
Citation: Khan, A.U.; Salman, S.;

Muhammad, K.; Habib, M.

Modelling Coal Dust Explosibility of

Khyber Pakhtunkhwa Coal Using

Random Forest Algorithm. Energies

2022, 15, 3169. https://doi.org/

10.3390/en15093169

Academic Editors: Longjun Dong,

Yanlin Zhao and Wenxue Chen

Received: 25 March 2022

Accepted: 24 April 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Modelling Coal Dust Explosibility of Khyber Pakhtunkhwa
Coal Using Random Forest Algorithm
Amad Ullah Khan 1, Saad Salman 2 , Khan Muhammad 2,3,* and Mudassar Habib 1

1 Department of Chemical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan;
amadullah@uetpeshawar.edu.pk (A.U.K.); muddasarhabib@uetpeshawar.edu.pk (M.H.)

2 National Centre of Artificial Intelligence, Intelligent Information Processing Laboratory,
University of Engineering and Technology, Peshawar 25000, Pakistan; saad_salman@uetpeshawar.edu.pk

3 Department of Mining Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan
* Correspondence: khan.m@uetpeshawar.edu.pk; Tel.: +92-91-9216796-8 (ext. 3031)

Abstract: Coal dust explosion constitutes a significant hazard in underground coal mines, coal
power plants and other industries utilising coal as fuel. Knowledge of the explosion mechanism and
the factors causing coal explosions is essential to investigate for the identification of the controlling
factors for preventing coal dust explosions and improving safety conditions. However, the underlying
mechanism involved in coal dust explosions is rarely studied under Artificial Intelligence (AI) based
modelling. Coal from three different regions of Khyber Pakhtunkhwa, Pakistan, was tested for
explosibility in 1.2 L Hartmann apparatus under various particle sizes and dust concentrations.
First, a random forest algorithm was used to model the relationship between inputs (coal dust
particle size, coal concentration and gross calorific value (GCV)), outputs (maximum pressure (Pmax)
and the deflagration index (Kst)). The model reported an R2 value of 0.75 and 0.89 for Pmax and
Kst. To further understand the impact of each feature causing explosibility, the random forest AI
model was further analysed for sensitivity analysis by SHAP (Shapley Additive exPlanations). The
study revealed that the most critical parameter affecting the explosibility of coal dust were particle
size > GCV > concentration for Pmax and GCV > Particle size > Concentration for Kst. Mutual
interaction SHAP plots of two variables at a time revealed that with <200 gm/L concentration,
−73 µm size and a high GCV coal was the most explosive at a high concentration (>400 gm/L),
explosibility is relatively lower irrespective of GCV and particle sizes.

Keywords: coal dust explosibility; random forest; SHAP

1. Introduction

The explosion is “an event that once initiated, grows rapidly and initially unbounded” [1].
Therefore, the need for coal dust explosion investigation is a factor for safety in the chemical
process industries and its storage for potential energy management [2]. Furthermore, coal
dust explosion in a confined environment (coal mine and chemical process industries)
results in the production of high pressure due to heating and the expansion of air and gases
produced, which leads to destruction and human loss.

Therefore, understanding coal dust explosions is significant to finding the governing
factors to mitigate them for increasing safety in industrial working environments. It has
been reported that coal dust explosibility is affected by particles size, amount of fines [3],
ignition temperature [4,5], air quantity [6] and concentration of coal [7–9] in an explosive
environment [10]. The Pmax (in MPa or bar) indicates the maximum destructive pressure
released from a coal dust explosion, and the deflagration index (Kst in MPa or bar-m/s) is
reported as the measure of explosibility [11]. The strength of explosibility is represented
by the Kst values from no explosion (0) to weak (0–200), intense (200–300) and powerful
(> 300) [12].
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Sensors are available to monitor dust concentration and size [13], supported by com-
munication through cloud computing [14]. With the emerging fields of IoT and real-time
prediction, e.g., water in-rush [15], tailing dam stability [16], coal fire in sealed off re-
gions [17], and stress monitoring in underground mines [18], available sensors for mea-
suring coal quality, size and dust concentration could be used to predict explosibility as
an early warning to prevent explosions. However, apart from other causes such as lack of
awareness and safety hazard violations, many coal mining accidents are caused by a lack
of calibration of sensors and the non-availability of coal dust prediction systems [19].

