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Abstract: It is highly critical that renewable energy-based power generation units provide continuous
and high-quality electricity. This requirement is even more pronounced in standalone wind–diesel
systems where the wind power is not always constant or available. Moreover, it is desired that the
extracted power be maximized in such a way that less fuel is consumed from the diesel engine. This
paper proposes a novel method to design decentralized model-predictive controllers to control the
frequency and power of a single standalone generation system, which consists of a wind turbine
subsystem mechanically coupled with a diesel engine generator subsystem. Two decentralized
model-predictive controllers are designed to regulate the frequency and active power, while the
mechanical coupling between the two subsystems is considered, and no communication links exist
between the two controllers. Simulation results show that the proposed decentralized controllers
outperform the benchmark decentralized linear-quadratic Gaussian (LQG) controllers in terms of
eliminating the disturbances from the wind and load power changes. Furthermore, it is demonstrated
that the proposed control strategy has an acceptable robust performance against the concurrent
variations in all parameters of the system as compared to the LQG controllers.

Keywords: decentralized controller; wind turbine; frequency and power regulation; model-predictive
control; prediction horizon; control horizon; robustness

1. Introduction

The main source of electricity generation in remote regions is diesel engine generators
(DEG), which are stable and controllable sources of energy. DEGs require large amounts of
oil to operate which are very costly (cost of fuel, transportation, and storage) and also cause
pollution in the environment. Renewable-based energy sources are the best alternative
solutions to address these issues. Due to the wind abundance in remote areas, wind-based
power generation systems are used to decrease the fuel consumption in diesel engines [1].
Standalone mechanically coupled wind-turbine and diesel engine generator systems are
specifically suitable for remote areas, such as rural communities in Alaska [2].

The wind and load powers have irregular natures, and their sudden changes cause
issues, especially in standalone systems where there is no stable grid power [3]. The
intermittent behaviors of wind and load powers can affect the supply–demand balance,
and cause instability in the frequency and active powers. Thus, advanced controllers are
designed for such systems to smoothen the transient profile of frequency and active power
in the presence of such variations and disturbances. Moreover, energy storage systems
(ESSs) such as battery banks, superconductivity magnetic energy storage, compressed-air
energy storage, and flywheels can be utilized to reduce the negative impacts of these
instabilities [4].

There are several studies in the literature to address the problem of frequency and
active power control in standalone wind–diesel systems. These systems include two subsys-
tems, and the preferred choice is to design decentralized controllers for the two subsystems.
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Decentralized control configurations are more reliable than centralized ones, since they do
not require high-speed communication links among controllers. Therefore, the adverse ef-
fects of communication failures or delays on the system are eliminated. Another advantage
is that a single failure in one local controller does not affect the entire control system [5].
Another application of decentralized controllers can be found in robot manipulators where
there exist a set of second-order subsystems for which separate controllers are designed [6].
In the following, some of the recent studies performed on the frequency and active power
control of standalone wind–diesel systems are reviewed.

In [7], authors design two types of controllers, namely, proportional–integral (PI)
and proportional–integral–derivative (PID) to regulate the frequency and active power
of a standalone wind–diesel system. The parameters of the controllers are tuned using
genetic algorithm (GA) and particle swarm optimization (PSO). In [8], authors carry out
a comparative study of scaling-factor (SF)-based fuzzy logic controller (FLC) (SF–FLC),
SF–FLC with PI (SF–FLC–PI) controller, SF–FLC with PD (SF–FLC–PD) controller, and
SF–FLC with PID (SF–FLC–PID) controller to damp the frequency and power deviations of
an isolated hybrid power system. Quasi-oppositional harmony search (QOHS) algorithm is
used to optimize the controller parameters. The study in [3] presents a design strategy for
a robust PI controller to balance frequency oscillations in a remote microgrid power system.
The proposed controller is a conventional PI controller. An inverse additive perturbation is
formed as an optimization problem securing the robustness of the proposed PI controller.
The GA is utilized to tune and optimize the proposed PI controller parameters.

