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Abstract: The present work numerically investigates the effect of a cavity implemented in a pre-
mixed methane/air micro-combustor on enhancing its thermal performances and thermodynamic
efficiencies for micro-thermophotovoltaic applications. The 3D time-domain numerical model is first
validated by comparing its predictions with the experimental data available in the literature. Then
it is applied to examine the effects of the cavity dimensionless axial location (xc/L), cavity volume
(Vc), the equivalence ratio φ and hydrogen blended ratio (α) on the temperature uniformity and
enhancement of the combustor outer wall and exergy efficiency. It is found that implementing a
cavity in the combustion chamber increases the outer wall mean temperature (OWMT) and the exergy
efficiency up to approximately 65 K and 10%, respectively. The optimal cavity dimensionless axial
location (xc/L) is set to 1/9, and the height (Hc_dims) is 1/5, respectively. However, the cavity length
Lc and angle θc are found to play negligible roles on improving thermal performance. Additionally,
increasing the inlet velocity leads to a higher OWMT but a low exergy efficiency, regardless of the
equivalence ratio. In general, this work confirms the feasibility of applying a cavity structure to
enhance energy efficiency for micro-power generation systems.

Keywords: thermodynamics; exergy; heat transfer; methane; thermal performance; micro-combustion

1. Introduction

The Micro-Thermophotovoltaic (MTPV) System [1,2] is a typical combustion-based
power generation system, fueled by hydrogen or hydrocarbon, which has the advantages
of noiseless operation, fuel versatility and portability compared to micro-gas turbine
engines [3,4] and micro-fuel cells [5]. Even though it has so many outstanding advantages,
the system thermodynamic and energy conversion efficiency [6] of MTPV still needs to be
further improved. Such a system requires a compact, long operational lifetime and instant
rechargeability [7,8].

The MTPV consists of an emitter (typically a micro-combustion heat source), a filter
and a thermophotovoltaic cell array. When it is in use, the chemical energy of the fuel–air
mixture releases heat via combustion [9–15] in the micro-combustor, and the outer wall
surface emits thermal radiation [16]. The radiated photons with energy higher than the
band-gap generate electricity through imping on the PV cell, while the others are absorbed
and recycled by the filter. As a result, PV cells are also more sensitive to high-energy
photons instead of total radiation power since they directly contribute to the generation of
electricity. Consequently, to achieve a better energy conversion performance of the MTPV
system, the micro-combustor requires a higher and more uniform wall temperature [17,18].

Unlike conventional combustors [19–21], the large surface-to-volume ratio at the
millimeter scale results in a significant amount of heat loss [22], which aggravates the
adverse effect on total heat generation and leads to the major issue of flame-quenching [23].
Three types of improvement strategies have been investigated to emphasize improving
the micro-combustion thermal performance. The first strategy is to introduce the different
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fuel properties [24,25] and a catalytic [26] to address the thermal issue through accelerating
the fuel conversion rate and the chemical reaction time of the combustion. Tang et al. [27]
evaluated the premixed CH4/air micro-combustion with hydrogen addition. It is found that
the fuel with 10% hydrogen not only enhances the wall temperature and the flammability
range but also stably anchors the flame location near the inlet. Similar findings can also
be found in premixed propane/air micro-combustion in Ref. [28] which reported that
20% hydrogen addition leads to a reduction in quenching height from 2 mm to 1.5 mm.
Sun et al. [29] studied the dilution effect of NH3/O2 premixed micro-combustion with
incombustible gas, and the result indicates the thermal performance and NO emission are
improved with CO2 dilution. Similarly, blending NH3/O2 with H2 or diesel can effectively
reduce NOx emissions [30,31] and avoid extremely high combustion temperatures, which
could damage the wall material [32]. Moreover, Zheng et al. [33] have numerically exploited
the synergy of the direct radiation effect and chemical effect of preheating upstream fluid,
which is critical to the radiation reabsorption, and the maximum optimized effect was up
to 15.6%. On the other hand, catalyst materials, including platinum and rhodium, can also
promote energy conversion efficiency [34,35].