In the past few years coal dust explosibility has been studied extensively [5–15]. Coal
dust emanates from heavy cutting machines (e.g., longwall mining), crushers and during
loading on conveyor belts [20]. The particles may remain suspended where air ventilation
velocity is high and later settle on the surface after some time in the accessways and
mine entries [21]. The water spray lets the dust settle down, which is powdered with an
inert material to reduce its explosibility [22]. Recent trends follow the use of AI to model
flame propagation [23] of settled coal dust in galleries. Computational fluid dynamics
(CFD) based models have been used to model flame propagation using airflow and coal
dust measures [24–27]. Multilinear regression models have been used to model moisture
vs. coal explosibility [3]. A generalised model for understanding how different types
of explosible coal dust are affected by the coal characteristics and other coal parameters
remains a challenge. Rarely has explosibility been modelled using an AI algorithm for
investigating various aspects of coal explosibility. Particle dispersion and turbulence [24,28]
are vital factors governing dust explosibility, which is dependent on particle concentration,
size and shape [26–29]. Therefore, measuring coal dust characteristics during the air
suspension phase can enable early monitoring and warning, and it can be an indirect
measure to estimate the inert material required after dust suppression. This work is carried
out to address the modelling part for its possible subsequent use in these environments in
connection with IoT sensors to predict explosibility before time.

The phenomenon of explosibility was modelled using data collected from three dif-
ferent regions of Khyber Pakhtunkhwa (KP) and tested in a 1.2 L Hartman equipment.
Using the fractional factorial design, the required number of tests have been conducted to
generate data for modelling explosibility by an AI algorithm. A random forest regression
algorithm was used to model the effect of coal properties on the response, i.e., the maximum
pressure (Pmax) and the deflagration index (Kst). A game theory-based method, Shapley
Additive exPlanations (SHAP) [30], explains how the variation in coal dust properties
affects the response. Furthermore, sensitivity analysis is performed to quantify this effect
and to identify the safe limits for each parameter to mitigate coal explosibility in the KP
coal mines.

Literature Review

Many researchers have investigated coal dust explosibility to measure the main factors
influencing explosibility [2,4–11,31–34]. Moradi et al. [35] investigated the effect of sizes of
coal particles from different mines on the burning rate of coal using a 2-litre closed chamber.
The coal dust concentration, pressure and initial temperature were constant at 10000 g/m3,
1.5 bar and 25 ◦C, respectively. The response of varying particle sizes was recorded, keeping
all the parameters stable. The maximum pressure rate and the explosibility index reported
an inverse relationship with the particle size, i.e., 44µm and 37 µm had a higher burning
velocity than other dimensions [35]. Another study was conducted on coal dust to measure
the explosion severity and the ignition sensitivity of different ranks of coal. Lower ranks
of coal are reported to be easily ignited with severe explosion due to the highly volatile
content and pyrolytic property of coal [35]. Cao et al. [33] used experimental and numerical
analysis to understand the explosion severity of coal dust. The simulations showed the
behaviour of coal dust particles after the explosion. These results were consistent with the
experimental observations; hence, the simulations can be reliably used to model coal dust
explosion. Cashdollar [36] used a US Bureau of Mines (USBM) 20-L laboratory chamber to
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measure the effect of coal dust explosibility. The 20-litre chamber data agree relatively well
with those from full-scale experimental mine tests.

Particle size, volatile and oxygen [37] contents are almost equally important in govern-
ing the strength of coal dust explosibility. Tan et al. [31] used a pipe apparatus to analyse
the effect of change in dust particle size, concentration and a mixture of methane-coal
dust on the explosion pressure. Both the particle size and the concentrations varied at
five different levels. A high explosibility index Kst and the maximum pressure Pmax were
recorded for nano-sized particles compared to micro-particles. Similarly, a 38 L explosive
chamber was used for testing coal dust explosibility ignition at different concentrations [32].
A 5 KJ Sobbe igniter ignited coal dust to test if the coal was under or over-fueled at dif-
ferent concentrations. It was observed that coal dust concentrations below 100 g/m3 and
200 g/m3 failed to deflagrate because of insufficient fuel.

Furthermore, higher dust concentrations above 1200 g/m3 and 1400 g/m3 significantly
affected the maximum pressure as less oxygen was available to detonate the coal dust
sample. When conducting a coal dust explosibility experiment, the range of each parameter
plays a vital role in governing the response to the dust explosion. The parameters studied
previously with the respective level of variation are reported in Table 1.

Table 1. Ranges of different coal dust parameters in previous research projects.

Sr. No. Concentration (g/m3) Particle Size µm Volatile Matter (%) References

1. 213–1282 <38, 38–74, 74–212 17.73 [7]

2. 400,500 5, 11, 33, 95, 145 and 190 [38]

3. 250, 500, 1000, 1500, 2000, 2500, 3000 32.7–44.4 [39]

4. 104-200 Qualitative [40]

5. 400 20,38,75,250,350 [9]

6. 60, 125, 250, and 500 14.03–40.97 [41]

7. 100 to 600 53, 75 6–38.5 [42]

8. 150, 250, 500 0–56, 56–71 and 71–90 [43]

11. 60, 80, 100, 120, 150, 200, 250, 300, 350,
400, 450 and 500 38,53,73,104,147,300 19.69–27.18 [4]

2. Materials and Methods
2.1. Samples Collection

Three different coal type samples from two regions (Figure 1), i.e., Cherat and Darra
localities of KP province in Pakistan, were collected and analysed for the proximate analysis
reported in Table 1. After the study, the samples were ground to prepare samples of
−43 µm, −53 µm, −75 µm, −120 and +125 µm sizes. The coal particle sizes were tested at
concentrations of 50, 100 to 800 gm/L in the 1.2 L Hartmann apparatus. Various particle
sizes of coal dust from three different coal types on different concentrations were tested for
explosion in the 1.2 L Hartman apparatus and modelled using an RF-based model. This
study would help to identify the response parameters, and the sensitivity analysis will help
to control coal dust explosions.
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Figure 1. The regions from which coal samples were collected.