In [9], a two-level control methodology is presented to alleviate the frequency fluctu-
ations in the wind–diesel standalone microgrid. At the first level, from the wind turbine
generator (WTG) side, a constant wind power control signal is replaced by an optimum
adaptive wind power control signal considering the power system operation and wind
speed status. The proposed approach makes the microgrid frequency variations stay within
the limits in all operating points. The study performed in [10] proposes a fractional or-
der (FO) PID (FO-PID) controller for load–frequency control (LFC) of an isolated hybrid
power system, including a biomass-based diesel engine generator and a wind turbine
generator. The FO-PID controllers are the PID controllers but with different order of the
integral and derivative parts. In [11], authors present robust fuzzy controllers that include
super-magnetic energy storage units to mitigate the frequency variations in a standalone
hybrid wind–diesel system. In [12], a robust decentralized control system is presented
for automatic voltage regulation (AVR) and LFC of a generator in an isolated microgrid
with multiple distributed generation systems. This control scheme is applied to an off-grid
microgrid that includes renewable distributed generation and energy storage systems.

The work carried out in [13] presents an optimal decentralized controller for the LFC of
a multi-area islanded grid with various synchronous generation systems. The decentralized
controllers consist of various PI controllers that are concurrently modeled and optimized
by using a classical descent-direction quasi-Newton-based approach. In [14], authors
propose the design of decentralized overlapping decomposition controllers to regulate the
frequency and active power of a storage-based wind–diesel system. The optimal control
used in this study is based on linear quadratic regulator (LQR) controllers. In [15], a novel
double equivalent-input-disturbance (EID) controller is presented for the frequency control
of an isolated wind–diesel microgrid. In this integrated control structure, one single EID
controller is applied to the pitch angle control system to mitigate the output power of the
wind turbine generator by controlling the pitch angle. Another single EID controller is
applied to the diesel generator side to adapt the output power of the diesel generator to
balance the power of the system and keep the frequency in the normal range.

In [16], authors propose PI controllers to minimize the frequency deviations in a wind–
diesel system. The parameters of the PI controllers are tuned using D-partition method.
In the study carried out in [17], fuzzy-PID controllers are designed for a two-area wind–
diesel system. The fuzzy-PID control parameters are tuned using lighting flash algorithm
in order to improve the flexibility of the system against disturbances in the frequency.
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In [18], a hybrid dragonfly algorithm and pattern search method (HDA-PS) is presented
to optimize the parameters of a two-degrees-of-freedom PID controller for the LFC of a
multi-microgrid system. The frequency control objective is formulated as an optimization
problem under stochastic disturbances, and HDA-PS is used to achieve the optimal control
parameters. In [19], the design of decentralized optimal controllers is proposed to regulate
the frequency and power of a mechanically coupled wind–diesel system. The decentralized
control structure includes two PI-lead controllers that are implemented and optimized
concurrently using a quasi-Newton-based optimization approach.

In this study, decentralized model-predictive controllers (MPCs) are designed in a
sequential way to address the frequency and active power regulation of a standalone wind–
diesel system. This sequential decentralized MPC controller design method is proposed
for the first time in this study. The proposed MPC scheme provides an optimal solution
to a quadratic cost function based on the dynamic model of the system. This control
strategy calculates the optimal control signal subject to the given constraints on the output
frequency deviation and the load change. The performance of the proposed decentralized
MPC scheme is analyzed by injecting step and random disturbances in the wind and load
powers, as well as changing the model parameter values. It should be pointed out that
since MPC is an optimal control strategy, the decentralized LQG controllers are chosen as a
benchmark due to their optimal control feature. Another important point to mention is that
voltage variations are not studied in this paper due to the fact that voltage control loop has
faster dynamics compared to the frequency control loop, and their controllers are designed
separately [12]. The main contributions of this paper are listed as follows:

1. Designing the decentralized MPC controllers without communication links using a
sequential method.

2. Performing extensive simulations to show the superior performance of the proposed
decentralized MPC in reducing the effect of disturbances in the wind and load power
variations, as well as its robustness against all parameter changes as compared to the
decentralized LQG method (benchmark).

The rest of the paper is summarized as follows. The standalone wind–diesel system
and the dynamical models for each subsystems are presented in Section 2. Section 3 de-
scribes the MPC methodology and the design of decentralized controllers using sequential
strategy. In Section 4, simulation results are presented to assess the performance of the
proposed decentralized MPC controllers in terms of damping the disturbances from the
wind and load power changes. Furthermore, the robustness of the proposed controller
against all parameter variations of the system is analyzed. Finally, the conclusions are
summarized in Section 5.

