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Abstract: This paper proposes a scheduling method of dual ESSs (Energy Storage Systems) for the
purpose of reducing the peak load when there are sudden loads or generation changes during the on-
peak time. The first ESS is scheduled once a day based on a day-ahead load prediction, and the second
ESS is scheduled every 15 min during on-peak time based on a short-term load prediction by LSTM
(Long Short-Term Memory). Special attention is paid to training the LSTM for the short-term load
prediction by using the augmented past load data which is generated by adding possible uncertainties
to the past load and temperature data. Based on the load forecast, optimization problems for the
scheduling are formulated. The proposed scheduling method is validated using load and temperature
data from a real building. In other words, when the proposed method is applied to the real building
energy data in the case study, it not only shaves the peak load during on-peak time interval effectively
but also results in lower electricity price although there are sudden load or temperature changes
during the time interval.

Keywords: building energy management; deep learning; energy storage system; load forecast;
real-time control

1. Introduction

As the number of big buildings has increased, there has been an increase not only in
their energy consumption and CO2 emission but also in their proportion of global total
energy consumption and CO2 emissions. For instance, electricity consumption in buildings
was about 55% of global total electricity consumption in the year 2019 [1]. Hence, it is of
the utmost importance to devise building energy management systems (BEMS) in order to
manage the total energy consumption efficiently.

In recent BEMS’s research, a large amount of effort is directed to integrating renew-
able energy sources (RES) systematically [2]. Since RES is intermittent by nature and the
load is unknown, inevitably BEMS has to be devised in such a way that it can deal with
uncertainties in both the load and RES. ESS (Energy Storage Systems) are known to be the
most efficient method to handle this problem. Consequently, one of the most important
BEMS’s tasks is to have an algorithm to charge and discharge ESS in such a way that the
management of the building’s energy is carried out successfully in terms of supply–demand
balance, low electricity prices, and lower peak loads, etc. BEMS charges ESS when the
demand is low and discharges it when the demand is high for the purpose of reducing
electricity prices or the peak load during on-peak times [3,4].

The optimal ESS charging and discharging during a day has to be performed while
taking the load into account. However, the load is unknown in advance, which means that
BEMS has to be able to predict the load [5]. Various artificial intelligence-based methods
for load prediction have been developed using ANN (Artificial Neural Network) [6,7]
and RNN (Recurrent Neural Network) for sequential data prediction [8]. To overcome the
weak long-term dependency of RNN, the LSTM (Long Short-Term Memory) network has
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been made and popularly applied to forecast loads [9–11]. Recently, GRU (Gated Recurrent
Units) have been developed in order to reduce the number of parameters in LSTM and
improve the convergence speed of training, and they are also employed to predict the
load [12,13].

Usually, there are two approaches for ESS operation in BEMS. In the first approach, a
day-ahead load prediction is made at the beginning of a day, and the schedule of charg-
ing and discharging is determined for the day considering the prediction. When a day
starts, BEMS charges or discharges ESS following the determined schedule. In the offline
scheduling approach, ESS works such that supply–demand balance is maintained and
the electricity price according to ToU (Time-of-Use) is minimized [14,15]. This approach
cannot deal with any uncertainties in the load or the temperature during the on-peak
time since charging and discharging are scheduled at the beginning of a day. The other
possible approach is to use another ESS, which is used online using real-time information
on load and temperature to achieve the objectives of the BEMS, such as peak reduction.
This second ESS is used under the assumption that the first ESS operates in accordance with
the schedule made at the beginning of the day. As a compromise of these two approaches,
in [16,17], only one ESS is employed, but it is re-scheduled at a certain time during a day
based on real-time information.

Recently, renewable generation and EV (Electrical Vehicles) charging stations have
been installed in buildings. Although they provide more electrical power and convenience,
it is difficult to predict how much power must be generated by renewable generation
sources and how much will be consumed by EVs during a day. If during on-peak times
renewable generation produces less electricity than forecast or many EVs try to charge
simultaneously, then the peak load can be very large. Hence, online real-time monitoring
and ESS scheduling are important in order to deal with such situations. For instance, a
real-time ESS operation method is developed to handle uncertainties [18–20]. A multi-time
scale coordination is devised to reduce the effect of uncertainties [21,22] in BEMS operation.
An optimal online ESS operation method to take uncertainties in solar generation and
load variation into account using stochastic programming is designed in [23]. Furthermore,
real-time energy management for apartment buildings using MPC (Model Predictive
Control) [24], and energy management considering random events such as EV charging
have been an emerging research area [25,26].