2.2. Experimental Setup

Cerchar first created the Hartman apparatus in the 1970s [44], consisting of a glass
tube with a dispersion cup. The powder was dispersed through an air blast and whirled up
by the pressurised air. The test substance was then subjected to a flame to determine if it
could be ignited by the ignition source [44,45]. The concentration of the dust–air mixture in
the Hartmann tube could be varied incrementally between 100 g/m3 and 4000 g/m3. Dust
could be classified as a dust explosion hazard by this screening if ignition occurred with
one of the two ignition types (spark ignition or filament ignition). A complete exclusion
of the dust explosion hazard was not possible when screening in the Hartmann tube.
Suppose the result of the spark ignition and the filament ignition was negative. In that
case, the dust explosion hazard must be examined in the 20 L apparatus in order to make
a reliable statement on the dust explosion hazard as stipulated in the standard DIN EN
ISO 80079-20-2.

A total of 8 samples, each of 1.5 kg, were collected from the respective sites Dara 1,
Dara 2, and Cherat localities. The representative samples from each site were collected,
including subsamples using the coning and the quartering method. The samples were
crushed in a disc crusher in the Department of Geology, Universiti Teknologi Malaysia
(UTM) Johor Bahru. Explosibility tests were conducted in the Explosibility Lab of the En-
ergy Engineering Department UTM Malaysia. The chemical analysis of samples was
conducted in the Pakistan Council of Scientific and Industrial Research (PCSIR) Lab
Peshawar, Pakistan.

A schematic view of the 1.2 L Hartmann stainless steel tube is presented in Figure 2.
An ignition electrode is located on the vertically symmetric axis of the Hartmann tube,
approximately 6 inches from the bottom. The minimum ignition energy was the mini-
mum spark energy that could ignite dust and maintain combustion. The ignition source
used for the tests is a continuous spark generated by a high voltage transformer between
two standardised electrodes placed near the bottom of the cylindrical 1.2 L Hartmann tube.
The energy content of the spark corresponds to the equivalent energy of about 10 Joules of
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a discharge (temporary) spark. The known concentration and particle size coal sample was
placed on an umbellate diffuser arranged in the lower part of the device and used for dust
diffusion into a 1.2 L Hartmann tube.
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2.3. Random Forest Algorithm

Leo Breiman [46] first proposed the random forest (RF) algorithm as a supervised
ensemble learning approach to handle classification and regression tasks. An ensemble
learner combines the output from many predictors (trees in this case), referred to as a
forest [47], to learn complex relationships. The fundamental unit predictor, i.e., each tree, is
obtained by deriving nodes and branches from bootstrapping, using roughly 63% of the
original data for training [48]. At the same time, the remaining samples are termed ‘out-
of-bag’ (OOB) samples [49]. Each node in the tree represents the splitting of this training
data on an input variable homogeneously, starting from the root node at the top, branching
down through subsequent splitting and nodes selection, downward to the leaf (terminal)
node representing an output variable. Thus, each node on any tree represents data splitting
on a variable recursively down the tree until the terminal node or other stopping criterion
is reached. A node variable, i.e., an input variable and a respective cutoff is selected among
the ‘p’ out of ‘m’ input variables (p < m) and possible cutoff values. A critical trait of RF
variable selection during node formation and branching is that the ‘p’ predictors considered
are a subset of ‘m’ predictors in the bootstrap data, thus resulting in uncorrelated outputs
from a collection of B trees termed a forest. Therefore, uncorrelated outputs from each tree
in a forest reduces the RF model’s variance. For a chosen B possible bootstrapped training
data sets, resulting in b = 1, 2 . . . B trees, a bth bootstrapped training set provide the output
fb(x), and finally the average output from all trees report the final estimate

f bag (x) =
1
B ∑ f b(x)

Tree building in the random forest regression model commences from the starting
node and moves downward using the following steps:

• Divide the predictor space, i.e., the set of all features into J distinct non-overlapping
regions R1, R2 . . . Rj (cut values)

• For every observation that falls into a region, make the exact prediction, i.e., the mean
of all the response values which fall into that region

• Select the cut value which has the minimum residual sum of squares (RSS)
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RSS = ∑J
j = 1 ∑i∈Rj

(yi − ŷRj
)