The second strategy is to recycle the heat of burned flue gas by altering the entry
location of the fuel and oxide [36,37]. Zuo et al. [38] numerically investigated a four-
channel Meso-combustor with different configurations. The result indicates the counter-
flow channels have the highest mean wall temperature when the peak temperature point
of adjacent channels is decentralized. Also, micro Swiss-roll combustors are another classic
design that achieves enthalpy combustion through heat recuperation [39]. Non-premixed
micro Swiss-roll combustors have an advantage in raising the flame surface and increasing
the heat release amount [40]. Additionally, premixed micro Swiss-roll combustion has
been experimentally conducted by Zhong and Wang [41]. It is found that the combustion
stability [42,43] and temperature are greatly enhanced in the center region, and the center
temperature can reach 1100 K with the thermal insulation of alumina powder.

The last strategy is to generate heat recirculation zones in the micro-combustor, which
is a common method to promote heat transfer [44]. For instance, Yang et al. [45] exper-
imentally reported that the heat recuperator inserts give rise to an increase in the wall
temperature up to 123 K as a result of the preheating effect. Apart from that, two categories
have been investigated: porous media insertion [46–48] and the structure design of micro-
combustors. Concerning the former strategy, the porous media matrix increases the contact
area, thus markedly boosting the heat transfer between the combustion region and the solid
wall [49]. The inherent matrix properties promote the preheating effect on the unburned
gas and decrease the flow velocity, which establishes a uniform flame distribution [50].
Yang et al. [51] experimentally discovers that the wall temperature is increased by 90–120 K
with the insertion of SiC porous media. Additionally, Maghsoudi et al. [52] investigated
the partially filled porous medium with different cross-section geometries. It is found that
the optimal thermal performance is independent of the geometry at a porosity of 0.8.

Another category is aimed at changing the inner structures of the micro-combustors,
which include backward-facing steps [53], bluff body [54–58], wall cavity [59,60], ribs [61–63]
and their combinations [64]. In this context, many research efforts have also been devoted
to improving the effective radiation energy of the micro-combustor by intensifying the inter-
nal flow field [65,66] which not only increases the turbulence intensity but also prolongs the
residence time [67]. The existence of a backward-facing step changes the flame dynamics
in the combustor and extends heat recirculation through the solid wall [68]. It should
be noted that implementing a step in the combustor assists flow separation and vortex
generation, which benefits heat transfer [69]. Additionally, the step location anchors the
flame position and stability because the heat and flow recirculation form behind the step,
which results in high-intense heat transfer through the combustor wall to the unburned
gas [70]. Next, Peng et al. [71] numerically compared a micro-combustor with and without
a front cavity. The result shows that the micro-cavity combustor has a higher outer wall
temperature because of the flow hysteresis effect, and the micro-cylindrical combustor with
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an arc-shaped cavity has the optimal thermal performance compared with trigonal, rect-
angular and isosceles. Similarly, a micro-cylindrical combustor with a cavity numerically
achieves a mean outer wall temperature of 1306.88 K [72]. Moreover, Su et al. [73] have
numerically studied a double-cavity micro-combustor and found that the second cavity
developed a second high-temperature zone with high inlet velocity, and the radiation effi-
ciency and uniformity have increased slightly. Furthermore, Cai et al. [74,75] numerically
analyzed the effect of singular and staggered bluff bodies on the micro-combustor thermal
performance. It is shown that the bluff-body contributes to generating longitudinal vortices
and disrupting the formation of thermal boundary layers, hence amplifying heat and mass
transfer. Additionally, the optimized dimensionless location of a singular bluff body at 2/5
and staggered bluff bodies with an appropriate height and pitch ratio increase the mean
wall temperature by 57.5 K and 73 K, respectively. In addition, with the dimensionless
rib located at 5/9 and a height of 0.4, the temperature can be numerically increased by
61 K, resulting in a mean wall temperature of 1284 K [76]. Lastly, several novel micro-
combustors [77–82] have been developed in the past decade, aiming at improving the wall
temperature and radiation energy.

