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Abstract: This article introduces a three-phase capacitor clamped inverter with inherent boost
capability by relocating the filter components from the AC side to the configuration’s midpoint. This
topology has several distinguishing characteristics, including: (a) low component count; (b) high DC-
AC gain; (c) decreased capacitor voltage stresses; (d) improved power quality (extremely low voltage
and current THDs) without the use of an AC-side filter; and (e) decreased voltage stresses on power
semiconductor devices. Simulations were carried out on the MATLAB Simulink platform, and results
under steady-state conditions, load and reference change conditions, and phase sequence change
conditions, along with THD profiles, are presented. This inverter’s performance was compared
to that of similar converters with intrinsic gain. A 1200 W experimental prototype was built to
demonstrate the system’s feasibility and benefits. When compared to existing topologies, simulation
and experimental results indicate that the proposed inverter provides superior high gain, smooth
control, low stress, and a long life time.

Keywords: step up inverter; single stage inverter; capacitor clamped inverter; high-gain converter;
DC–AC power converter

1. Introduction

To overcome the disadvantages of the traditional inverters, such as voltage sources and
current source inverters, the ZSI/qZSI [1,2] is widely accepted for various applications. The
ZSI/qZSI offers a voltage step-up/down function in single-stage power conversion without
requiring additional power processing stage, as shown in Figure 1a, and its application in
an electric vehicle is depicted in Figure 1b. Moreover, ZSI/qZSI’s reliability is high because
shoot-through is an integral part of the operation. The study of these converters has mainly
focused on control techniques [3–5], applications [6], and PWM schemes [7,8].

In addition, various power electronics topologies have been proposed in the literature
to meet the different objectives, such as reducing the number of switches, reducing the
passive component count, and increasing the voltage gain and voltage stresses on the
switches/capacitors. The SBI [9] is one such topology that was introduced to decrease
the number of passive components (one inductor and one capacitor) in comparison to
the ZSI/qZSI by having one additional switch. Although the SBI can perform voltage
step-up or step-down in a single stage, its voltage gain is significantly less than that of
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impedance source converters such as the ZSI/qZSI (1-D). To enhance the source current pro-
file and voltage gain, a group of qSBIs was reported in [10,11]. These included dc-link and
embedded-type qSBIs, in addition to current-fed SBIs. However, the embedded-type qZSI
necessitates the use of two distinct DC sources, which is undesirable. The qSBI has similar
characteristics to the qZSI, except that the shoot-through mode is used for voltage boosting.
A comprehensive comparison of the qSBI and qZSI was described [12]. However, the shoot-
through duty cycle in these topologies cannot exceed (1–M), where M is the modulation
index, thereby limiting the voltage gain in all of the above-mentioned topologies. To achieve
the desired output voltage with a high voltage gain and good power quality, a high-duty
cycle must be used, lowering M. The lower the value of M, the lower the overall DC-AC con-
version gain and the higher the output harmonics. Either the M or the B.F. can be increased
to increase the overall DC-AC gain. Numerous PWM techniques have been proposed
for modifying the modulating waves, and it has been demonstrated that PWM schemes
can only slightly increase M [7]. Numerous high-gain inverter circuits with and without
a galvanic isolation transformer have been proposed [13–25] to increase the boost factor
in impedance source converters. Transformer-based ZSIs have been introduced [13,14].
However, the transformer’s leakage inductance results in voltage spikes at the DC-bus.
To achieve a high voltage gain, transformerless ZSIs with additional passive components,
such as inductors, capacitors, and diodes, have been proposed [15–25]. They have been
labelled L-ZSI [15], SL-ZSI [16], SL-qZSI [17], EB-ZSI [18], DA-qZSI [19], CA-qZS [20], and
EB-qZSI [21], and by incorporating switched-inductor, switched-capacitor, and hybrid
switched-capacitor/switched-inductor designs, high boosting factors can be achieved. The
addition of passive elements and power electronic components, on contrast, increases the
converter’s cost, size, volume, losses, and weight [24,25].