2

• The same process is repeated at each node until any of the stopping criteria is met
Stopping criteria for a regression tree depth can be any of the following:

• Minimum observation at internal node

# Minimum number of sample observations required for a further split at a node is
not met

• Minimum observation at a leaf node

# Minimum number of sample observations needed is not found at each node
after splitting

• Maximum depth of the tree

# Maximum layers of the tree are reached

When running a machine learning model on any dataset, the variables that govern
the model’s structure are called hyperparameters. After setting the base model, the hy-
perparameters need to be tuned to improve the machine learning model’s performance.
For example, in a random forest regression model, the four primary hyperparameters are
as follows:

1. “n_estimators”: The number of estimators refers to the number of decision trees
built by the random forest regression model before taking the maximum average
of predictions. A higher number of trees improve the performance at the cost of
computational expense.

2. The “max_depth” maximum depth hyperparameter is the depth of each decision tree
in a random forest model. A very high value of the maximum depth hyperparameter
leads to overfitting the model.

3. “min_samples_split” is the minimum number of data points placed in a node before
splitting the node.

4. “min_samples_leaf” is the minimum number of data points allowed in a leaf node.

2.4. Sensitivity Analysis of the Model

Interpretation of most machine learning models, such as ensemble methods or deep
networks, is often complex and commonly referred to as a “black box” [30,50]. In recent
times Explainable AI (XAI) algorithms have seen a rising trend, where XAI algorithms like
(SHAP, Partial Dependence Plots (PDP), Accumulated Local Effects (ALE), etc.) are used
to explain the predictions by AI algorithms [51,52]. SHAP [30] is a novel approach that
unveils the learned complexity of these machine learning prediction models. It is a valuable
tool for exploring the response of individual variables to output variables as it breaks down
the predictions into individual feature impacts [52]. The SHAP feature importance chart
reports the importance of each input variable in descending order affecting the output in
absolute terms. The feature importance value of an input feature is based on the mean
absolute magnitude of the SHAP values over all instances. A summary plot of SHAP values
explains the output variable’s sensitivity to the concerned input variable. The summary
plot can describe the cause-and-effect relationship through high or low values (represented
by red to blue colours) of the input feature and the respective SHAP value (of the output)
on the horizontal axis. A positive (SHAP value) on the horizontal axis for high values (red)
of the input variable refers to a direct relationship while an inverse relationship occurs
if the input feature has low (blue) values. In contrast, input features with high values
(red) reporting negative (SHAP value) on the horizontal axis would refer to an inverse
relationship of the input with the output (response) variable, while a low (blue) value of the
input variable would indicate a direct relationship with the output. Jittered points placed
densely on the graph represent the same SHAP value reported in numerous instances.

SHAP dependence scatter plots show the effect a feature has on the predictions made
by the model. Each point in the scatter plot is a single prediction from the dataset. The
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x-axis represents the value of the feature, and the SHAP value on the vertical axis illustrates
the effect of a feature’s value on the model’s output. The colour corresponds to a second
feature that interacts with the first feature of concern.

Furthermore, to analyse the outcome of the RF model for the change in each respective
input feature, the model was also fed with different values of the feature understudy,
holding the mean of all other input features constant.

3. Modelling Explosibility of Coal from Khyber Pakhtunkhwa Province of Pakistan
Using Random Forest Regression Model
3.1. Data Collection

The design of experiments is necessary to generate the number of experimental runs
with the minimum essential experimentation [53]. The fractional factorial design [54] was
used to carry out the experimental runs to investigate these variables’ effect on explosibility.
Following the design of experiments, different levels of the two input variables, i.e., particle
size and concentration, are presented in Table 2. The fractional factorial design suggested
84 runs as an optimal representation of the extent of the full factorial.

Table 2. Coal Types with Proximate Analysis Results.

Coal Type Total Moisture wt%
(Air Dried Basis) Ash wt% Volatile Matter wt% Fixed Carbon wt% Sulphur

wt%
GCV

kcal/kg

Cherat 6 26 15.45 49.7 2.81 4901

Dara 1 6.4 17.50 12.26 60.51 3.32 6318.2

Dara 2 7.03 18.57 10.28 61.07 3.02 6120.2

Various concentrations of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 g of coal sample
were obtained after passing from sieves of the required sizes through disc crusher. Samples
were fed to the 1.2 L Hartmann tube and sealed by tightening the screws at the bottom
of the tube. Next, the air inlet unit forced compressed air at 15 psi pressure into the air
storage tank. Then, a magnetic valve was opened to disperse the coal particles as dust into
the tube, followed by the final ignition of the electrode. The pressure sensor transmitted
the amplitude of explosion at millisecond intervals for registering values to the LabVIEW
software in the personnel computer (PC) connected to the system. The recorded data was
used to draw the graphs of pressure change against time to find (dp/dt), for reporting the
explosibility (Kst). The sensor did not report the dust ignition if the flame propagated less
than 60 mm from the spark position; the powder would be considered explosible if the dust
fired or exploded during the tests. If no dust fired or exploded in three series of tests for
any concentration, the powder was considered not explosible under the test conditions.