Along this line of research, this paper focuses on real-time ESS scheduling for peak
load reduction when there is a large discrepancy in supply and demand during on-peak
times. To this end, it is assumed in this paper that there are two ESSs: one (called ESSoff
hereafter) is scheduled offline using a day-ahead load prediction and the other (called ESSon
hereafter) is scheduled online and is charged or discharged during on-peak time based
on real-time short-term load predictions. ESSon is necessary because the scheduled plan
for ESSoff might not be effective to reduce the peak load due to the uncertainties during
on-peak time period. Hence, the performance of ESSon is heavily dependent on real-time
short-term load prediction. Roughly speaking, ESSoff deals with a slowly varying deficient
load and ESSon works for a rapidly varying deficient load.

The main contribution of the paper is twofold. First, for the purpose of scheduling
ESSon, a short-term prediction based on LSTM and past temperature and load is developed.
Especially, the training data for the LSTM is augmented such that the possible uncertainties
during on-peak time are added to the past load and temperature data. The trained LSTM
is used to predict the load during the on-peak time period. Second, using the short-term
prediction by the LSTM, an optimization is formulated to make a plan for charging and
discharging of ESSon. In the optimization, various requirements on, for example, SoC (State
of Charge) limit of the amount of charging and discharging at a time are modeled as
constraints in the optimization. A case study using real temperature and load data of a
building shows that the proposed scheduling method for ESSon successfully reducing the
peak load and thereby reducing the electricity cost. This means that the proposed method
deals with uncertainties during the on-peak time efficiently.
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In this paper, the variables with subscript ‘off’ mean that they are determined offline
while the variables with subscript ‘on’ are determined online.

The paper is organized as follows. In Section 2, the configuration and objective of
the paper are introduced. In Section 3, the proposed online ESS scheduling method is
presented, which is followed by a case study based on real building data in Section 4.
Section 5 concludes the paper.

2. Objective and Description of the Proposed Method

In this section, the problem under consideration and the structure of the proposed
BEMS are described. The proposed BEMS schedules a dual ESS (ESSoff and ESSon) by
solving optimization problems. The optimization problems rely on load predictions made
by LSTM (Long Short-Term Memory). Figures 1 and 2 describes the proposed BEMS. The
mathematical symbols in Figure 2 are explained in the next section.

Figure 1. Structure of the proposed BEMS.

Figure 2. The structure of the proposed BEMS method.

To be specific, in offline mode, the two-deep learning networks LSTMoff and LSTMon
are trained using the past temperature and load data set. Then, at the beginning of a day,
the trained LSTMoff computes a day-ahead load prediction and the prediction is used to
define an optimization problem with decision variables PESS

off,0, · · · , PESS
off,23 for scheduling

ESSoff where PESS
off,t denotes the amount of charging or discharging for ESSoff every hour (i.e.,

24 times of charging or discharging a day). In addition, during an on-peak time period,
LSTMon generates the load prediction every 15 min for the next 1 h to consider uncertain
situations which are not taken into account in LSTMoff (or scheduling ESSoff). Based on
short-term predictions by LSTMon including current load (i.e., P0, P̂on,1, · · · , P̂on,4), an
optimization problem with decision variables PESS

on,0, · · · , PESS
on,4 (i.e., 5 × 15 min) is defined

for charging and discharging plan for ESSon. Then, only the first element PESS
on,0 of the optimal
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solution is applied to ESSon, and this procedure is repeated every 15 min similar to the
receding horizon implementation in MPC (Model Predictive Control) [27].

The main objective of the BEMS design in this paper is to reduce the peak load
during on-peak times by scheduling ESSon based on short-term load prediction by LSTMon,
which is trained using the augmented load data to deal with abrupt large load changes. In
achieving the objective, physical constraints such as SoC bounds or the limit of ESS output
are taken into account.

3. Proposed Method

In this section, details of the proposed method are described. The results consist of
offline ESS scheduling and online scheduling. The offline ESS scheduling is a modified result
of that in [17] and the focus of this paper is mainly placed on the online ESS scheduling.
Hence, offline ESS scheduling is briefly reviewed for the self-sufficient presentation of the
main result and then the proposed online ESS scheduling is presented.

3.1. ESSoff Scheduling
3.1.1. Training LSTMoff for a Day-Ahead Load Forecast Using Past Load and
Temperature Data

In building energy management, a day-ahead load prediction is indispensable for
optimization-based ESS scheduling. Since LSTM is efficient at predicting time series
data [28], it is employed to forecast the load demand of the building. Since LSTM is already
a well-known deep learning technique, it is not explained here. For details, see [17,28].

