0 20.0 20.0 - -
MCM #2 - 20.0 60.0 - - 20.0 - -
MCM #3 60.0 20.0 - - 20.0 - - -
SBS #1 27.8 55 - - - 2.8 - 14.4
SBS #2 42.8 21.4 - 21.4 - 4.7 9.6 -
COES 45.0 - 45.0 - - - 10.0 -
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2.3. GC×GC/FID Instrument Operating Conditions and Parameters

All GC×GC/FID measurements were performed using an instrument composed of
a 7890B GC oven (Agilent, Santa Clara, CA, USA), a 7683 series autosampler (Hewlett-
Packard, Palo Alto, CA, USA), a 7683B series injector (Agilent, Santa Clara, CA, USA), an
FID (Agilent, Santa Clara, CA, USA), and a quad-jet dual-stage thermal modulator (LECO
Corporation, Saint Joseph, MI, USA) cooled with liquid nitrogen. The capillary column
contained within the primary oven (primary column) was a midpolar 30 m DB-17MS
column. The capillary column contained within the secondary oven (secondary column)
was a nonpolar 0.8 m DB-1MS column. A 0.3 m guard column (Ultimate Plus Deactivated
Fused Silica) was used between the secondary column and the FID. All columns had a
0.25 mm inner diameter and a 0.25 µm film thickness (Agilent, Santa Clara, CA, USA). Ultra-
high purity (99.9999%) helium was used as the carrier gas, with a flow rate of 1.5 mL/min.
Primary oven temperature was maintained at 40 ◦C for 1.0 min, increased to 200 ◦C at a
temperature ramp rate of 3 ◦C/minute, and then held constant for five more minutes. The
temperature offsets (relative to the primary oven) for the secondary oven and modulator
were +5 ◦C and +15 ◦C, respectively. The modulation period was 3.0 s, with a hot pulse
duration of 0.9 s. The temperatures of the FID and the inlet of the injection port were 300 ◦C
and 280 ◦C, respectively. The acquisition rate of the FID was 200 Hz, and the acquisition
solvent delay was 150 s. The injection volume was 0.1 µL. The split-ratio for the inlet of the
injection port was 24. The instrument was operated using ChromaTOF software (version
4.71.0.0). A S/N threshold of 50 was used for data processing of all chromatograms.

2.4. GC×GC/EI TOF MS Instrument Operating Conditions and Parameters

All GC×GC/EI TOF MS measurements were performed using a Pegasus GC-HRT 4D
(LECO, Saint Joseph, MI, USA), which was composed of a 7890B GC oven (Agilent, Santa
Clara, CA, USA), an Agilent injector (G4513A), a quad-jet dual-stage thermal modulator
(LECO, Saint Joseph, MI, USA) cooled with liquid nitrogen, an electron ionization source
(LECO, Saint Joseph, MI, USA), and a high-resolution time-of-flight mass spectrometer
(LECO, Saint Joseph, MI, USA). The capillary column contained within the primary oven
(primary column) was a polar 60.0 m ZB-35HT column. The capillary column contained
within the secondary oven (secondary column) was a nonpolar 1.2 m ZB-1HT column. All
columns had a 0.25 mm inner diameter and a 0.25 µm film thickness (Phenomenex, Torrance,
CA, USA). Ultra-high purity (99.9999%) helium was used as a carrier gas with a flow rate of
1.25 mL/minute. Primary oven temperature was maintained at 40 ◦C for 1.0 min, increased
to 200 ◦C at a temperature ramp rate of 3 ◦C/min, and then held constant for five more
minutes. The temperature offsets (relative to the primary oven) for the secondary oven
and modulator were +5 ◦C and +15 ◦C, respectively. The modulation period was 3.0 s,
with a hot pulse duration of 0.9 s. The temperatures of the transfer line and the inlet of
the injection port were 300 ◦C and 280 ◦C, respectively. The temperature of the ion source
was maintained at 200 ◦C. The kinetic energy of the electrons used for electron ionization
(EI) was 70 eV. The acquisition solvent delay was 150 s. The injection volume was 0.1 µL.
The split-ratio for the inlet of the injection port was 24. The instrument was operated
using ChromaTOF software (version 1.90.60.0.43266). A S/N threshold of 50 was used for
data processing of all chromatograms. The ChromaTOF software automatically identified
compounds by comparing their EI mass spectra to the EI mass spectra in the Wiley (2011)
and NIST (2011) databases. The match factor threshold, which is the minimum match factor
an EI mass spectrum must exhibit with a database entry for a compound to be identified,
was 800.