The raw data is read from a .csv file with >75,000 readings recorded at milliseconds
(ms) interval and plotted against the corresponding pressure (in bar) to determine the
maximum slope line (dP/dt) max, i.e., ‘maximum rate of pressure rise’ (Figure 3). A tangent
is fitted to this point and extended to find dP = (Pmax − 0) and dt, i.e., the difference between
times @ Pmax and intercept at P = 0. Finally, the Kst values were determined for each test
according to the equation given below:

Kst =

(
dP
dt

)
max

V
1
3
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3.2. Data Preparation

A total of 84 tests were conducted, out of which 81 reported meaningful results.
Two samples that reported no explosibility values were removed; one outlier that reported
a very high value of Kst was also removed. The variables were normalised using the
Min–Max scalar to adjust various scales of variables to a standard between 0–1. Principal
component analysis (PCA) was applied to sample features reported in Tables 2 and 3,
including the outputs Pmax and Kst. Based on selected Eigen loadings (Table 4) of the most
critical components defined by Eigenvalues (Table 4), GCV, particle size and concentration
were selected. At the same time, redundant features were ignored during further processing.
GCV can be considered as an indirect representation of the coal type. Table 5 shows the
descriptive statistics of selected features for all 81 samples.

Table 3. Variation of Coal dust concentration and particle size.

Coal Dust Concentration (mg/L) 50 100 200 300 400 500 600 700 800

Size (µm) < (−sign) or >(+sign) −43 −53 −73 −120 +125

Table 4. PCA Eigen Vectors and Loadings.

PC 1 PC 2 PC 3 PC 4 PC 4 PC 5 PC 6 PC 7 PC 8

Eigen Values 182,759.4 63,250.0 519.6 2.7 0.6 0.004 0 0 0
Conc. −0.0 0.99 0.0 0.0 −0.0 −0.0 0 0 0
size 0.0 −0.0 0.99 0.01 0.01 −0.0 0 0 0

T. Moist −0.0 0 −0.0 0.2 0.04 −0.0 0.2 0.77 −0.56
Ash 0.0 0 0.0 −0.02 −0.0 0.0 0.6 −0.6 −0.6

V. Matter 0.0 0 0.0 −0.7 −0.2 0.01 −0.5 0.0 −0.5
F. Carbon −0.0 0 −0.0 0.6 0.14 −0.01 −0.6 −0.3 −0.4

GCV −0.99 −0.0 0.03 −0.007 −0.001 0.0 0.007 −0.0 −0.0
Pmax 0.0 −0.0 0.01 0.22 −0.97 −0.14 0 0 0
Kst 0.0 −0.0 0.003 0.05 −0.13 0.99 0 0 0
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Table 5. Data Descriptive Statistics.

Concentration mg/L Particle Size
(Micron) GCV kcal/kg Pmax bar Kst bar·m/s

Count 81 81 81 81 81

Mean 405.55 −78.66 6072.73 2.058 0.422

Std dev 251.49 33.42 427.30 0.877 0.165

Min 50 −43 4901 0.15 0.023

Max 800 +125 6318.2 3.41 0.661

Coal dust concentration, particle size and GCV were used as the independent vari-
ables and Pmax, Kst as the dependent variables for AI-based modelling. Previously, it was
reported that volatile matter is one of the most critical parameters that influence coal dust’s
explosibility characteristics [34,36]. However, in this case, the range and the magnitude of
volatile matter were low (10.28% to 15.45%); therefore, GCV represented a particular coal
type. In contrast, the volatile matter content in prior research was 11.19 to 42.26, reporting
a more significant effect on the explosibility beyond 20% [34].

The random forest (RF) regression model was applied using the Python Scikit-learn
package [55]. The model was trained on 75% of the training data, while the remaining
25% of data was used to test the model accuracy using the train test split method of model
selection in sklearn library. To find the best set of hyperparameters of the RF algorithm, the
parameters were varied using the grid search CV method [56], as shown in Table 6. A total
of 1200 combinations were investigated during hyperparameter tuning.

Table 6. Hyperparameters ranges tried.

S. No Description Range Number of Values

1 “min_samples_split” 2, 3, 4 3

2 “min_samples_leaf” 1, 2, 3, 4 4

3 “n_estimators” 10, 20, 30, 50, 100 5

4 “max_depth” 2, 5, 6, 10 4

(3× 4 × 5 × 4) × 5 fold cross-validation = 1200 combinations

The 5-fold cross-validation split the data (80:20 train test split ratio) 5 times for each
case of the chosen hyperparameters within the grid search and performed the training
and testing each time. This hyperparameter tuning process was repeated three times to
investigate the effect of random initiation on the hyperparameters. Following the best-
chosen hyperparameters based on the grid search, the data was randomly split using the
train_test_split method into train:test datasets based on a 70:30 split to train and to test the
model. Similarly, the testing accuracy was reported, and the model was further investigated
for sensitivity analysis. The most widely used regression evaluation metrics, i.e., coefficient
of determination (R2) [57] and root mean square error (RMSE) [57], were used to evaluate
the performance of the RF regression model.