For a day-ahead prediction, LSTMoff is trained using past building loads. In this
work, the load data are assumed to be measured and saved every hour. Moreover, to
enhance the prediction accuracy, hourly measured outdoor temperature data are also used.
Hence, the input data to LSTMoff for training is of the form {Pt−j, Tt−j} (j = 1, · · · , 24)
and {Pt, Pt+1, · · · , Pt+23} is used as the output of the network. When LSTMoff is trained,
if {Pt′−j, Tt′−j} (j = 1, · · · , 24) is injected into the trained LSTMoff, LSTMoff generates
{P̂off,t′ , P̂off,t′+1, · · · , P̂off,t′+23} as the load prediction for the next 24 h.

3.1.2. Scheduling ESSoff via Optimization

For the purpose of scheduling ESSoff, the trained LSTMoff generates the load prediction
P̂off,t at midnight for the next 24 h using the load and temperature data from the previous
day. Then, to decide the amount of charging and discharging PESS

off,t for the next 24 h, an
optimization problem is formulated on the basis of the prediction as follows:

min
PESS

off,t
t=0,··· ,23

23

∑
t=0

{
Cg,t P̂g1,t + w1PgL1,t + w2

(
PESS

off,t − PESS
off,t−1

)2

+ w3PESS
off,t

2
}

(1a)

subject to ∀t ∈ {0, 1, · · · , 23}
P̂g1,t = P̂off,t + PESS

off,t (1b)

PgL1,t =

{
Pg,min − P̂g1,t, P̂g1,t < Pg,min and t ∈ {on-peak time}
0, otherwise

(1c)

SoCoff,t = SoCoff,t−1 +
η

Ec1
PESS

off,t (1d)

SoCmin ≤ SoCoff,t ≤ SoCmax (1e)

| PESS
off,t | ≤ PESS

off,max (1f)

|
23

∑
t=0

PESS
off,t | ≤ α (1g)

where Cg,t is the constant denoting the electricity price at time t and P̂g1,t is the estimated
amount of electricity to be used. Hence, the first term Cg,t P̂g1,t in the objective function
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denotes the estimated electricity cost that will be paid. wi (i = 1, 2, 3) are weights that
make each term contribute similarly to the entire objective function. Pg,min in (1c) represents
the contracted minimum amount of electricity from the main grid during on-peak time.
It is assumed that the operator of the building’s energy provides the main grid operator
with this information. It is useful to define Pg,min for not only the energy manager of the
building’s energy but also the main grid operator since the existence of such a value can
help make a long-term energy plan for both the building and the main grid. PgL1,t is the
difference between Pg,min and P̂g1,t at time t during the on-peak time. Since the contract is
made between the building energy operator and the grid operator such that the building
spends at least Pg,min electricity during the on-peak time, a penalty has to be imposed on
PgL1,t, which is expressed using the second term w1PgL1,t. PESS

off,t is the amount of charging or
discharging from ESSoff at time t. Hence, the third and fourth terms in the objective function
imply that the variation and amount of charging or discharging have to be small. Such
consideration is helpful for both health and lifetime of the ESS. Note that PESS

off,t ≥ 0 implies
charging and PESS

off,t < 0 means discharging. (1d) denotes how SoCoff,t changes according to
PESS

off,t where η and Ec1 denote the efficiency of PESS
off,t and the capacity of ESSoff. (1e,f) are the

constraints on SoCoff,t and PESS
off,t, respectively. The last constraint (1g) is used to maintain

the initial value of SoCoff,t to a constant value at the beginning of a day by setting the α
small enough. Note that α ≡ 0 leads to an equality constraint that can restrict the feasibility
of the problem. The optimization problem is a modified version of that in [17].

After computing the prediction P̂off,t by LSTMoff, if the operator solves the optimization
problem (1), the result can be depicted by Figure 3. In Figure 3, k is the start point of the
on-peak time period and p is the length of the on-peak time period, and P̂off,t and P̂g1,t
denote the load power prediction before and after ESSoff is applied, respectively. Note that
the peak of P̂off,t is reduced thanks to ESSoff. Mostly, ESSoff discharges during on-peak time
∈ [k, k + p] to reduce the electricity cost with Pg,min being the minimum, and charges during
off-peak time to satisfy (1g). Therefore, comparing P̂off,t with P̂g1,t employing ESSoff, peak
reduction is achieved, thereby resulting in lower cost. Note that reducing the peak of P̂g1,t
can bring about a reduction of the real consumed power.

Figure 3. Offline ESS optimization.