Energies 2022, 15, x FOR PEER REVIEW 2 of 26 
 

 

ZSI/qZSI by having one additional switch. Although the SBI can perform voltage step-up 
or step-down in a single stage, its voltage gain is significantly less than that of impedance 
source converters such as the ZSI/qZSI (1-D). To enhance the source current profile and 
voltage gain, a group of qSBIs was reported in [10,11]. These included dc-link and embed-
ded-type qSBIs, in addition to current-fed SBIs. However, the embedded-type qZSI neces-
sitates the use of two distinct DC sources, which is undesirable. The qSBI has similar char-
acteristics to the qZSI, except that the shoot-through mode is used for voltage boosting. A 
comprehensive comparison of the qSBI and qZSI was described [12]. However, the shoot-
through duty cycle in these topologies cannot exceed (1–M), where M is the modulation 
index, thereby limiting the voltage gain in all of the above-mentioned topologies. To 
achieve the desired output voltage with a high voltage gain and good power quality, a 
high-duty cycle must be used, lowering M. The lower the value of M, the lower the overall 
DC-AC conversion gain and the higher the output harmonics. Either the M or the B.F. can 
be increased to increase the overall DC-AC gain. Numerous PWM techniques have been 
proposed for modifying the modulating waves, and it has been demonstrated that PWM 
schemes can only slightly increase M [7]. Numerous high-gain inverter circuits with and 
without a galvanic isolation transformer have been proposed [13–25] to increase the boost 
factor in impedance source converters. Transformer-based ZSIs have been introduced 
[13,14]. However, the transformer’s leakage inductance results in voltage spikes at the DC-
bus. To achieve a high voltage gain, transformerless ZSIs with additional passive compo-
nents, such as inductors, capacitors, and diodes, have been proposed [15–25]. They have 
been labelled L-ZSI [15], SL-ZSI [16], SL-qZSI [17], EB-ZSI [18], DA-qZSI [19], CA-qZS [20], 
and EB-qZSI [21], and by incorporating switched-inductor, switched-capacitor, and hy-
brid switched-capacitor/switched-inductor designs, high boosting factors can be 
achieved. The addition of passive elements and power electronic components, on contrast, 
increases the converter’s cost, size, volume, losses, and weight [24,25]. 

   
(a) (b) 

Figure 1. (a) Classical impedance source converters and (b) their applications in EV. 

For single-phase and three-phase applications, the aforementioned topologies have 
been proposed. A simple single-phase HB ZSI with reduced capacitor voltage stress was 
described in [26]. Although this topology is straightforward and compact, it has a low 
boost factor. In [27], an HB-SBI with discontinuous input current was introduced to in-
crease the gain of the inverter. To address the shortcomings of the HB-SBI, [28] proposed 
the HB-qSBI. The overall voltage gain is low in all of these half-bridge topologies [26–28]. 
By comparison, in the SL-ZSI [16], SL-qZSI [17], EB-ZSI [18], DA-qZSI [19], CA-qZSI [20], 
and EB-qZSI [21] topologies, the voltage stresses on the capacitors are greater, and these 
topologies employ a greater number of capacitors. The capacitor voltage is typically 
greater than the input voltage in order to perform the impedance-source stage’s voltage 
boost function. As a result, high-voltage Z capacitors must be used, potentially adding 

1S 3S

4S2S

fC
fL

inV

l
R

iV

D 1L

2C1C
2L

+ +

2Ci

1Ci

1Li

2Li

Di

iv
Dv

Impedance 
Network

2C

1L
1D 2L

1C

+
−

1CV

2Li1Li 1Di

1Ci

2Ci

2CV iv

Figure 1. (a) Classical impedance source converters and (b) their applications in EV.

For single-phase and three-phase applications, the aforementioned topologies have
been proposed. A simple single-phase HB ZSI with reduced capacitor voltage stress was
described in [26]. Although this topology is straightforward and compact, it has a low boost
factor. In [27], an HB-SBI with discontinuous input current was introduced to increase the
gain of the inverter. To address the shortcomings of the HB-SBI, [28] proposed the HB-qSBI.
The overall voltage gain is low in all of these half-bridge topologies [26–28]. By comparison,
in the SL-ZSI [16], SL-qZSI [17], EB-ZSI [18], DA-qZSI [19], CA-qZSI [20], and EB-qZSI [21]
topologies, the voltage stresses on the capacitors are greater, and these topologies employ
a greater number of capacitors. The capacitor voltage is typically greater than the input
voltage in order to perform the impedance-source stage’s voltage boost function. As a
result, high-voltage Z capacitors must be used, potentially adding volume and cost to the
system. Because of the strong probability of capacitor failure during the field operation of
power electronic converters [29], and the stringent reliability restrictions imposed by the
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aerospace, automotive, defense, space, and energy industries, stresses and use of capacitors
must be reduced to improve inverter reliability [30].