4. Results

Table 7 reports the optimised value for each hyperparameter during the tuning of
the model. A Pearson R of 0.86 and 0.94 were observed for the Pmax and Kst, respectively,
with the corresponding R2 of 0.75 and 0.89 for the best combination of hyperparameters
(Table 7).
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Table 7. Optimised hyperparameters after the Grid search method.

Parameter Name Description Value

n_estimators The number of trees in RF 50

max_depth The maximum depth of the tree 2

min_samples_leaf The minimum number of samples required
to be at a leaf node 2

min_samples_split The minimum number of samples required
to split an internal node 3

Figure 4 shows the actual vs. the predicted values for both variables. The correspond-
ing root mean square Error (RMSE) were reported as 0.14 and 0.07 for the Pmax and Kst
during the testing phase.
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The magnitude of importance of different input variables was visualised using the
SHAP feature importance chart given in Figure 5a,b. The most critical parameter was
particle size and GCV for predicting Pmax, while for Kst particle size was the most crucial
variable. Observing the SHAP summary plots in Figure 6, concentration indicated an
inverse relationship (negative correlation) with Pmax and Kst. Smaller particle sizes reported
lower Pmax and Kst, while a mix of different particle sizes caused higher Pmax and Kst,
which required further investigation. Similarly, higher GCV coal caused lower or higher
Pmax/Kst, while lower GCV coal was positively correlated with Pmax and Kst. Such nonlinear
relationships ought to be explored well by the SHAP interaction summary plot given
in Figure 7 and the interaction dependence plots in Figure 8 that report the effect of
two features on the predicted outcome of a model. It explores if the relationship between
the target and the variables is linear, monotonic, or more complex.
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The clearest (and most significant) interaction effect occurs between the size and GCV,
indicated by the greatest horizontal spread followed by concentration and size (Figure 7).
Conversely, GCV and concentration had a minor interaction. Therefore, to explore further,
dependence interaction curves are reported in Figure 8.

Generally, explosibility (Kst) decreased with increasing concentration, as seen in
Figure 8a. At smaller concentrations, i.e., <200 mg/L, explosibility was higher. Fine
sizes, i.e., <−73, had a high positive contribution to Kst compared to larger particle sizes
(>−73 as red dots), showing a low positive contribution to Kst (SHAP values are close to 0).
At greater concentration (>500 gm/L), particle sizes <−73 have a higher negative impact
on Kst than greater particle sizes. Between 300–400 mg/L concentration, the positive impact
of Kst exists at a lower strength (lower positive SHAP values), as a threshold concentration
at which the high impact of coarse particle sizes starts becoming evident and then subsides
beyond 500 gm/L concentration. Figure 8c also reports the general decreasing trend of
Kst with the increase in concentration. Figure 8c,d show that at smaller concentrations
(<200 gm/L), higher GCV coal increased explosibility (Kst) compared to lower GCV coal
which had a minimal effect on explosibility. At 400 gm/L concentration, the overall impact
is positive on Kst. However, beyond a 400 gm/L concentration, high GCV coal negatively
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impacted explosibility (Kst), while low GCV coal had nearly no impact on Kst. Further-
more, Figure 8d shows that lower GCV (Cherat coal) did not affect explosibility, whereas
medium GCV (Darra 2) coal reported higher Kst, while lower Kst was reported by Darra
2 coal (GCV = 6138). Larger particle sizes increased explosibility (Figure 8e) for even lower
GCV Cherat coal. In comparison, medium GCV Darra 2 coal had a minimum effect on
explosibility for larger sizes, while fine sizes caused higher explosibility with high positive
SHAP values (Figure 8f). Moreover, the higher GCV Darra 1 coal reported the least overall
explosibility and a relatively lower explosibility for smaller sizes than larger.

In the case of dependence interaction plots for Pmax, a decrease in Pmax is seen with
increasing concentration (Figure 9a), similar to Figure 8a. The horizontally opposite Figures
complimented each other during interpretation. For example, the value for size is read from
Figure 9b, while explaining the concentration interaction with size in Figure 9a. Similarly,
interpreting Figure 9b concerning the importance of concentration to size, the concentration
values can be read from Figure 9a.
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A nonlinear relationship is shown between concentration vs. size for Pmax, where at
a low concentration (<−200 mg/L), smaller sizes report a highly positive effect on Pmax
(Figure 9a); −53 µm size being the dominating cause of high Pmax, as seen in Figure 9b.
Beyond 500 gm/L concentration, negative SHAP values indicate a higher concentration
inverse effect Pmax irrespective of particle sizes. However, between 400–500 mg/L, larger
particle sizes have a higher positive impact on Pmax, and finer sizes have a lower impact
(SHAP values are close to 0). The−43 micron sizes exhibit very low SHAP values, indicating
they highly reduce explosibility, as shown in Figure 9b.