On the other hand, if the load uncertainty in real-time is denoted by ϕt, then the real
load can be expressed by Pg1,t = P̂off,t + PESS

off,t + ϕt. This means that the cost for buying
electricity from the main grid can vary significantly depending on the load uncertainty
from the offline forecast. If the uncertainty is small, the cost variation becomes acceptable,
but the cost will not be trivial if the uncertainty is significant due to, for example, abrupt
large load changes such as charging electric vehicles. To deal with these situations, we
present strategies on how to reduce the effect of the uncertain load during the on-peak
times by improving the performance of the short-term load prediction, and how to operate
ESSon based on the enhanced short-term load prediction.



Energies 2022, 15, 3001 6 of 20

3.2. ESSon Scheduling

Under the assumption that ESSoff is scheduled, this section presents a scheduling
method for ESSon which works mainly during the on-peak time period. LSTMon is trained
using augmented past load and temperature data for online short-term load forecasting
first, and then a charging and discharging strategy is proposed using the online load
forecast by using LSTMon and convex optimization.

3.2.1. Online Short-Term Load Forecast via LSTM with Data Augmentation

ESSon is employed in this work for the purpose of handling sudden large variations in
load or temperature during the on-peak time period and is scheduled based on short-term
load forecasts by LSTMon. Hence, LSTMon has to be trained such that it can generate
short-term load forecasts even when there are unexpected load or temperature variations
that do not exist in the past data. To this end, the past load and temperature data can be
augmented [29]. The augmented data can be generated by adding possible values of sudden
uncertainties (synthetic uncertainties) considering the possible situations in the building to
past load and temperature data. To generate the synthetic uncertainties systematically, a
probability density function (PDF) such as a Gaussian distribution can be used [30].

In other words, the synthetic uncertainties are generated by sampling data using a
PDF, and it is added to the past data. For details, see the next section.

With this augmented data, LSTMon is trained such that its input {Pt−i∆tm , Tt−i∆tm}(i =
0, · · · , 7) and its output {Pt+∆tm , · · · , Pt+4∆tm}, where ∆tm is 15 min. When the training is com-
plete, the trained LSTMon generates {P̂on,t′+∆tm , · · · , P̂on,t′+4∆tm} when {Pt′−i∆tm , Tt′−i∆tm}
is given as the input to LSTMon. Hence, the trained LSTMon forecasts the next one-hour
load and its resolution is 15 min. Such LSTMon is expected to generate more accurate short-
term load forecasts compared with the day-ahead load forecast when there are nontrivial
variations in load or temperature.

3.2.2. Online ESS Operation

This subsection presents a scheduling ESSon via convex optimization based on the
short-term load forecast P̂on,t by LSTMon.

During on-peak times, a short-term load prediction is made every 15 min for the next
hour. In other words, at time k during the on-peak time period, the short-term load fore-
cast {P̂on,k+∆tm , · · · , P̂on,k+4∆tm} is generated every ∆tm. Then, the following optimization
problem is solved with the forecast.

min
PESS

on,t
t=k,··· ,k+4∆tm

k+4∆tm

∑
t=k

{
w4PgU2,t + w5PgL2,t + w6PESS

on,t
2
}

(2a)

subject to ∀t ∈ {k, k + ∆tm, · · · , k + 4∆tm}
P̂g2,t = P̂on,t + PESS

off,t + PESS
on,t (2b)

PgU2,t =

{
P̂g2,t − (P̂g1,t + δ), P̂g2,t > P̂g1,t + δ

0, else
(2c)

PgL2,t =

{
Pg,min − P̂g2,t, P̂g2,t < Pg,min

0, else
(2d)

SoCon,t = SoCon,t−∆tm +
η

Ec2
PESS

on,t ∆tm (2e)

SoCmin ≤ SoCon,t ≤ SoCmax (2f)

| PESS
on,t | ≤ Pon,max (2g)

where PESS
on,t denotes the amount of charging or discharging from ESSon at time t. In the cost

function (2a), w4PgU2,t penalizes the power when it is higher than P̂g1,t + δ. The first term



Energies 2022, 15, 3001 7 of 20

makes ESSon work only when the difference between the required load P̂g2,t computed
online and P̂g1,t computed offline is higher than δ. Since ESSon is usually expensive equip-
ment, it is used only when there are large uncertainties. As depicted in Figure 4, ESSon
makes P̂g2,t be between the two red dashed lines, P̂g1,t + δ and Pg,min, during on-peak time.
In other words, if the uncertainties predicted by the online load forecast are small, ESSon
does not do anything, which is helpful for the lifetime of ESSon. On the contrary, if the
estimated uncertainty is nontrivial, ESSon tries to reduce the effect of the uncertainty.