2. Model of the Standalone System

The wind–diesel system studied in this paper consists of several modules, such as a
synchronous generator driven by a diesel engine, diesel engine speed controller, battery
energy storage system (BESS), wind turbine, torsional system, fluid coupling, and blade
pitch controller. Figure 1 shows a general diagram of this system. This standalone system
is suitable for remote and isolated regions such as rural areas in Alaska, where there is
no power source from the main grid, and their electricity is mainly generated via diesel
engine generators [2]. By connecting a wind turbine shaft to such diesel engine generators
using a fluid coupling system, the fuel consumption by the diesel engines can be reduced.
Moreover, another advantage of such systems is that the wind turbine does not require a
dedicated generator that is more cost-effective. The main control objectives in this system
are to keep the diesel engine speed at a set-point level, and the turbine active power at the
desired level. Furthermore, the dynamic equations of the wind–diesel system are linearized
around the nominal operating point for stability and small signal analyses [20].
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Figure 1. The general configuration of the mechanically coupled wind–diesel system.

The mechanically coupled wind–diesel system is shown in more detail in Figure 2,
where subsystems 1 and 2 represent the modules in the diesel engine generator and wind
turbine systems, respectively. As shown in Figure 2, the frequency error signal e1 is fed into
the speed controller of the diesel engine (controller 1) based on which the control signal
u1 is generated. Then, this control signal tries to adjust the fuel valve (Tva(s)) to produce
the required power to the diesel engine. In addition, the BESS behaves as a short-term
backup generation unit to help the regulation of the frequency. The transfer functions of
the wind–diesel subsystem (first subsystem) are as follows [14]:

Tva(s) =
τva1s + 1

s(τva2s + 1)(τva3s + 1)
(1)

Tde(s) =
Kde

τdes + 1
(2)

Tbess(s) =
Kbess

τbesss + 1
(3)

In the second subsystem, the power error signal e2 is generated based on the difference
between the set-point power (∆Pmax) and the power generated by the wind turbine, and
is transferred through the fluid coupling (∆Pwtg). Then, this signal is fed into the pitch
angle controller (controller 2) to tune the hydraulic pitch actuator (Thpa(s)) to change the
pitch angle of the wind turbine for extracting the maximum power. The wind turbine pitch
response indicates a specific characteristic of the turbine and is defined as the diversion
from the optimal pitch angle as a response to the direction of the wind [21]. This pitch
response is modeled using a lag transfer function called datafit pitch response. It is to
be noted that a wind turbine with variable blades operates efficiently during irregular
wind speeds. The fluid coupling module (Tf c(s)) is responsible for connecting the diesel
generator and wind turbine shafts through a fluid coupling system, which is an alternative
for a mechanical clutch [22]. This module transfers the power from the wind turbine to the
diesel engine when the wind turbine rotor speed is more than that of the diesel engine. The
blade characteristics gain generates power that is proportional to the angle of the turbine
pitch. The second subsystem has the following transfer functions [14]:

Thpa(s) =
Khpa(τhpa1s + 1)

(τhpa2s + 1)(s + 1)
(4)

Tdpr(s) =
Kdpr

s + 1
(5)
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Tturb(s) =
Kturb

τturbs + 1
(6)

Tpc(s) = Kpc (7)

Tf c(s) = K f c (8)

Wind Turbine

Fluid Coupling

Diesel Engine

BESS

Blade
Characteristics

Gain

Datafit Pitch
Response

Hydraulic Pitch
Actuator

Valve ActuatorController 1

Controller 2

Subsystem 1

Subsystem 2

Figure 2. Block diagram of the mechanically coupled wind–diesel system.

3. Model-Predictive Control Design

In this section, a brief introduction to the MPC controller and its structure and design are
presented. Then, the decentralized solution to the model introduced in Figure 1 is provided.

3.1. MPC Methodology

MPC is an advanced control method used in several applications such as chemical
processes, petrol industry, electromechanical systems, etc. [23]. It is based on a predictive-
based control scheme in which an optimum control action is achieved over a predefined
prediction horizon at every sampling interval. The optimization process tries to minimize
the difference between the predicted and reference response as well as the control effort,
subject to some constraints.