The particle size showed an increasing trend for Pmax beyond−53 µm size in Figure 9b
due to the nonlinear concentration vs. size interaction explained in Figure 9a. Figure 9c
also showed a decreasing trend of Pmax with an increase in concentration, as in Figure 9a. In
Figure 9c, at higher concentrations, >500 mg/L, a drop is observed in Pmax for both low and
high GCV coal. Figure 9e shows that Pmax reported an increase as the size increased. Cherat
coal (lower GCV) reported a slight positive correlation with Pmax (Figure 9f), while Darra
2 coal (6120 kcal/kg GCV) had a greater positive Pmax for smaller particle sizes compared
to those that were larger (Figure 9f). The impact of Darra 1 coal (6318 kcal/kg GCV) was
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highly negative (inverse) among the coal types. A similar effect was seen for smaller sizes
of this coal type than larger sizes.
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from SHAP values for explaining the RF model.

To further explore the sensitivity of output variables, one of the input variables (particle
size, concentration and GCV) was varied while keeping other input variables constant
at the mean values given in Table 5. The results were plotted and reported in Figure 10.
Figure 10a,b showed that the Pmax and Kst decreased with increased concentration, as
reported in Figure 8a,b. Figure 10c,d indicated that Pmax and Kst increased with particle
sizes and dropped beyond −53 microns and −120 microns, respectively. Pmax and Kst are
the least for the highest GCV as in Figure 10e,f. These results give similar results to the
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SHAP dependence plots, but the SHAP dependence plots are more detailed, highlighting
the interaction between two variables.
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5. Discussion

Machine learning models are considered black-box models that do not explain cause-
and-effect relationships. However, SHAP gave some interesting insights into the cause-
and-effect relationship between inputs (size, concentration and coal type represented by
GCV and outputs (explosibility (Kst) and maximum pressure (Pmax)). It is evident from
Figure 8a,b,e,f and Figure 9a,b,e,f that different particle sizes of coal dust have a significant
effect on both Pmax and Kst. Smaller particle sizes cause smooth and robust deflagration
due to greater intermolecular forces [49] and a higher contribution to volatilisation [41].
The model clearly shows this effect at lower concentrations <300 gm/L. Larger particles
are relatively dispersed in the form of flakes with edges and corners [31]. However, larger
particle sizes exhibited stronger explosibility (Kst) and maximum pressure (Pmax) at medium
concentrations (400 gm/L). Moreover, because the particle size ranges −43, −53, −73, and
−120 µm were cumulative, there was higher size dispersity as the particle size increased.

Moreover, coal dust lifted by impact airflow has dispersion and sedimentation pro-
cesses. Therefore, the dispersion and the sedimentation rates of coal dust with different
particle sizes are also different, which may have influenced the suspension state of coal
powder. In addition, the coal powder was not added with any anti-agglomerating sub-
stance; thus, agglomeration may occur in the explosion, thereby influencing the combustion
performance of coal dust. Additionally, the +125 µm particle sizes that exclude sizes smaller
than this range also report high Pmax and Kst in Figures 8b and 9b. Such an effect may occur
if the participation of coal dust in the explosion belonged to a gas–solid reaction; hence, the
reaction process and the mechanism may be more complicated.

In this study, higher GCV (6120 and 6318) and small sizes significantly affected both
explosibility and the maximum pressure. Dara 1 coal (GCV: 6318) reduces the Pmax and
Kst at smaller sizes than a larger size, and Dara 2 coal (GCV: 6120) increases both Pmax and
Kst at smaller sizes compared to those that are larger. Additionally, the lower GCV (4901)
Cherat coal had minimal effect on Pmax and Kst.

The concentration, in general, has an inverse relationship with both Pmax and Kst, i.e.,
lower concentration coal has high explosibility and vice versa. This may be because there
is sufficient oxygen for combustion reaction at low/medium concentrations or medium
carbon content represented by lower or medium GCV, aiding in faster heat transfer [58].

Without oxygen at higher concentrations, the densely concentrated dust particles
cannot get enough oxygen molecules to deflate completely. Furthermore, the leftover
unreacted molecules absorb the heat, leading to low explosibility [58]. Therefore, a lower
explosibility zone is mainly associated with high concentration (>500 mg/L). These results
indicate that the oxygen fuel is deficient in higher concentrations (>500 gm/L), causing
lower Pmax and Kst; therefore, the 1.2 L Hartmann is limited generally for conducting tests at
higher concentrations. It is also observed that smaller particle sizes at lower concentrations
are more explosible, i.e., positively contribute to Kst and Pmax, but this effect is reversed
at higher concentrations, i.e., smaller particle sizes negatively impacted Pmax and Kst.
Additionally, the larger particle sizes showed a minimal impact on explosibility with rising
concentrations as they have low SHAP values.