Figure 4. Online ESS optimization.

In the first term of the cost function, P̂g2,t means estimates of the required load power
since it is the sum of the estimated power P̂on,t and the outputs of the two ESSs. The other
terms in the cost are similar to the cost function (1).

Figure 5 summarizes how the online load forecast and ESSon work during on-peak
time. At time t = k, LSTMon generates short-term load forecast {P̂on,k+∆tm , · · · , P̂on,k+4∆tm}.
Based on this short-term forecast, the optimization problem (2) is solved to determine
PESS

on,k, PESS
on,k+∆tm

, · · · , PESS
on,k+4∆tm

. PESS
on,k is applied for 15 min, and this procedure is repeated

during on-peak time.

Figure 5. Online ESS operation process.

After the on-peak time, to maintain the initial value of SoCon,t, the following optimiza-
tion problem is solved. This procedure can be seen as (1g) in ESSoff scheduling. The cost
function is similar to the third and fourth terms in the objective function (1), considering
the health and lifetime of the ESSon. At time t = k + p + 1, right after the on-peak time,
ESSon charges or discharges for two hours considering PESS

on,t during the on-peak time. Note
that γ is a small constant.

min
PESS

on,t

k+p+2+3∆tm

∑
t=k+p+1

{
w6PESS

on,t
2
+ w7

(
PESS

on,t − PESS
on,t−∆tm

)2}
(3a)

subject to ∀t ∈ {k + p + 1, k + p + 1 + ∆tm, · · · , k + p + 2 + 3∆tm}

|
k+p+2+3∆tm

∑
t=p

PESS
on,t | ≤ γ (3b)
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Algorithm 1 summarizes the proposed energy management method using LSTM with
the augmented dataset, dual ESSs, and convex optimization. Moreover, Figure 2 illustrates
Algorithm 1.

Algorithm 1: Proposed energy management method.

Offline
Train LSTMoff using past load and temperature data set
Train LSTMon using augmented past load and temperature data set

Online
Repeat at t = 00:00

A day-ahead load forecast using LSTMoff
Make charging and discharging scheduling of ESSoff by solving the
optimization (1)

/ ∗ Repeat the following every 15 min during on-peak time ∗ /
for t ∈ on-peak time do

Short-term load forecast using LSTMon
Make charging and discharging scheduling of ESSon by
solving the optimization (2)

end for
Initialize SoCon,t by solving the optimization (3)

4. Case Study

This section shows the application of the proposed energy management scheme
using data from a real building. It is shown that the online short-term forecast-based
ESS scheduling can reduce the peak load effectively even when there are nontrivial load
uncertainties during the on-peak time. This is because the trained LSTMon using augmented
datasets generate better load forecasts, which is not easy to accomplish for a day-ahead
load forecast.

4.1. Training Data and Data Augmentation

For training LSTMoff, load and outdoor temperature datasets are taken from [31] and
they are measured for a commercial building located in Richland, WA, during the summer
season (June–September) from 2009 to 2011.

For training the LSTMon, the dataset is augmented for the purpose of obtaining a
better load prediction when there are severe load uncertainties during on-peak time. To
be specific, the dataset is augmented by adding the synthetic uncertainties to the original
dataset. To augment the dataset systematically, the value of the synthetic uncertainty is
generated using the normal distribution in (4) with a mean µ and a standard deviation σ
as follows:

faug(t) =
β

σ
√

2π
exp

(
− (t− µ)2

2σ2

)
(4)

where β ∈ [−40, 40] is a scaling factor. µ ∈ [10, 18] and σ ∈ [1, 3] are chosen to create a
variety of uncertainties. Several examples of synthetic uncertainties generated by faug(t)
are shown in Figure 6.
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Figure 6. Load uncertainty data.

Figure 7 shows the original load and temperature dataset and the augmented dataset
using the synthetic uncertainties calculated by (4).

(a) (b)

(c) (d)

Figure 7. Original data and data with synthetic uncertainties. (a) Original load data, (b) Load with
uncertainty data, (c) Original temperature data, (d) Temperature data with uncertainty.

4.2. Offline and Online Load Forecast by the Trained LSTMs

This section shows how accurately the trained LSTMoff using the past dataset and
LSTMon using the augmented past dataset generate load forecasts when there are uncer-
tainties. Table 1 summarizes the structures and hyperparameters of LSTMoff and LSTMon.
For training the LSTMs, Tensorflow 2.0 in Intel(R) Core(TM) i7-4790 with 8GB memory was
used [32].
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Table 1. LSTM Network parameters for training.