Overall, all of the mentioned topologies have common issues, such as the requirement
for capacitors having a high voltage rating (greater than supply), common mode voltages,
PWM-natured voltages after the inverter switching leg, and a higher component count
when achieving a boosted DC-AC gain in a single stage manner. To address these issues,
the capacitor clamped boost inverter with high voltage gain was introduced [31], which
disperses the X-shaped passive components of the impedance source inverter rather than
concentrating them in one location (between the input and inverter switching network
in impedance source inverters). The passive components are distributed evenly between
the input and output ports on each leg. However, ref. [31] does not deal with detailed
steady-state analysis. Hence, in this study, a detailed analysis in various modes based
on the inductor current iL bands (upper (iLmax) and lower bands (iLmin)) was conducted.
Based on the upper and lower band values, the operation was divided into three zones
in this study. Based on the aforementioned zones, the operation of the converter was
further divided into two cases: case-I (zone-1 and zone-3) and case-II (zone-2). In addition,
this manuscript includes capacitor voltage profiles and capacitor life time calculations.
This paper also discusses the design of a sliding mode controller for the CCBI to track the
required voltages and currents to fulfil the specified load characteristics. Also shown are
the CCBI’s performance under load, reference, and phase sequence change conditions, and
its THD profiles. In addition, the performance of this inverter for non-linear loads was
also examined. The operating principles, steady-state analysis of various cases, differential
modulation technique, capacitor voltage profiles, capacitor life time calculations, and
sliding mode controller for the CCBI are presented in Section II. Simulation results and
a discussion of the results under steady-state conditions, load and reference change, and
phase sequence change conditions, along with THD profiles, are discussed in Section III. A
performance investigation of this inverter for non-linear loads is also presented. In the same
section, comparative analysis of the proposed inverter with existing similar converters is
also presented, along with experimental verification. Section IV presents the conclusions.

2. Operation of the CCBI

The proposed inverter, depicted in Figure 2a, includes six switches, three small in-
ductors, and three capacitors. Because of the time-varying duty cycle, the intrinsic boost
feature of this proposed inverter provides flexibility for grid-connected and stand-alone
applications, for a large range of AC output voltages, which are even higher than the DC
voltage. This capability is not accessible in standard VSIs, where the DC input voltage is
always greater than the AC output voltage [11]. The following offers an analysis of the
converter in various modes, a differential modulation scheme, capacitor voltage profiles, a
life time analysis, and a sliding mode controller.

2.1. Analysis of Converter

The operation of the converter shown in Figure 2a is explained with the help of a
single-phase equivalent circuit, which is shown in Figure 2b. The equivalent circuit contains
one leg (phase-A) along with considerations of the effect of other phases. Boost inverter
upper switches are represented with odd numbers, whereas lower switches are represented
with even numbers, and these switches operate in a complementary manner. Every inverter
leg contains one inductor, one capacitor, and two switches. Analysis of the boost inverter is
explained via mathematical modeling.

For one cycle (0 < t < T) of load current (iLoad), the average value of the inductor current
(iL) is positive and negative for the periods (0 < t < T/2) and (T/2 < t < T) respectively,
which is shown in Figure 3, where T = 1/f. It can be observed that iL is oscillating at the
switching frequency of fs between two bands, namely, the upper band (iLmax) and the lower
band (iLmin). During the positive half cycle, the upper band is always positive. However, the
lower band current value is negative in zone-1 (0 < t < Ta) and zone-3 (T/2 − Ta < t < T/2),
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whereas it is positive in zone-2 (Ta < t < T/2 − Ta). Here, Ta is the time when zone-1 comes
to an end.
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Figure 2. (a) Proposed converter; (b) single-phase equivalent circuit.
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Based on the aforementioned zones, the operation of converter is divided into two
cases, case-I (zone-1 and zone-3) and case-II (zone-2) as shown in Figure 3. To simplify the
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analysis further, only one switching sample is considered of N (=fs/f ) samples, and the
detailed description of both cases is given below.

case-I (zone-1 and zone-3): It is interesting to note that, in this case, all the semiconductor
devices sequentially (D2, S2, D1, and S1) participate in one switching sample of G2, which
is shown in Figure 4. Based on the conduction of these switching devices, the operation
of the circuit in this case is further classified into four modes, and its equivalent circuit in
each mode is shown in Figure 4. The operation of the inverter in various modes for case-I is
explained below.
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Mode-1 (0 < t < t1): This mode starts when the gate signal is applied to the lower switch
S2. However, S2 cannot be turned on instantly due to the fact that the inductor does not
allow the sudden change in current, as it is has a negative value in the previous mode. This
leads the diode D1 to be turned on and provide a path for a negative inductor current, as
shown in Figure 4a.