Sensor deployment, supported by the proposed AI model, may be implemented in
zones of high air velocities [19], where dust is in suspension with ample oxygen supply. This
safety monitoring system may be deployed with other dust suppression/control measures
that must also be in place to suppress dust. At 400 to 800 gm/L, the experiments were more
dominating due to the lower oxy-fuel ratio; therefore, further experiments at these ranges
must be conducted in a 20 L or 1 m3 chamber to explore explosibility characteristics at these
concentrations. An IoT sensor system + AI-based explosibility model may be analysed
using coal dust concentration, dust particle size, and coal type parameter as a monitoring
and warning system to further this research. The quantity of coal dust concentration and
suppression can also be linked to estimating the amount of inert material required to reduce
the explosive properties of coal to a safe level.
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6. Conclusions

The objective of the work was to address the knowledge gap by AI-based modelling
to investigate the effect of coal concentration, coal type and particle size on explosibility
Kst and Pmax. Coal from three different localities was tested in 84 experiments to measure
the maximum pressure Pmax and the explosibility index Kst in the 1.2 L Hartman apparatus
for various concentrations and particle sizes. Kst were determined by fitting a tangent to
each curve of the experimental run. Samples were recorded for GCV, dust concentration
and particle size as input variables to predict Pmax and Kst. The random forest algorithm
was applied to the input data for modelling the outputs, reporting R2 scores of 0.75 and
0.89 for Pmax and Kst, respectively. The Shapley Additive exPlanations (SHAP) algorithm
explained the behaviour/prediction of the random forest model, identifying the essen-
tial input variable with a sensitive limit. A SHAP based summary plot and interaction
dependence curves were plotted to get an insight into the cause-and-effect relationship
learned by the model. Additionally, the model’s response to the change in each feature
was derived through sensitivity analysis, where each feature was varied at different levels.
At the same time, all the other components were held constant at the mean values of each
respective feature.

The following are the essential conclusions:

• The coal dust samples of the KP region have low volatile matter (10–16%); hence GCV
was more representative of coal type as reported by PCA results.

• Initially, SHAP plots reported the parameters influencing the coal dust explosibility in
descending order were particle size > GCV > concentration for Pmax and GCV > particle
size > Concentration for Kst.

• SHAP plots reliably interpreted the random forest explosibility model explaining the
complex inter variable phenomenon in greater detail.

• A SHAP interaction plot revealed that the concentration of coal dust particles has an
inverse relationship with Pmax and Kst. A lower concentration results in a higher Pmax
and Kst, which is a consequence of sufficient oxygen available to deflagrate all the
coal dust particles. High GCV coal is utilised to its maximum at lower concentrations,
causing higher explosibility.

• At higher concentrations, there is not enough oxygen for the complete reaction of
the coal dust particles. The excess molecules absorb the heat of coal dust explosion,
resulting in an overall drop in maximum pressure and explosibility.

• At concentration <200 gm/L, lower particle size (−73 µm) and high GCV coal have
the highest explosibility, and more significant particle sizes have no impact.

• 400 gm/L is a threshold concentration as a high impact of fine particle sizes exists,
and explosibility is also positively related to this concentration.

• At greater concentrations (>500 gm/L), particle sizes <−73 µm negatively impact Kst
and Pmax compared to more significant particle sizes for even lower GCV coal.

• The increase in concentration beyond 400 gm/L decreased explosibility, high GCV
coal caused a negative impact on explosibility.

• Concentration vs. size interaction plot showed that lower concentration (<200 gm/L)
and fine size (<−73 µm) reported higher Pmax. While at >500 gm/L concentration,
Pmax decreased irrespective of particle sizes.

• At concentrations between 400–500 mg/L, larger particle sizes positively correlate
with Pmax compared to finer sizes.

• Cherat coal (lower GCV) reported a slight positive correlation with Pmax, while Darra
2 coal (6120 kcal/kg GCV) had a greater positive Pmax for smaller particle sizes than
those that were larger.

• The impact of Darra 1 coal (6318 kcal/kg GCV) was highly negative (inverse) among
the coal types; a similar effect was observed for smaller sizes of this coal type than
larger sizes.

• The model is valid for access airway vicinities with high air velocities, where dust is
suspended at a lower concentration with ample oxygen supply.
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• Further explosibility experiments must be conducted at higher concentrations
(400 to 800 gm/L) in a 20 L or 1 m3 chamber to overcome the lower oxy-fuel ra-
tio within the Hartmann apparatus. These will benefit modelling explosibility in
regions of high dust concentrations, e.g., underground mines with medium/lower
air velocity.

• An IoT sensor system may be developed by deploying the AI-based explosibility
model to use coal dust concentration, particle size, and coal type parameters as a
monitoring and warning system.
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