Parameter LSTMoff LSTMon

Number of layers 3 3

Number of neurons 128× 128× 24 128× 128× 4

Batch size 128 64

Number of epochs 100 100

Learning rate 0.001 0.001

Loss function MAE MAE

Optimizer ADAM ADAM

Figures 8–10 show load forecast results by LSTMoff and LSTMon for positive, negative,
and sign indefinite synthetic uncertainties, respectively. In the figures, the red dotted lines
denote the original load data and the black solid lines show the augmented load data. On
the left of Figures 8–10, the blue solid lines are the load forecast P̂off,t by LSTMoff. As seen
in the figures, the load forecast by LSTMoff is not accurate. This is natural since LSTMoff
is trained using the red lines but actually used the black lines (i.e., input to the trained
LSTMoff) for the forecast. On the other hand, on the right of Figures 8–10, the short lines
with various colors denote the one-hour load forecast by LSTMon. Note that the online load
forecast by LSTMon for the next one hour period is carried out every 15 min repeatedly
during the on-peak time.

(a) (b)

Figure 8. Offline and online load forecasts with positive synthetic uncertainties. (a) Offline load
forecast, (b) Online load forecast.

(a) (b)

Figure 9. Offline and online load forecasts with negative synthetic uncertainties. (a) Offline load
forecast, (b) Online load forecast.
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(a) (b)

Figure 10. Offline and online load forecasts with sign indefinite synthetic uncertainties.(a) Offline
load forecast, (b) Online load forecast.

In view of the forecast results in Figures 8–10, LSTMon generates better load forecasts
for a load with uncertainties than LSTMoff. For quantitative comparison, the forecast errors
are computed using Root Mean Square Error (RMSE) for the test data. Each RMSE for
offline and online is given in (5a,b) considering the different resolutions. N is the number
of test data and only the forecast during the on-peak time is calculated. Note that the online
load forecast is repeated every 15 min. LSTMoff results in 5.611 kW and LSTMon does
2.022 kW. Hence, the load forecast by LSTMon can be used for ESS scheduling in scenarios
where there are sudden load changes during on-peak times.

RMSEoff =

√√√√ 1
N
· 1

p + 1

N

∑
i=1

k+p

∑
t=k

(Pi
aug,t − P̂i

off,t)
2 (5a)

RMSEon =

√√√√ 1
N
· 1

4p + 1
· 1

4

N

∑
i=1

k+p

∑
t=k

3

∑
j=0

(Pi
aug,t+j∆tm

− P̂i
on,t+j∆tm

)2 (5b)

4.3. ESS Scheduling Based on Online Load Forecast

Using the offline load estimate P̂off,t and online estimate P̂on,t, PESS
off,t and PESS

on,t are
determined by solving the convex optimization (1) and (2), respectively. For optimization,
the CVX MATLAB toolbox is employed [33] and the tuning parameters for the optimization
problems are given in Table 2. Each weight wi is chosen such that each term in the objective
function has a similar influence on the entire cost function.

Table 2. Parameters for ESS optimization.

Offline PESS
off,t Online PESS

on,t Common

Parameter Value Parameter Value Parameter Value

w1, w2, w3 5, 0.05, 0.1 w4, w5, w6, w7 3, 50, 50, 0.1 η 0.95

Ec1 120 kWh Ec2 40 kWh SoCmin 0.1

α 3 kW δ, γ 1 kW, 5 kW SoCmax 0.9

Poff,max 30 kW Pon,max 20 kW Pg,min 54 kW

For both ESSoff and ESSon, the initial SoC are set to 0.5, and Pg,min is 0.8 times the peak
of the average real load data. During the on-peak time, when the real power Pg1,t and Pg2,t
bought from the main grid are smaller than Pg,min, then the penalty is calculated as
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Cpen
off = ∑

t∈j
Cp,t(Pg,min − Pg1,t); {j|Pg1,j < Pg,min}, (6a)

Cpen
on = ∑

t∈i
Cp,t(Pg,min − Pg2,t); {i|Pg2,i < Pg,min} (6b)

where the penalty price Cp,t is adjusted as double the value of Cg,t. Hence, the resulting
costs for offline ESS scheduling and online ESS operations are given by

Coff =
23

∑
t=0

Cg,tPg1,t + Cpen
off , (7a)

Con =
k−1

∑
t=0

Cg,tPg1,t +
k+p+2+3∆tm

∑
t=k

Cg,tPg2,t +
23

∑
t=k+p+3

Cg,tPg1,t + Cpen
on (7b)

where period t ∈ [k, k + p + 2 + 3∆tm] is the time when ESSon is operated.
The simulation results are given in Figures 11–13 when PESS

off,t and PESS
on,t are applied to

the cases with positive, negative, and sign indefinite synthetic uncertainties. Scheduling
results are given on the left column in Figures 11–13 when only ESSoff (i.e., PESS

off,t) is used.
On the other hand, scheduling results are given on the right column in Figures 11–13 when
both ESSoff and ESSon (i.e., PESS

off,t, PESS
on,t ) are used.