Previous investigations revealed that the thermal performance of a micro-combustor
can be enhanced by changing the combustor’s inner structure. However, to the best
knowledge of the present authors, the effects of combustor design parameters and hydrogen
addition on the combustion and thermal performance in methane-fueled micro-planar
combustor with a cavity are less explored. Meanwhile, how the exergy efficiency varies
with such dual-fuel combustion remains unknown. These motivate the present study. In
this work, a three-dimensional numerical simulation of a premixed methane/air micro-
combustor with a cavity is conducted to analyze the thermal performance, heat transfer,
exergy generation and hydrogen addition. In Section 2, the numerical methodologies are
described in detail, including the geometry, mathematical models and model validation.
In Section 3, the effects of the cavity dimensionless axial location, the cavity volume and
the equivalence ratio on thermal performance are evaluated. Comparison is then made
to obtain the optimum design. Further exergy and hydrogen blended effect studies are
performed and described in Sections 4 and 5. The interesting findings are summarized
in Section 6.

2. Numerical Methodologies
2.1. Geometric Model

The physical geometry of the micro-combustor with a cavity is shown in Figure 1. The
total length, width and height of the combustor wall are set as L, W and H along the x,
y and z-direction respectively, while the wall thickness is T. A cavity lies symmetrically
along the x–y plane, and it has a trapezoidal shape on each side with a horizontal length
(Lc), a vertical depth (Hc), a horizontal width (Wc) and two equal angles (θc), respectively.
The distance from the inlet plane to the left-side point of the incline angle is xc. Finally, the
dimensions of the micro-combustor are summarized in Table 1.
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Table 1. Dimensions of the micro-cavity combustor.

Parameters Values (mm)

L 18
W 10
H 5
T 1
xc 2, 4, 6, 8
Lc 1, 3, 5
Wc 8

2.2. Mathematical Model

To simplify the numerical model of combustion, the following assumptions are made:
(1) The methane/air mixture is a continuum fluid, and thus, the Navier-Stokes equation
is applicable; (2) the combustion obtains a steady state at the equilibrium status; (3) the
methane/air mixture is assumed ideal gas, and the flow is uniform; (4) no surface reaction
and Dufour effect [83] in the combustion region; (5) no work done by the pressure, body
force and viscous force; and (6) the governing equations related to the numerical model are
solved using ANSYS Fluent 2020 and are summarized below.

Mass conservation
∇·
(

ρ
⇀
v
)
= 0, (1)

where ρ is the fluid density and
⇀
v is the velocity vector (

⇀
v = (u, v, w)) in x, y, z

Cartesian coordinates.
Momentum conservation

∇·
(

ρ
⇀
v
⇀
v −⇀

τ
)
= −∇p, (2)

where p is the static pressure and
⇀
τ is the stress tensor (described below).

⇀
τ = µ[(∇⇀

v +∇⇀
v

T
)− 2

3
∇·⇀v I], (3)

where µ is the molecular viscosity; I is the unit tensor; and the second term on the right-
hand side is the effect of volume dilation.

Energy balance equation for species

∇·
(
⇀
v (ρE + p)

)
= ∇·

(
ke f f∇T −∑

j
hj

⇀
J j +

(
⇀
τ ·⇀v

))
+ Sh (4)

where E is the total fluid energy; ke f f is the effective conductivity; T is the temperature; hj

is the enthalpy of species j;
⇀
J j is the diffusion flux of species j; and Sh is the fluid enthalpy

source term.
Species equations

∇·
(

ρ
⇀
v Yi +

⇀
J i

)
= Ri, (5)

where Ri is the net rate of production of species i by chemical reaction; Yi is the local mass

fraction of each species; and
⇀
J i is the diffusion flux of species i in the mixture.

Wall energy conservation equation

∇·
(
kij∇T

)
= 0, (6)

where kij is the thermal conductivity of the solid wall.
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The total energy loss from the combustor outer wall to the ambient environment

Qloss = ∑n
i=1 hi Ai(Tw,i − T0) + ∑n

i=1 εσ Ai(Tw,i
4 − T0

4), (7)

where hi is the thermal convection coefficient; T0 is the ambient temperature; ε is the
emissivity of the solid wall; and σ is the Stefan-Boltzmann constant (5.67× 10−8 W

m2K4 ).
Area-weighted-average wall temperature

⇀
T w =

1
A ∑n

i=1 Ti Ai, (8)

where A is the surface area; Ti is the temperature of grid cell i on the wall; and
⇀
T w is the

mean wall temperature.
The standard deviation of the wall temperature

RT,w =

√√√√√∑

Ti −
⇀
T w

⇀
T w

2

. (9)