Figure 3 demonstrates the main structure of the MPC system. The future plant outputs
are predicted by using an internal model based on the past and current values of the inputs
and outputs as well as on the optimal future control actions. The total prediction consists
of two components: the free and forced responses. The former is defined as the expected
behavior of the output assuming that the future control actions are zero, while the latter
represents the additional component of the output due to the possible set of future controls.
For linear systems, these two responses are added together to calculate the total prediction
signal. Moreover, the reference trajectory signal is the desired values that the output should
track. The role of the optimizer is basically to calculate the best set of future control signals
by minimizing a cost function (J). This optimization problem is subject to constraints on
both manipulated and control variables [24].

The main objective in MPC is to minimize the future output error with minimum
control effort. The cost function to be minimized is defined as a weighted sum of squared
predicted errors and squared future control actions [23]:
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J(N1, N2, Nu) =
N2

∑
j=N1

β(j)[ŷ(k + j|K)− w(k + j)]2 +
Nu

∑
j=1

λ(j)[u(k + j− 1)]2 (9)

where N1 and N2 are the output lower and upper prediction horizons, respectively, Nu is
the control horizon, and β(j) and λ(j) are weighting factors. The reference trajectory across
the future limit N is represented by w(k + j). It should be noted that the control effort is
allowed to be minimized over the control horizon according to the following equation [23]:

∆u(k + j) = 0 f or j ≥ Nu (10)

In addition, the cost function has constraints over the manipulated (control) and
output variables as well as the rate of manipulated variable, as follows [23]:

umin ≤ u(k) ≤ umax (11)

ymin ≤ y(k) ≤ ymax

∆umin ≤ ∆u(k) ≤ ∆umax

The optimal sequence of the control action is achieved by minimizing Equation (9)
over the horizon N subject to the constraints of Equations (10) and (11).

While providing an easy-to-apply optimal control scheme, MPC has several advantages,
including fast response and robustness against system uncertainties, as well as nonlineari-
ties [25]. However, this control technique needs the knowledge of the entire system model
which, together with the associated control constraints, makes it a more complex controller
as compared to the conventional controllers such as PID. Moreover, because of the internal
real-time optimization stage in the controller, the control algorithm is time-consuming.

Optimizer

Model

Model

Reference  
trajectoryTotal response

Free response
Forced  

responseFuture control 

Constraints

Cost  
function 

(J) 

Past outputsPast controls

Future errors

Figure 3. The main structure of the MPC controller.

3.2. Decentralized MPC

In this subsection, decentralized MPC controllers are designed for the two subsystems
introduced in Figure 2. The design is based on a sequential procedure. In this procedure, the
first MPC controller is designed for the first subsystem (diesel generator subsystem). Then,
while the first MPC is in place and the first control loop is closed, the second subsystem is
connected to the first subsystem through the fluid coupling module, and the second MPC
controller is designed for the entire system. Figure 4 demonstrates the sequential design of
the MPC controller for the mechanically coupled wind–diesel system.

In the next section, the proposed sequential decentralized MPC design technique is
applied to the mechanically coupled diesel generator and wind turbine subsystems, and
the simulation results are demonstrated and analyzed.
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Subsystem 1 Subsystem 2Subsystem 1

(a) (b)

Figure 4. Sequential design of the decentralized MPC controllers: (a) MPC1 for subsystem 1 and
(b) MPC2 for subsystem 2 connected to subsystem 1 and MPC1 in a closed-loop.

4. Simulation Results

Simulation results for the proposed decentralized MPC designed for the wind–diesel
system shown in Figure 2 are presented in this section. The results are based on the real-
time simulations using OPAL-RT (OP5700) simulator (Manufactured in QC, Canada) and
MATLAB/SIMULINK R2019a software (1994-2022 The MathWorks, Inc., Portola Valley, CA,
USA). OP5700 contains a powerful computer which has a linux-based real-time operating
system, and its CPU specifications are Intel Xeon E5, 8 Cores, 3.2 (GHz), and 20 (MB) cache
memory. The wind–diesel closed-loop control system shown in Figure 2 is simulated in
the Simulink environment, which is connected to RT-Lab software in OP5700. Then, the
simulation results are transmitted to a regular PC using an LAN cable and are shown in
Matlab environment in Windows operating system, as demonstrated in Figure 5. Moreover,
the fixed-step size of the real-time simulation is chosen using trial-and-error procedure in
such a way that there is no discontinuity in the real-time waveforms of the outputs. This
fixed-step size is chosen to be 0.0001 (s). In addition, the solver is ode4 (Runge–Kutta). The
model parameter values are listed in Table 1. The decentralized MPC parameters for both
controllers are shown in Table 2.