(a) (b)

(c) (d)

(e) (f)

Figure 11. Offline ESS scheduling and online ESS operations with positive synthetic uncertainties.
(a) Offline load forecast, (b) Online load forecast, (c) The estimated power P̂g1,t and real power Pg1,t

from the main grid by using only ESSoff, (d) The estimated power P̂g1,t and real power Pg2,t from the
main grid by using both ESSoff and ESSon, (e) The amount of charging or discharging of ESSoff and
SoCoff,t, (f) The amount of charging or discharging of ESSon and SoCon,t.

Figure 11 is the operation result when the uncertainty is positive. In Figure 11a,b, P̂off,t
and P̂on,t are given, which are also presented in Figure 8. In Figure 11c,d, the power Pg1,t
and Pg2,t bought from the main grid are depicted together with corresponding estimate
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P̂g1,t and Pg,min. The green solid line denotes the electricity price Cg,t; ToU pricing, where
the start point of on-peak time k is 11:00; and the peak period p is 4 h. The price for off-peak
time is 1 USD/kWh and on-peak time is 5 USD/kWh. In Figure 11e,f, PESS

off,t, PESS
on,t (i.e.,

amount of charging and discharging of ESSoff and ESSon), and corresponding SoC (i.e.,
SoCoff,t, SoCon,t) are presented. The grey solid line denotes the constraints of SoC, SoCmin
and SoCmax, respectively.

When Figure 11a,c are compared, the estimated power P̂g1,t denoted by the blue line is
reduced during on-peak time based on the optimization (1) but the real power Pg1,t denoted
by the brown line becomes higher than P̂g1,t due to uncertain load that is not predicted by
P̂off,t. In the case of offline scheduling, since using only ESSoff based on a day-ahead load
forecast cannot consider the uncertainties during on-peak times, this results a higher cost.

On the other hand, when the brown lines denoting Pg1,t in Figure 11c and the red
lines denoting Pg2,t in Figure 11d are compared, it is verified that the proposed scheduling
method for ESSon effectively reduces the peak load during the on-peak time. To be more
specific, the effect of the uncertain load is eliminated by optimization (2c) based on the
online short-term load forecast P̂on,t, which has better performance than P̂off,t. By adding
ESSon, peak load reduction is achieved when considering the uncertain load and reducing
the required payment. This can be confirmed by the final cost paid. For Figure 11c, it costs
2072 but only 2042 for Figure 11d.

(a) (b)

(c) (d)

(e) (f)

Figure 12. Offline ESS scheduling and online ESS operations with negative synthetic uncertainties.
(a) Offline load forecast, (b) Online load forecast, (c) The estimated power P̂g1,t and real power Pg1,t

from the main grid by using only ESSoff, (d) The estimated power P̂g1,t and real power Pg2,t from the
main grid by using both ESSoff and ESSon, (e) The amount of charging or discharging of ESSoff and
SoCoff,t, (f) The amount of charging or discharging of ESSon and SoCon,t.

Figure 12 shows the operation results obtained by the proposed scheduling method
when the uncertainty is negative. Similar observations to those in Figure 11 are possible.
The brown line denoting Pg1,t in Figure 12c becomes lower than Pg,min during the on-peak
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time due to the negative uncertain load, resulting in a penalty, but in the case of Pg2,t as
denoted by the red line in Figure 12d, it does not deviate from Pg,min constraints through
ESSon. It is verified that the proposed scheduling for ESSon can effectively reduce the effect
of the negative variations. Quantitatively, for Figure 12c, it costs 2079 but only 2042 for
Figure 12d.

(a) (b)

(c) (d)

(e) (f)

Figure 13. Offline ESS scheduling and online ESS operations with indefinite synthetic uncertainties.
(a) Offline load forecast, (b) Online load forecast, (c) The estimated power P̂g1,t and real power Pg1,t

from the main grid by using only ESSoff, (d) The estimated power P̂g1,t and real power Pg2,t from the
main grid by using both ESSoff and ESSon, (e) The amount of charging or discharging of ESSoff and
SoCoff,t, (f) The amount of charging or discharging of ESSon and SoCon,t.