2.5. Calibration Curves and Sample Preparation

Calibration curves were established for each carbonate (DMC, DEC, PC, EMC, VC,
and EC) by preparing a stock solution that had the same concentration of each carbonate as
the pure carbonate solution prepared for analysis (discussed in Sections 2.3 and 2.4), which
corresponded to 100% (v/v), and diluting the stock solution in DCM or acetone to prepare
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solutions corresponding to 1, 5, 10, 20, 40, 60, and 80% (v/v) used for calibration. The stock
solution was prepared by dissolving 200 µL of DMC, DEC, PC, EMC, VC, and 264.2 mg
of EC (equivalent to 200 µL considering ρEC = 1.321 g/cm3) in 200 mL of acetone. Each
calibration curve solution was then analyzed with GC×GC/FID and GC×GC/EI TOF MS
according to Sections 2.3 and 2.4, respectively. The concentration of each carbonate in each
calibration curve solution is shown in Table 2. In addition, each of the calibration curve
solutions was analyzed five times with GC×GC/FID and five times with GC×GC/EI TOF
MS. SBSs, MCMs, and COES were analyzed 10 times each with GC×GC/FID and ten times
each with GC×GC/EI TOF MS.

Table 2. Concentrations of carbonates in calibration solutions.

Calibration Solution
Concentration [ppm]

DMC EMC DEC VC PC EC

100% 1045.0 1005.0 965.0 1370.0 1221.0 1321.0
80% 836.0 804.0 772.0 1096.0 976.8 1056.8
60% 627.0 603.0 579.0 822.0 732.6 792.6
40% 418.0 402.0 386.0 548.0 488.4 528.4
20% 209.0 201.0 193.0 274.0 244.2 264.2
10% 104.5 100.5 96.5 137.0 122.1 132.1
5% 52.3 50.3 48.3 68.5 61.1 66.1
1% 10.5 10.1 9.7 13.7 12.2 13.2

2.6. Identification and Quantitation of the Carbonates

Testing the ability of GC×GC/FID to identify the carbonates was carried out by
preparing samples of individual carbonates, i.e., 10 µL of DMC, DEC, PC, EMC, VC, and
13.21 mg of EC in 10 mL acetone, and injecting them separately into the GC×GC system
to create a map for individual carbonates based on their first and second-retention times.
Testing the GC×GC/EI TOF MS method was based on the comparison of the measured
EI mass spectra to the EI mass spectral library. Testing the quantitation of DMC, DEC, PC,
EMC, VC, and EC was carried out by exporting the peak areas for each carbonate in the
calibration solutions after data processing in GC×GC/FID and GC×GC/EI TOF MS to
Microsoft Excel 365. The slope and intercept associated with the calibration curve of each
compound were then determined using conventional linear regression analysis.

2.7. LOD and LOQ

The statistical LOD and LOQ for each compound was determined based on the
standard deviation (σ) of the intercept over the slope (M) in the calibration curve data by
using Equations (1) and (2), respectively [21].

LOD = 3.3 ∗
(

σintercept

M

)
(1)

LOQ = 10.0 ∗
(

σintercept

M

)
(2)

In order to accurately determine LOD and LOQ, additional solutions with lower
concentrations, i.e., 0.1%, 0.2%, 0.4%, 0.6%, and 0.8% (v/v), were analyzed and data added
to the original 8-point calibration curves.

2.8. Analysis of Column Bleeding

Aiming to determine whether the samples containing LiPF6 salt cause excessive
column bleeding, an experiment was carried out by injecting a blank acetone sample
(considered as the baseline sample) before and after five injections of COES and SBS #2.
All chromatograms were inspected for any visual signs of column bleed, changes in peak
shapes, or changes in retention times.