OP5700

LAN

Mechanically-coupled
wind-diesel closed-loop

control system

PC

Figure 5. Real-time simulation using OP5700.

Table 1. Model parameters values.

Subsystems Parameter Values

First subsystem τva1 = 0.01, τva2 = 0.02, τva3 = 0.2, Kde = 72, τde = 14.4
Kbess = −1/300, τbess = 0.1

Second subsystem Khpa = 1.25, τhpa1 = 0.6, τhpa2 = 0.041, Kdpr = 1.4, Kturb = 0.004,
τturb = 4, Kpc = 0.8, K f c = 16.2
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Table 2. Design parameters of the two decentralized controllers, MPC1 and MPC2, for the two subsys-
tems.

MPC1 MPC2

Sample time = 0.0001 (s)
Prediction horizon = 11 (s)
Control horizon = 2 (s)
Weights on control variables = 0.0003
Weights on control variable rates = 0.008
Weights on the output signals = 25

Sample time = 0.0001 (s)
Prediction horizon = 10 (s)
Control horizon = 5 (s)
Weights on control variables = 3
Weights on control variable rates = 5
Weights on the output signals = 20

Before delving into the details of the simulation results, it should be pointed out that
the fixed variable Fre f that appeared in the wind–diesel model in Figure 1 is the reference
frequency set-point (60 (Hz)) for the diesel engine generator, and that is why its variations
are considered to be zero (∆Fre f = 0 in Figure 2). Similarly, the demanded power from the
wind turbine is a constant value (Pmax = 150 (kW)), and, hence, ∆Pmax = 0 (kW). Therefore,
the assessments of the controllers are performed based on the disturbances resulting from
the wind and load power changes. It should also be noted that the maximum allowable
frequency variation lies in the range of 0.1–0.2 (Hz).

The first case study is to analyze the robust performance of the proposed decentralized
MPC controllers against disturbances in the load and wind powers. As mentioned before,
sudden changes in the wind and load power are common in such systems because of the
volatile nature of the wind power and electricity consumption (load) at the consumer side.
Figure 6 shows that both decentralized MPC and LQG controllers are capable of damping the
distortions in the frequency and turbine power errors. However, MPC controllers can remove
those undesired oscillations much faster than the LQG controllers because of their capability
of predicting the future disturbances. Table 3 demonstrates a quantitative performance
comparison between the proposed method and the benchmark LQG. It should be pointed out
that the LQG control minimizes the cost function J =

∫ ∞
0 (xTQxx + uTQuu)dt, where x and

u are the state and input vectors, respectively. Moreover, the weight (covariance) matrices are
chosen to be Qx = 104 × I5×5 and Qu = 1 for the first controller, and Qx = 104 × I11×11 and
Qu = 1 for the second controller, respectively. In addition, the process and measurement
noise covariance matrices are chosen to be Qw = 0.1× I5×5 and Qv = 0.1 for the first
controller, and Qw = 0.1× I11×11 and Qv = 0.1 for the second controller, respectively [26].

Table 3. Performance comparison between the decentralized MPC and LQG control schemes in terms
of over/undershoot (max(.)) and settling time (ts(.)) of the frequency and active power deviations.

Technique
Load Increase Wind Decrease

max(∆F1) max(∆Pwtg) ts(∆F1) ts(∆Pwtg) max(∆F1) max(∆Pwtg) ts(∆F1) ts(∆Pwtg)

MPC 6.1× 10−4 (Hz) 1× 10−3 (pu) 5 (s) 3 (s) 1× 10−5 (Hz) 1.7× 10−4 (pu) 15 (s) 4 (s)
LQG 4.8× 10−4 (Hz) 1.6× 10−3 (pu) 26 (s) 25 (s) 1.7× 10−5 (Hz) 1.9× 10−4 (pu) 27 (s) 12 (s)