This iL increases linearly in the presence of a positive supply voltage, as shown in
Figure 5, and its current equation can be written as:

iL(t) =
Vin
L

(t− To) + iL(To) (1)
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This mode ends at t = t1, where iL becomes zero and diode D2 turns off. The time
duration of this Mode-1 can be calculated as:

t1 = L
iL(To)

Vin
+ To (2)

Mode-2 (t1 < t < t2): This mode starts at t = t1 when S2 comes into conduction. In
the presence of a positive supply voltage (Vin) across the inductor, its current is increases
linearly from 0 to ILmax, as shown in Figure 6, and its equation can be written as:

iL(t) =
Vin
L

(t− t1) (3)

This mode ends at t = t2, when the switching pulse for S2 is removed and the time
duration of this mode can be evaluated as:

t2 − t1 = DT − t1 (4)

Mode-3 (Ton < t < t3): This mode starts when the gate signal is given to switch S1. From
the previous state, it is clear that the initial inductor current is positive (ILmax), which brings
diode D1 to conduction, even in the presence of firing pulses at G1, as shown in Figure 6.
During this period, a negative voltage (Vin − VAO) appears across the inductor, which leads
to the decrement of the inductor current with a negative slope of (Vin − VAO)/L, which can
be expressed as:

iL(t) =
Vin −VAO

L
(t− t2) + iL(t2) (5)
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This mode ends at t = t3, when iL reaches zero and forces the diode to be turned off.
The duration of this mode can be determined as:

t3 − DT =
LiL(t2)

VAO −Vin
(6)

Mode-4 (t3 < t < T): The zero-initial current of the inductor and the presence of the
switching pulse brings S1 to conduction mode. Now, the inductor discharges in the presence
of a negative voltage (Vin − VAO) and, hence, the inductor current is decreased to a specific
negative value (ILmin). This negative inductor current is the initial current for Mode-1. The
expression for the inductor current is given as:

iL(t) =
Vin −VAO

L
(t− t3) (7)

This mode ends with the removal of the gate pulse of S1 and the duration of this mode
can be calculated as t4 − t3 = T − t3.

The same cycle of operation repeats until t = Ta. The inductor voltage balance equation
during case-I can be written as:

VindAkTs = (VAO −Vin)(1− dAk)Ts

⇒ VAO = Vin
1−dAk

(8)
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where dAk is the duty cycle at the ‘kth’ switching sample of switch S2 of phase A. Waveforms
during this case shown in Figure 5. As dA is a time-varying value, and when d > da at t = Ta,
case-I ends.

case-II (Ta < t < T/2 − Ta): This is the special case where Mode-2 and Mode-3 operations
of case-I only take place as there is no negative value of iLmin and the remaining two cases
are absent. In this case, only two semiconductor switches take active participation in
conversion, namely, S2 and D1, whereas the remaining two are in an idle state. Hence, two
modes are sufficient to explain the operation; waveforms during this case are shown in
Figure 6. It can be observed from the characteristics presented in Figures 5 and 6 that case-II
is a special case of case-I, where only two modes (Mode-2 and Mode-3) are presented during
operation. Waveforms of lower switch gate pulses, inductor current, upper and lower
diode and switch currents, coupled capacitor current, and input current are presented in
Figure 6 respectively. A detailed explanation is presented below.

Mode-1(Ta < t < t5): This mode starts at t = Ta, at which instant firing pulses (G2) are
given to S2. Due to a positive initial inductor current and the presence of G2, switch S2
is turned on. In the presence of a positive voltage across the inductor, it is charged to a
specific value, which can be expressed as:

iL(t) =
Vin
L

(t− Tp) + iL(Tp) (9)

This mode ends at t = t5 when firing pulses are removed from G2.
Mode-1 (t5 < t < t6): This mode of operation starts when pulses are given to S1.

Although pulses are presented at S1, it cannot be turned on due to the positive initial
current in the inductor. This turns on diode D1. Now, the negative voltage across the
inductor causes a decrement in the current with the negative slope of (Vin−VAO)/L, which
can be expressed as:

iL(t) =
Vin −VAO

L
(t− Tonb) + iL(Tonb) (10)

This mode ends at t = t6 when firing pulses are removed from S1. A similar operation
(Mode-1 and Mode-2) continues for several switching cycles until (T/2 − Ta). The voltage
balance equation of the inductor obeys Equation (8), as discussed in case-I. Furthermore,
the similarly boosted inverter operates in a negative half cycle, with the major role of S1, D2
in T/2 to (T/2 + Ta), and (T − Ta) to T, in addition to D1, S1, D2, and S2 during (T/2 + Ta)
to (T − Ta).