Energies 2022, 15, 2805 6 of 14

2.9. Uncertainty Analysis

The uncertainty analysis was carried out similar to a method proposed by Moffat [22].
In the present work, an uncertainty analysis was performed in two steps. First, the un-
certainty of the calibration curves was quantified. Second, the uncertainty of sample
concentrations was quantified. Figure 1 presents the calibration curve for VC with a slope
of m and an intercept of b. The slope and the intercept depend on the concentrations
of the compound and the measured GC peak areas. However, both the concentrations
and measured peak areas are subject to experimental uncertainties. In other words, the
concentrations (x-axis) are subject to fixed errors (B) due to the sample preparation process,
and the measured peak areas (y-axis) are subject to random errors (S) due to the repeated
measurements. Thus, there is an overall uncertainty associated with the slope and the
intercept of each calibration curve.
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The fixed and random uncertainties of the slope (BRm and SRm, respectively) and
the intercept (BRb and SRb, respectively) of each calibration curve were determined with
Equations (3) and (4), similar to Moffat et al. [22]:

BRm =

{
8

∑
i=1

(
∂m
∂xi

Bi

)2
} 1

2

SRm =

{
8

∑
i=1

(
∂m
∂yi

Si

)2
} 1

2

(3)

BRb =

{
8

∑
i=1

(
∂b
∂xi

Bi

)2
} 1

2

SRb =

{
8

∑
i=1

(
∂b
∂yi

Si

)2
} 1

2

(4)

where Bi = {∑(Bn)
2}

1
2 was the overall fixed error arising from preparation of the solution

with concentration of i. The subscript n referred to the number of pieces of equipment used
in the process of preparing the i solution. Si =

Si√
N

was the mean precision index calculated
as the ratio of Si, which was the standard deviation of the i solution, and N, which was the
number of measurements made.

The overall uncertainty of the slope (URm) and intercept (URb) were calculated with
Equation (5):

URm =
√

B2
Rm + (t·SRm)

2 URb =
√

B2
Rb + (t·SRb)

2 (5)

where t was the student’s multiplier for 95% confidence, which for N = 3, 5, and 10, was
4.303, 2.776, 2.365, 2.262 [23].

From the calibration curves, the concentration of each compound can be determined
as x = (y − b)/m. Note that y is the measured peak area with a precision index (random
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error), b is the intercept with fixed errors, and m is the slope with fixed errors. Therefore,
the fixed and random error associated with concentration, x, can be determined as follows:

BR =

√(
∂x
∂m

URm

)2
+

(
∂x
∂b

URb

)2
SR =

√(
∂x
∂y

Sy

)2
(6)

The total uncertainty associated with concentration of a compound, x, can be written
as:

Ux =
√

B2
R +

(
t× SR

)2 (7)

3. Results and Discussion
3.1. Testing the Accuracy of Identification and Quantitation of Carbonates by Using GC×GC/FID

Carbonate compounds were identified using GC×GC/FID, based on their first- and
second-dimension retention times (1D-RT and 2D-RT) of each carbonate. Figure 2 shows a
three-dimensional chromatogram obtained by using GC×GC/FID for the 100% calibration
solution. All the compounds were completely separated by GC×GC, allowing each carbon-
ate to be detected without interference from the others. Table 3 summarizes the retention
times as well as the slope and the Y-intercept for the calibration curve of each carbonate.
Linear correlation coefficients (R2) were found to be greater than 0.977 for all cases.
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Figure 2. Three-dimensional chromatogram exhibiting effective separation of the carbonates in the
100% calibration solution when using the GC×GC/FID system.

Table 3. GC×GC/FID calibration results including the retention times and linear correlation parame-
ters for common organic solvents found in Li-ion batteries.