2.3. Numerical Model and Boundary Conditions

The methane/air premixed combustion characteristics of the numerical model involve
the coupling of fluid dynamics, heat and mass transfer and chemical reactions; hence, the
laminar model, finite-rate species transport model and energy model are applied in the
simulation. A reaction mechanism with 17 volumetric species and 25 reversible reactions in
this model, and a stiff chemistry solver is selected to solve the intra-phase and interphase
chemical reactions. The reaction mechanism employed in this study was originally devel-
oped by Smooke and Giovangigli [84]. This mechanism was widely applied in numerical
simulations [85]. It also shows a strong applicability in predicting the combustion process
in the current study, as described in Section 2.5. The density and mass diffusivity of the gas
mixture are calculated by using incompressible-ideal-gas and kinetic theory, and specific
heat, thermal conductivity and viscosity are calculated using the mixing law. The stainless
steel 316 is selected as the solid wall with density, specific heat and thermal convection
coefficient of 8000 kg/m3, 500 J/(kg ·K) and 18 W/(m ·K), respectively. The boundary
conditions of the numerical model are listed in Table 2. The governing equations are
discretized using the second-order upwind scheme, while the pressure-velocity coupling is
solved using the SIMPLE algorithm. The under-relaxation factors of density, body forces,
species and energy are set to 0.9. All residual absolute criteria of the equations are set to be
less than 1 × 10−6.

2.4. Grid Independence Study

Because of the symmetricity of the model along the y = 0 plane, one-half of the
geometry is employed as the computational domain to save the calculation time. The com-
putational domain (L, W, 1

2 H) of the 3-dimensional micro-combustor without cavity uses a
structured quad mesh of ANSYS Meshing 2020 for grid generation. A grid independence
study is conducted where the equivalence ratio and velocity are set to 1.0 and 0.6 m/s,
respectively. Three different mesh densities of the combustor computational domain with
450,000 cells (0.1, 0.1, 0.1), 234,000 cells (0.1, 0.1, 0.2) and 117,000 cells (0.1, 0.2, 0.2) are
applied in the simulation. The centerline temperature and CO2 mole fraction profiles of the
y = 0 plane are depicted in Figure 2.

It is seen that both the calculated centerline temperature and CO2 mole fraction
are highly overlapped with the medium mesh (234,000 cells) and with the fine mesh
(450,000 cells). However, a significant difference occurs between the coarse mesh (117,000 cells)
and the other two mesh densities. Therefore, the medium mesh is selected in this study to
obtain a solution for better accuracy and the least computational complexity.
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Table 2. The boundary conditions of the numerical model.

Boundary Conditions Parameters Values

Inlet (velocity-inlet) Velocity magnitude (m/s) 0.4, 0.6, 0.8, 1.0
Gauge pressure (Pa) 0

The equivalence ratio φ 0.9, 1.0, 1.1
Atmospheric temperature (K) 300

Species mole fractions Based on the equivalence ratio

Outlet (pressure-outlet) Gauge pressure (Pa)

Inner wall Wall motion Stationary wall
Shear condition No slip

Thermal conditions Coupled
Material Stainless steel 316
Species Zero diffusive flux

Outer wall Thermal conditions Mixed
Material Stainless steel 316

Heat transfer coefficient
(W/(m2·K)) 15

Free stream temperature (K) 300
External emissivity 0.65

External radiation temperature (K) 300
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2.5. Model Verification

To verify the accuracy of the numerical model, the computational results have been
compared with the experimental measurement in the previous work [29]. The centerline
temperature profile along the flow direction at two different inlet velocity conditions is
illustrated in Figure 3. The maximum deviation of temperature is 6.4% and 2.8% at the
inlet velocities of 0.4 m/s and 0.6 m/s, respectively. Thus, the adopted numerical model is
sufficiently reliable and will be applied for further investigations.
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3. Results and Discussion
3.1. Effect of the Cavity Axial Location xc