2.2. Differential Modulation Technique for Three-Phase Boost Inverter

As shown in (8), once the duty cycle becomes zero, VAO = Vin; this shows that this
converter outputs a dc bias voltage in relation to the negative supply terminal. The primary
goal of this study was to generate three-phase sinusoidal voltages across the load terminals
of Figure 2a. Based on the gain of this boost inverter, we assume these voltages are
modulated with the following duty cycles (dA, dB, and dC) as follows [13]:

VAO = Vdc
1−dA

= Vin + A + A sin ωt
VBO = Vdc

1−dB
= Vdc + A + A sin(ωt− 120o)

VCO = Vdc
1−dC

= Vdc + A + A sin(ωt− 240o)

(11)

where dA, dB, and dC are the duty cycles of the A, B, and C phases, respectively, Vin is the
bias DC voltage of the boost inverter (i.e., supply voltage), and A is the sinusoidal voltage
amplitude. It should be noted that the CCBI one-leg voltage with regard to the negative
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terminal of a source (VAO, VBO, VCO) always has the same sign as Vin; thus, (VAO)DC must
be added to maintain this necessary condition:

VAO(t) = (VAO)DC + (VAO)AC sin wt
VBO(t) = (VBO)DC + (VBO)AC sin wt
VCO(t) = (VCO)DC + (VCO)AC sin wt

 (12)

Here

Vdc + A = (VAO)DC = (VBO)DC = (VCO)DC&|VAO|AC = |VBO|AC = |VCO|AC (13)

From the 1− φ equivalent model of the 3− φ boost inverter, as shown in Figure 2b,
the phase voltage VAN applied to RL of the 3− φ system can be obtained as [2]:

VAN =
2
3

[
VA0 −

1
2
(VBO + VCO)

]
(14)

The first term in (14) is the voltage VAO produced by the same phase of the boost
converter, whereas the second and third terms account for the influence of the other two
phases. It can be understood that the phase voltage of the load is a function of all of the
three phases’ leg voltages (VAO, VBO, and VCO), and for the particular load phase voltage,
the other phases’ leg voltages’ combined effort can be grouped as:

Veq =
1
2
(VBO + VCO) (15)

The difference in VANVeq should also cause the same phase current in the 1− φ model,
so an equivalent resistance can be introduced, as mentioned below:

Req =
3
2

RL (16)

From Equations (12) and (14):

VAN = 2
3

{
[(VAO)DC

+ (VAO)DC
sin ωt]

− 1
2 [(VBO)DC

+ (VBO)DC
sin(ωt− 120)

+(VCO)DC
+ (VCO)DC

sin(ωt− 240)]
}

⇒ VAN = (VAO)AC
sin ωt

(17)

In a similar way, VBN and VCN have a 120◦ phase shift at the load terminals. Therefore,
the phase-to-neutral voltages at the load are:

VAN = (VAO)AC
sin ωt

VBN = (VAO)AC
sin(ωt− 120o)

VCN = (VAO)AC
sin(ωt− 240o)

(18)

These ideal outcomes can be achieved by calculating the three-phase duty cycles using:

DA(t) = 1− Vin
(VAO)DC+(VAO)AC sin wt

DB(t) = 1− Vin
(VBO)DC+(VBO)AC sin(wt−120o)

DC(t) = 1− Vin
(VCO)DC+(VCO)AC sin(wt−240o)

 (19)
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2.3. Capacitor Voltage Profile

One of the main objectives of this study was to reduce the capacitor peak voltages,
which can be calculated for the CCBI as follows:

VCA = (VAO)DC
+ (VAO)AC

sin ωt−Vin
⇒ VCA = (VCO)DC

+ (VCO)AC
sin ωt

(20)

Here (VCO)DC
= (VAO)DC

−Vin, and can be calculated as:

(VCO)DC
= (VAO)DC

−Vin

⇒ (VCO)DC
=
(

D
1−D

)
Vin

(21)

Whereas in case of other topologies, the capacitor voltages are higher due to the
requirement of a higher dc link voltage for the required DC-AC conversion. Capacitor
voltage profiles for the DC-AC conversion of 1 to 1.8 in the proposed case and other similar
impedance source inverters are shown in Figure 7, which depicts the reduction in voltage
stress on the capacitor.
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2.4. Life Time Calculation for Capacitor