Compound 1D-RT (s) 2D-RT (s) Slope Y-Intercept R2

DMC 171 0.695 9.82 × 107 −7.79 × 105 0.9987
EMC 240 1.160 1.89 × 108 −7.07 × 105 0.9970
DEC 351 1.740 2.00 × 108 −4.17 × 106 0.9952
VC 408 1.085 9.09 × 107 −1.53 × 106 0.9867
PC 1194 1.090 1.38 × 108 2.27 × 106 0.9774
EC 1206 0.890 8.36 × 107 −2.98 × 105 0.9831

3.2. LOD and LOQ of the GC×GC/FID Method

As shown in Figure 3, the minimum concentration of all the carbonate solvents, i.e.,
DMC, EMC, DEC, VC, PC, and EC, visually detected by the GC×GC/FID method was
0.2% at a signal to noise ratio of 50, corresponding to injections of 0.084, 0.080, 0.077, 0.110,
0.098, and 0.106 ppm in acetone for DMC, EMC, DEC, VC, PC, and EC, respectively.
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in acetone.

The statistical LOD and LOQ were determined using Equations (1) and (2), respectively.
The visual LOD, statistical LOD, and statistical LOQ are summarized in Table 4. EC and
EMC have the highest and lowest LOD and LOQ, respectively. These LODs are much lower
than the LODs reported for one-dimensional gas chromatography with FID [13]. The LOQ
for EMC, DEC, DMC, VC, PC, and EC were 3.04, 3.60, 4.23, 11.43, 12.13, and 16.41 ppm,
respectively.

Table 4. Limit of detection (LOD) and limit of quantification (LOQ) of DMC, EMC, DEC, VC, PC,
and EC when using GC×GC/FID.

Compound Visual LOD (ppm) Statistical LOD
(ppm) LOQ (ppm)

DMC 0.08 1.40 4.23
EMC 0.08 1.00 3.04
DEC 0.08 1.19 3.60
VC 0.11 3.77 11.43
PC 0.10 4.00 12.13
EC 0.11 5.41 16.41

3.3. Testing the Accuracy of the Identification and Quantitation of Carbonates by Using
GC×GC/EI TOF MS

Figure 4 shows the electron ionization (EI) mass spectra obtained by using GC×GC/EI
TOF MS for DMC, EMC, DEC, VC, PC, and EC in the 100% calibration solution. The
similarity factors upon comparison of the measured mass spectra to mass spectral libraries
for DMC, EMC, DEC, VC, PC, and EC were 864, 808, 941, 888, 895, and 929, respectively.
Table 5 summarizes the retention times as well, as the slopes and the y-intercepts of the
calibration plots for each carbonate. Correlation coefficients for the linear regression of
GC×GC/EI TOF MS peak area to compound concentration ranged from 0.9533 for DMC
to 0.9990 for PC.

Table 5. GC×GC/EI TOF MS calibration results, including the retention times and linear correlation
parameters for common organic solvents found in Li-ion batteries.

Compound 1D-RT (s) 2D-RT (s) Slope Y-Intercept R2

DMC 357 1.64 1.82 × 106 5.75 × 104 0.9533
EMC 467 1.85 2.23 × 106 −1.27 × 104 0.9547
DEC 636 2.05 2.43 × 106 −6.25 × 103 0.9606
VC 665 1.79 3.15 × 106 6.05 × 104 0.9943
PC 1526 1.77 1.50 × 106 3.22 × 103 0.9990
EC 1502 1.71 1.72 × 106 −6.01 × 104 0.9981
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3.4. LOD and LOQ of the GC×GC/EI TOF MS Method

Carbonates in the solutions with the lowest concentrations, i.e., 0.1%, 0.2%, 0.4%, 0.6%,
and 0.8% (v/v) were not detected by GC×GC/EI TOF MS. The minimum concentration
(v/v) detected was for the 1% calibration solution (corresponding to injection of 0.42, 0.40,
0.39, and 0.55 ppm of DMC, EMC, DEC, and VC, respectively) or 5% (v/v) (corresponding
to injection of 2.44 and 2.66 ppm of PC, and EC, respectively). The LOD and LOQ for
the GC×GC/EI TOF MS method are summarized in Table 6. The statistical LOD was the
greatest for DMC, EMC, DEC, and VC and lower for PC and EC. Statistical LOD was lower
than the visual LOD for PC and EC. No solutions were prepared at concentrations between
1–5% for PC and EC. The LODs and LOQs were generally lower for the GC×GC/FID
method than they were for the GC×GC/EI TOF MS method.