As the last case study, Figure 13 presents the operation results of the proposed
ESS scheduling when the variation can be indefinite (i.e., either positive or negative).
In Figure 13, both positive and negative variations are used. Again, similar observations
to Figures 11 and 12 are also possible. Quantitatively, for Figure 13c, it costs 2031 but only
1962 for Figure 13d.

5. Discussion

This section analyzes the effect of parameters δ and the initial value of SoCon,t on PESS
on,t

(i.e., amount of charging or discharging of ESSon).

5.1. Effect of δ

Figures 14 and 15 represent the operation results with both ESS for the same condition
as in Figure 11 with different values of δ. δ = 1 is used in Figure 11. Figure 14 corresponds
to δ = 0 and results in a cost value of 2035, and Figure 15 shows δ = 4 and cost of 2062.
As the value of δ becomes smaller, ESSon has to deal with more uncertainties according
to the optimization (2c). This is verified by comparing Figure 11 (δ = 1) with Figure 14
(δ = 0) since PESS

on,t discharges more in Figure 14. On the other hand, PESS
on,t discharges less
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in Figure 15 since δ = 4 makes ESSon cover less uncertainties compared with the previous
cases. Therefore, the proper choice of δ must be used since ESSon has to consider the
constraints in (2f).

(a)

(b)

(c)

Figure 14. Online ESS operation at δ = 0. (a) Online load forecast, (b) The estimated power P̂g1,t and
real power Pg2,t from the main grid by using both ESSoff and ESSon, (c) The amount of charging or
discharging of ESSon and SoCon,t.
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(a)

(b)

(c)

Figure 15. Online ESS operation at δ = 4. (a) Online load forecast, (b) The estimated power P̂g1,t and
real power Pg2,t from the main grid by using both ESSoff and ESSon, (c) The amount of charging or
discharging of ESSon and SoCon,t.

5.2. Effect of SoCon,t on the Initial Value

Figures 16 and 17 validate why it makes sense to set the initial value of SoCon,t to 0.5.
The configuration of Figure 16 is the same as that of Figure 11 except for the initial

value of SoCon,t = 0.2. As seen in Figure 16, ESSon starts to discharge in order to handle
the uncertainties but stops discharging after a short time due to the SoC constraints. This
makes Pg2,t violate the constraint on P̂g1,t + δ, thereby leading to the value of the cost being
2050, which is larger than the case in Figure 11 with the initial value of SoCon,t 0.5.

Conversely, in Figure 17, the initial value of SoCon,t is set to 0.8 and all the other
settings are the same as those in Figure 12. At this time, ESSon has to charge to deal with
the negative uncertainties, but it reaches the upper limit soon. Hence, it can not charge any
more. As a result, Pg2,t becomes smaller than Pg,min sometimes. This results in the value of
the cost being 2028, which is larger than that in Figure 12 with the initial value of SoCon,t
set to 0.5.

Hence, since it is unknown which uncertainties occur during on-peak times, it is
reasonable to set the initial value of SoCon,t to 0.5.
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(a)

(b)

(c)

Figure 16. Online ESS operations with initial SoCon,t value being 0.2. (a) Online load forecast, (b) The
estimated power P̂g1,t and real power Pg2,t from the main grid by using both ESSoff and ESSon, (c) The
amount of charging or discharging of ESSon and SoCon,t.
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(a)

(b)

(c)

Figure 17. Online ESS operations with initial SoCon,t value being 0.8. (a) Online load forecast, (b) The
estimated power P̂g1,t and real power Pg2,t from the main grid by using both ESSoff and ESSon, (c) The
amount of charging or discharging of ESSon and SoCon,t.

6. Conclusions

In this paper, a method for building energy management through real-time ESS
operations is presented for a case where a sudden load variation occurs. For this, the LSTM
network-based load forecast method was used for both the offline and online forecasts.
In addition, to increase the prediction accuracy, the load of the building and the outdoor
temperature were selected as input variables for the network. For the online load forecast,
the LSTM network was trained using augmented past load and temperature data. Based
on the day-ahead load forecast, the offline ESS was scheduled. On top of this, the online
ESS is scheduled to reduce the effect of load uncertainties during on-peak times by using
short-term load forecasts. For the scheduling of the two ESSs, optimization problems were
formulated considering various physical constraints. In a case study, it was confirmed that
the proposed method can reduce the effect of the uncertainties during on-peak times, which
then leads to lower costs.
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