To examine the life time benchmarks of different capacitor solutions and online condi-
tion monitoring, life models are used. Generally, the life time of the capacitors is greatly
influenced by two factors, namely, voltage stress and temperature. The most extensively
accepted empirical model for capacitor life is:

τ = τo ×
(

V
Vo

)−n
× exp

[(
Ea

KB

)(
1
θ
− 1

θ0

)]
(22)

where τ is the life time under use conditions, τo is the life time under test conditions, V is
the voltage at use conditions, and V0 is the voltage at test conditions. θ and θ0 are the
temperature (Kelvin) at use and test conditions, respectively. Ea is the activation energy, KB
is Boltzmann’s constant (8.62 × 10−5 eV/K), and n is the voltage stress exponent.

From (22), it is clear that Ea and n are the key parameters to determine the life time; its
values were found to be 1.19 and 2.46 for high dielectric constant ceramic, and 1.3–1.5 and
1.5–7 for MLC-Caps.

For Al-Caps and film capacitors, a simplified model from (22) is popularly applied as
follows [14]:

τ = τo ×
(

V
Vo

)−n
× 2

θo−θ
10 (23)
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2.5. Sliding Mode Controller

When a sliding mode controller is adopted, the system performs effectively in both
steady-state and dynamic operations. Although more complicated control approaches, such
as THD, can increase system performance, the observed results look satisfactory in many
circumstances of practical importance, while the basic controller lowers system cost. An
experimental prototype was created, and the experimental findings show that the converter
is capable of step-up [2].

The following reasonable assumptions must be considered when designing the sliding
mode controller for the proposed converter: power switches that are ideal, converters that
operate at high switching frequencies, and power supplies that are free of sinusoidal ripple.
Each phase of the proposed converter has two state variables. The sliding surface equation
of state space in a three-phase system is expressed as:

s1(iLa, va) = Ka1εa1 + Ka2εa2 = 0
s2(iLb, vb) = Kb1εb1 + Kb2εb2 = 0
s3(iLc, vc) = Kc1εc1 + Kc2εc2 = 0

 (24)

where:  εa1
εb1
εb1

 =

 ila
ilb
ilc

−
 ilare f

ilbre f

ilcre f

&

 εa2
εb2
εc2

 =

 va
vb
vc

−
 vare f

vbre f

vcre f

 (25)

In sliding mode control theory, sensing of all state variables is required to generate the
proper control signals and obtain the required AC supply. The generation of the inductor
current reference is difficult to assess because it is dependent on several factors, such as
supply voltage, load demand, and load voltage. As a result, iL-iLref can be generated directly
from the high frequency component of the inductor current feedback signal, which must be
removed due to the control strategy by designing a suitable high pass filter. The addition of
a high pass filter increases system order and has the potential to change system dynamics.
To overcome this issue, the selected values of the CCBI’s switching frequency were higher
than the filter cut-off frequency. The trajectory of the sliding surface for this design is shown
in Figure 8.
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3. Results and Discussions

The proposed 3− φ CCBI, as shown in Figure 9, was successfully assessed by means of
both simulations and prototype-based hardware results. Simulations were carried out using
the MATLAB Simulink environment, and the parameters considered for the simulations
are summarized in Table 1, as shown below.
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Figure 9. Complete system diagram of the hardware setup.

Table 1. Electrical parameters of the system.

Input voltage (Vin) 200 V
Output voltage (Vorms) 400 V
Output power (Po) 1.2 KW
Maximum switching frequency (Fsmax) 20 KHz
Frequency (Fo) 50 Hz