Table 6. Limit of detection (LOD) and limit of quantification (LOQ) for DMC, EMC, DEC, VC, PC,
and EC obtained using the GC×GC/EI TOF MS method.

Compound Visual LOD (ppm) Statistical LOD
(ppm) LOQ (ppm)

DMC 0.42 6.58 19.95
EMC 0.40 6.92 20.97
DEC 0.39 5.56 16.84
VC 0.55 3.23 9.80
PC 2.44 1.55 4.70
EC 2.66 2.05 6.21
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3.5. Testing the Accuracy of the Quantitation of MCMs

The intraday repeatability of quantitation was determined for both methods by mea-
suring three samples that were prepared in the same way but on different days. The
compositions determined for MCM #1A, MCM #1B, and MCM #1C are shown in Table 7.
The results for MCM #1A-C were similar. The average volume percentage determined using
GC×GC/FID for DMC, DEC, EMC, VC, and PC were 19.6 ± 2.4, 20.5 ± 1.5, 19.3 ± 0.8,
19.3 ± 3.1, and #20.9± 1.9% (v/v), respectively. The average volume percentage determined
using GC×GC/EI TOF MS for DMC, DEC, EMC, VC, and PC were 17.0 ± 1.5, 20.2 ± 1.3,
21.6 ± 1.6, 20.1 ± 1.4, and 19.8 ± 1.9% (v/v), respectively. Measurements made on the same
day were similar to each other (average relative standard deviation = 3.9%). In general,
both instruments predicted the volume percentages of the carbonates with good accuracy.
The largest error for the GC×GC/FID method was observed for PC, and the largest error
observed for the GC×GC/EI TOF MS method was associated with DMC.

Table 7. Volume fraction of the components in MCM #1A-C measured using GC×GC/FID and
GC×GC/EI TOF/MS. The expected concentration of each carbonate was 20 ± 1.5% for MCM#1A–C.

MCM Injection

Volume Percentages MCM #1

DMC % DEC % EMC % VC % PC %

MS FID MS FID MS FID MS FID MS FID

#1A
1 17.2 19.5 19.9 20.1 21.0 17.1 20.0 19.1 20.2 17.4
2 17.2 20.2 20.5 20.6 21.5 17.6 20.5 19.8 20.8 17.7
3 17.2 19.2 20.4 20.5 20.9 20.6 20.0 18.0 20.1 17.7

#1B
1 16.9 19.2 19.9 20.6 22.1 19.9 19.8 21.0 19.5 23.3
2 17.3 19.4 19.9 20.6 21.9 20.4 19.7 21.4 19.5 23.3
3 17.0 19.2 19.5 20.8 21.6 19.7 19.3 18.6 19.4 23.8

#1C
1 17.1 20.0 20.4 20.7 22.4 19.1 20.2 18.4 20.2 22.2
2 16.6 19.9 20.6 20.6 21.5 19.1 20.8 18.6 19.5 21.6
3 16.9 19.9 20.3 20.3 21.4 20.1 21.0 18.5 19.3 21.2

Additional MCMs were also analyzed using GC×GC/FID. The compositions deter-
mined for MCM #2 and MCM #3 are shown in Figure 5. MCM #2 was 20, 20, and 60% EMC,
VC, and DMC, respectively. MCM #3 was 60, 20, and 20% EC, DEC, and PC, respectively.
The uncertainties associated with the measurement of each compound and the actual con-
centration are also shown in Figure 5. The percentage errors of the GC×GC/FID method
for EMC, VC, and EC in MCM #2, were 1.1, 0.7, 0.4%, respectively (average percentage
error = 0.7%). The percentage errors of the GC×GC/FID method for EC, DEC, and PC in
MCM #3, were 2.6, 3.1, 2.8%, respectively (average percentage error = 2.8%). Furthermore,
the greatest uncertainty associated with the measurements was 4.1% for DMC in MCM #2,
and 4.3% for EC in MCM #3.
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3.6. Testing the Accuracy of Quantitation of SBSs and COES