In the second case study, the effect of random fluctuations (variations) in the wind and
load powers on the performance of the control system is investigated. These random fluctu-
ations that are generated based on the models presented in [27] are depicted in Figure 7. The
performances of both decentralized controllers are shown in Figure 8. The mean squared
error (MSE) is used to compare the performance of the two decentralized controllers. The
MSE of frequency and active power variations for the proposed decentralized MPC con-
trollers are equal to 1.54× 10−8 and 2.58× 10−8, respectively, while for the benchmark LQG
controllers, these errors are equal to 7.17× 10−8 and 4.54× 10−7, respectively. It is clearly
observed that the proposed decentralized MPC controllers outperform the benchmark
LQG controllers.
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Figure 6. Robust performance of the proposed decentralized MPC and the benchmark decentralized
LQG controllers against step disturbances in the load and wind powers applied at t = 10 (s) with the
amplitude of 0.01 (pu).
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Figure 8. Performance of the proposed decentralized MPC and the benchmark decentralized LQG
controllers in terms of the frequency and turbine power errors subject to random load and wind
power disturbances shown in Figure 7.

Another case study was performed to assess the decentralized control systems in terms
of robustness against the internal parameter variations. Figure 9 demonstrates the robust
performance of the proposed decentralized MPC controllers against ±20% concurrent
changes of all subsystems parameters in Table 1. This performance is compared with that
of the benchmark decentralized LQG controllers shown in Figure 10. It is observed that
the proposed decentralized method has a better robust performance as compared to the
benchmark method, in terms of both frequency and power variations. Moreover, Figure 10
shows that the performances of the decentralized LQG controllers deteriorate considerably
for ±20% variations, and they become totally unstable for +20% variation.
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Figure 9. Robust performance of the frequency and turbine power error in the first and second
subsystems against ±20% concurrent changes in all subsystems parameters for the proposed decen-
tralized MPC controllers, subject to the load disturbance applied at t = 3 (s) with the amplitude of
0.01 (pu).
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Figure 10. Robust performance of the frequency and turbine power error in the first and second
subsystems against ±20% concurrent changes in all subsystems parameters for the decentralized
LQG controllers, subject to the load disturbance applied at t = 3 (s) with the amplitude of 0.01 (pu).

5. Conclusions

This paper proposes new robust decentralized model-predictive controllers to address
the problem of frequency and active power regulation in a standalone wind–diesel system
consisting of two subsystems, namely, diesel engine generator and wind turbine. The
proposed MPC strategy provides an optimal solution to a quadratic cost function based
on the dynamic model of the system. This control scheme calculates the optimal control
signal subject to the given constraints on the output frequency deviation and the load
change. The decentralized controllers are designed sequentially in such a way that there
is no communication link between them. Moreover, the mechanical coupling between
the two subsystems is taken into account in the controller design process. Simulation
results are carried out to confirm the effectiveness of the proposed control technique.
The results show that the proposed closed-loop system has a superior performance to
the linear quadratic Gaussian controller in damping the undesired oscillations due to
the disturbances resulting from abrupt wind and load power changes. Moreover, the
robustness analysis demonstrates that the proposed control strategy is robust against ±20%
subsystem parameter changes, while the benchmark technique shows a major performance
deterioration for −20% subsystems parameter changes, and is totally unstable for +20%
subsystems parameter changes. The future studies will be focused on the control of
microgrids with high penetration of wind turbines that causes stability issues at large scales.
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Abbreviations
The following abbreviations are used in this manuscript:

∆F1 Frequency error of the diesel generator subsystem (Hz)
∆F2 Frequency error of the wind turbine subsystem (Hz)
∆Pload Load power disturbance error (pu)
∆Fre f Set-point frequency error (Hz)
u1 Control signal of the diesel generator subsystem (pu)
u2 Control signal of the wind turbine subsystem (pu)
∆Pwtg Wind turbine generator power error (pu)
∆Pw Turbine power disturbance error (pu)
∆Pmax Total power set-point error (pu)
e1 ∆Fre f − ∆F1 (Hz)
e2 ∆Pmax − ∆Pwtg (pu)
τva1 Actuator time constant 1 (s)
τva2 Actuator time constant 2 (s)
τva3 Actuator time constant 3 (s)
Kde Diesel engine gain
τde Diesel engine time constant (s)
Kbess Battery gain
τbess Battery time constant (s)
Khpa Hydraulic pitch actuator gain
τhpa1 Hydraulic pitch actuator time constant 1 (s)
τhpa2 Hydraulic pitch actuator time constant 2 (s)
Kdpr Datafit pitch response gain
Kturb Wind turbine gain
τturb Wind turbine time constant (s)
Kpc Blade characteristic gain
K f c Fluid coupling gain
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