The following results were acquired at the average switching frequency (Fs) equal
to 10 kHz. A sliding mode controller was used to achieve good dynamic response, high
robustness, and noise-free response while tracking the required 3− φ AC from DC supply.
System state variables were continuously monitored and controlled near to a zero error
response with the hysteresis band = 0.3, filter constant = 0.01, K1 = 0.304, and K2 = 0.2.
System performance was evaluated in both a steady state and transient states while feeding
power to different types of loads (linear and nonlinear) under different test conditions.
3− φ Phase voltages, line voltages, and load currents obtained from this inverter are shown
in Figures 10–12, respectively. From these results, it can be clearly seen that the input
low-level DC supply was successfully converted to ideal sinusoidal three-phase AC power.
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Figure 11. Line voltages of the inverter during steady-state conditions.
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In the boost inverter topology, at least one capacitor is placed in every leg of the
respective phase of the converter for the boosting operation. The negative terminals of each
of the three capacitors of the three-phase inverter are connected to a common point in this
topology, and these are also shown in Figure 13. With reference to this point, the common
mode capacitor voltage (CMMCV) is defined as the average of all of the three capacitor
voltages (VAO, VBO, and VCO) and is shown in Figure 14. In Figure 14, the conventional
CMMCV is calculated for the topology proposed by Cecati and compared with the proposed
topology. Figure 14 shows that the CMMCV across all of the three capacitors is greatly
reduced by the proposed scheme, due to the fact that the individual capacitor voltage is
also lower than that of the conventional topology. Figures 15 and 16 were captured for the
critical evaluation of the harmonic content contained at the output. These results show the
THD waveforms of phase voltage, line voltage, and load current, respectively; from these
results, it can be clearly understood that this inverter offers good quality of AC output
without any lowest order harmonics (<3% of fundamental) for resistive load. All of the
harmonic quantities are lower than 1.5% of the fundamental.
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In order to assess the dynamic performance of the converter, sudden changes were
incorporated during the operation of the converter at load (increased by 50% and decreased
by 50%), and in the reference voltage (decreased by 50% and changed the phase by 180◦),
and results were captured in each case for analysis. Figure 17 shows the current drawn
by the 100% load (1.2 kW) from (0 to 0.04 s) and 50% load (0.6 kW) from (0.04 to 0.08 s),
whereas Figure 18 depicts the opposite case of loading, i.e., 50% loading from (0 to 0.04 s)
and 100% load from (0.04 to 0.08 s). Figure 19 was captured when the mode of operation is
suddenly changed from active mode to regeneration mode at 0.04 s. Although the mode is
changed from the active mode to the regeneration mode, the voltage amplitude remains
constant, and its harmonics also remain the same. Figures 20–23 show the phase voltages,
line voltages, load currents, and capacitor voltages observed when the reference voltage is
suddenly changed from 100% to 50% at 0.04 s. Whenever the reference voltage is changed,
the output voltage changes, and the current also changes accordingly for the resistive load.
THD waveforms in the case in which the reference voltage is changed were captured after
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the disturbance was settled, and are shown in Figures 23–25. These results (Figures 20–23)
reveal that the CCBI with a sliding mode offers good dynamic response in stable operation,
even for all kinds of disturbances, as discussed earlier.
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For critical evaluation of the converter, the inverter output is fed to a nonlinear load
(three-phase diode bridge rectifier with R Load of 255 Ω), and Figures 26–33 show the CCB
inverter-fed diode bridge output currents and voltage, the diode bridge input line voltage
and currents, the capacitor voltages of CCB and CMMCV, and the harmonic spectra of
diode bridge input voltage and currents, respectively. Under steady-state mode, the diode
bridge rectifier-fed resistive load absorbs the highly distorted current of 31.39% THD and
voltage of 7.25% THD, as shown in Figures 32 and 33, respectively. All of the foregoing data
show that the CCB inverter has good behavior, and particularly superior dynamic behavior,
which is mostly due to the lower values of the boost capacitances and voltage across the
capacitor. This performance is especially notable when compared to that of a current source
inverter (CSI); whereas the proposed system employs three independent small inductors,
the CSI employs only one large inductor, resulting in much poorer dynamic performance.
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Comparison of the CCBI with ZSI: For the same source and load, and required gain, ZSI
is implemented with the shoot-through duty of 0.4091 and AC-side filter components of
inductor Lf = 0.25 mH and capacitor Cf = 44 µH. Its load parameters, z-source capacitor
voltages, and CMMV are presented in Figures 34–36.
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From these results (Figures 21 and 34), it can be understood that peak voltages (956 V
in the impedance source inverter and 910 V in the CCBI) and settling time to reach the
steady state (0.065 s for the impedance source inverter and 0.021 s for the CCBI) are higher
in the case of the impedance source inverter. The peak capacitor voltage is 1124 V in the
case of the impedance source inverter, whereas it is 1056 V in the case of the CCBI. It can
also be seen that CMMV in the case of the impedance source inverter has a PWM nature, as
depicted in Figure 36, whereas it has a steady nature in the case of the CCBI, as depicted
in Figure 14. Hence, it can be understood that the CCBI offers better performance for the
single-stage power conversion.