The compositions determined for SBSs and COES are shown in Figure 6. The errors in
the expected volume percentages of the electrolytes in SBS #2 (which was prepared with a
commercially obtained electrolyte solution as described in the experimental section) and
the COES were especially large because of large uncertainties mentioned in the product
specifications from the manufacturer. Both methods were very accurate. The percentage
errors of the GC×GC/FID method for EC, EMC, and VC in SPS #1 were 0.8, 1.0, and 0.4%,
respectively (average percentage error = 0.8%). The percentage errors of the GC×GC/FID
method for EC, DEC, EMC, and VC in SPS #2 were 1.2, 2.0, 6.4, and 0.3%, respectively
(average percentage error = 2.5%). The percentage errors of the GC×GC/FID method for
EC and DMC in COES were 2.5 and 5.7%, respectively (average percentage error = 4.1%).
The percentage errors of the GC×GC/EI TOF MS method for EC, EMC, and VC in SPS
#1 were 0.2, 2.4, and 1.9%, respectively (average percentage error = 1.5%). The percent-
age errors of the GC×GC/EI TOF MS method for EC, DEC, EMC, and VC in SPS #2
were 1.8, 2.9, 2.6, and 0.2%, respectively (average percentage error = 1.9%). The percent-
age errors of the GC×GC/EI TOF MS method for EC and DMC in COES were 11 and
2%, respectively (average percentage error = 6.5%). Furthermore, the maximum uncer-
tainty associated with the measurements using GC×GC/FID was 5.5% for DMC in COES
(average uncertainty = 2.43%), and the maximum uncertainty of the measurements using
GC×GC/EI TOF MS was 4.4% for EMC in SBS #1 (average uncertainty = 2.13%).
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3.7. Analysis of Column Bleeding before and after Salt Injection

To determine whether the samples containing LiPF6 salt cause excessive column
bleeding, an experiment was conducted by injecting a blank acetone sample (considered as
the baseline sample) before and after five injections of COES and SBS #2. Figure 7 shows
the GC×GC-FID/chromatograms of acetone before and after injection of salt-containing
samples. No changes were observed in the amount of column bleeding, noise, or retention
times before and after samples that contained LiPF6 were analyzed, which suggests that the
effects of the LiPF6 on the GC columns were negligible. The solvent-bleeding also remained
unchanged.
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Figure 7. GC×GC/FID chromatograms of acetone before (a) and after (b) ten samples containing
LiPF6 were analyzed.

As shown in Figure 8, no additional column bleeding or changes in retention times
or peak shapes were observed for COES or SBS #2, which further suggests that the effects
of the LiPF6 salt were negligible. This is likely because very little salt was introduced into
the instrument (samples were diluted 1000-fold prior to analysis, and only 0.1 µL of the
diluted samples was analyzed). Additionally, inlet liners with glass wool were used at the
inlet of the GC×GC instruments to trap nonvolatile compounds, such as LiPF6, and the
liners were replaced when needed.
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Figure 8. GC×GC/FID chromatograms of salt-containing samples: (a) COES and (b) SBS #2.

4. Conclusions

Two methods are described to determine the composition of carbonate solvent sys-
tems commonly used in Li-ion battery electrolyte solutions, one based on GC×GC/FID
and another based on GC×GC/EI TOF MS. The accuracy and precision of the methods
were tested using various model compound mixtures (MCMs), a commercially obtained
electrolyte solution (COES), and single-blind samples (SBSs). Both methods were found
to be accurate, precise, and sensitive. The high sensitivity of the methods allowed the use
of high dilution factors and low injection volumes, eliminating the need for salt removal.
No adverse effects on column bleeding, retention times, or GC peak shapes were observed
while analyzing samples containing LiPF6 salt. The methods employed in this study will
be used in future studies to investigate changes in the composition of electrolyte solutions
from Li-ion batteries over time, after calendar aging, and after cycle aging.
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