In addition, in terms of the number of components, voltage and current THDs, capaci-
tor voltage stresses, and boost factors, the performance of this inverter was compared to
that of existing inverter topologies. Figures 37–40 provide these comparative character-
istics. In comparison to other topologies, the implementation of the CCBI requires fewer
components, as seen in Figure 37. As a result, the converter’s cost, size, and volume are
reduced. THD (both voltage and current) profiles of the proposed inverter, and the studied
inverter topologies, were captured for comparative analysis. It is worth noting that, with
the exception of the boost and CCBI topologies, AC filters are utilized on the AC side in all
other topologies. The CCBI is able to deliver greater performance in terms of THDs even
under these conditions, as seen in Figure 38.
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Figure 37. Bar chart of no. of components used in different topologies.
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Figure 39. Total capacitor stress in different topologies.
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The total capacitor stresses in the CCBI are quite low as compared to other topologies,
as shown in Figure 39. Because the capacitor is the most vulnerable component in an
inverter in terms of reliability, reducing voltage stresses on the capacitor improves its
reliability. As shown in Figure 40, the proposed converter is capable of providing superior
gain than the existing topologies despite having fewer boosting factors. This function
aids in the reduction in stresses on the inverter’s capacitors and switches. Overall, the
proposed inverters provide higher performance in terms of number of components, voltage
and current THDs, capacitor voltage stresses, and boost factors, as evidenced by these
comparative data.

Experimentation Results: For the experimental verifications, a laboratory-made test bench
was developed, as illustrated in Figure 41. It consists mainly of six IRF460 MOSFETs (500 V,
16 A) driven by a TLP25-based optically isolated driver circuit, three EZPE50506MTA capaci-
tors (15 µF), and three inductors (0.6 mH). Inductor currents and capacitor voltages are sensed
by a TELCON-25 and AD202JN-based signal measurement and conditioning circuit.
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Figure 41. Prototype of the boost inverter.

The quantities sensed by these sensor-based resistor networks are then applied to
the corresponding multiplexer (HEF4052B) input terminals via filtering, amplifying, and
biasing circuits. All of the sensed parameters are sent to the FPGA Spartan-3E kit via a
multiplexer circuit. Two 2-channel multiplexers are used in time division multiplexing to
independently process inductor currents and capacitor voltages. Inductor currents and
capacitor voltages are time division multiplexed and processed on the FPGA kit’s on-board
ADC (LTC1407A). Internally, these signals are demultiplexed using VHDL code. Using
demultiplexed inductor currents and capacitor voltages, a VHDL-programmed sliding
mode controller generates gating pulses to the inverter.

This prototype was tested with a 150 V DC supply to demonstrate the proposed
inverter’s step-up capability, and the results were monitored in a closed-loop manner, with
the control logic developed in an FPGA Sparta-3e XC3S500e board. The CCBI converts 150 V
DC to three-phase AC with a peak voltage of 282 volts, 163.29 V (peak) phase voltage, and
4.89 A (peak) phase current. These conversion pole voltages are shown in Figure 42. Load
currents are depicted in Figure 43. These findings show that the converter’s performance
is consistent with the simulation results. Simulation and hardware tests confirm that the
inverter is performing proper DC-AC conversion.
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4. Conclusions

This research suggested and successfully validated a unique three-phase, step-up DC-
AC converter for distributed power generation using both simulation and experimental
data. This converter successfully demonstrated single-stage operation in the same way as
any other impedance source converter. Both simulation and experimental results verified
that the operating voltages across the capacitors are reduced, resulting in increased capacitor
and converter reliability and longevity. In addition to the technology, this inverter offers
a lower boosting factor for the necessary DC-AC conversion, thus requiring a lower dc
link voltage. When compared to other impedance source converters for the same DC-AC
conversion, this feature has a high side gate isolation voltage requirement. In this paper,
detailed operations in various modes are presented, along with differential pulse width
modulation and a sliding mode controller.

Future work: A performance investigation of the CCBI in electrical vehicle loads with
different drive cycles, and in distributed power generation with different environmental
conditions, can comprise the future scope of work.
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Nomenclature

Z-source inverter ZSI
Quasi Z-source inverter q-ZSI
Continuous input current quasi Z-source inverter CICq-ZSI
Discontinuous input current quasi Z-source inverter DICq-ZSI
Switched boost inverter SBI
Current-fed switched boost inverter CF-SBI
Quasi SBI qSBI
Improved ZSI IZSI
Pulse width modulation PWM
Total harmonic distortion THD
Capacitor clamped boost inverter CCBI
Boost factor BF
Full-bridge FB
Half-bridge HB
Enhanced boost ZSI EB-ZSI
Diode assisted qZSI DA-qZSI
Capacitor assisted qZSI CA-qZSI
Enhanced boost quasi ZSI EB-qZSI
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