A parametric study of the cavity axial location (xc) has been conducted to evaluate
the effect on the temperature distribution of the combustor and then compare it with the
conventional combustor. The conventional combustor without any cavity is considered the
reference case. For simplicity and comparison, the cavity axial location xc is normalized
by the total length of the combustor L, i.e., xc/L. Figure 4 compares the outer-wall temper-
ature distribution of the micro-conventional combustor (Figure 4a) and the micro-cavity
combustor at various xc/L, with xc/L = 1/9 (Figure 4b), 2/9 (Figure 4c), 3/9 (Figure 4d),
4/9 (Figure 4e), respectively, where the inlet velocity is set to 0.8 m/s, as the methane/air
equivalence ratio is kept at 1.0. It is shown that a high-temperature zone at (Figure 4a)
forms close to the downstream, indicating that the chemical reaction shifts downstream.
However, in the presence of a cavity, the flame location shifts upstream.

To shed light on how the cavity implementation affects the temperature distribution
of the outer wall, the flame temperature distribution at the y = 0 plane is studied, as
shown in Figure 5. It is seen that the high-temperature zone is dramatically expanded and
concentrated very close to the inlet at Figure 5b in comparison to the reference. The cavity
location contributes to the effect of temperature, and velocity in the y = 0 plane can be
observed in Figure 5. The addition of the cavity increases the contact area and alters the
heat transfer direction between the fluid and the solid. It should be noted that the location
of the cavity, as shown in Figure 5b, forms a backflow region, which not only preheats
the incoming flow but also enhances heat recirculation. Finally, the cavity, as depicted
in Figure 5d,e, shows a similar result to the reference because the fuel and oxidant have
been consumed in the upstream region, so the cavity axial location has a negligible effect
on the heat transfer. This phenomenon can be understood by explaining the heat transfer
direction in the micro-cavity combustor, as shown in Figure 6. The mixture gas combusts
in the channel and releases an amount of heat; then the solid wall absorbs the heat and
conducts it to the upstream wall, which preheats the other mixture gas.
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To quantify the influence of the cavity dimensionless axial location on the thermal
performance of the micro-combustor, the outer-wall mean temperature (OWMT) is plotted
as a function of the inlet velocity and the cavity dimensionless axial location shown in
Figure 7a. At the inlet velocity of 0.4 m/s, the OWMTs are highly overlapped. This is
because the fuel and oxidant have a sufficient residence time to combust and transfer heat
to the combustor wall due to the relatively low inlet velocity. On the contrary, as the velocity
increases, the advantage of adding a cavity to the combustor is revealed. The difference in
the OWMT between the combustor with the cavity location of xc/L = 1/9 and reference is
up to 64.8 K at the highest inlet velocity (1.0 m/s), indicating that the cavity axial location
is critical to OWMT.
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As far as the heat transfer performance is concerned, the standard deviation of the
wall temperature is essential to be analyzed. Note that the standard deviation indicates
the uniformity and difference of the temperature variation. The standard deviation refers
to the temperature deviation of maximum and minimum temperatures, and hence a
lower standard deviation is desirable, which represents a more concentrated temperature
distribution. In Figure 7, the fuel-oxidizer equivalence ratio for all cases is set to be 1.0.
This means that all the chemical reaction is complete. In theory, a higher inlet velocity is
associated with a larger chemical energy input. Thus, it is reasonable to assume that a
higher inlet velocity is accompanied by a higher outer wall mean temperature arising from
the larger reaction heat. Figure 7b illustrates the standard deviation of the outer wall static
temperature as a function of the cavity dimensionless axial location and the inlet velocity, as
the equivalence ratio φ is set to 1.0. Comparing Figure 7a,b reveals that the maximum mean
temperature and the lowest standard deviation appear at xc/L = 1/9, so the optimized
cavity location is found. The underlying mechanism behind this phenomenon is that, when
the cavity is placed closer to the combustor inlet, it helps the gas mixture to form a backflow
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region and preheat the incoming fluid, thus increasing the maximum temperature. To
summarize, the axial location of the cavity plays an important role both in the wall mean
temperature as well as uniformity.

3.2. Effect of the Cavity Volume Vc

According to the previous section, the optimized dimensionless cavity axial location
xc/L is at 1/9. Based on this optimum location, further improvement of thermal perfor-
mances has been focused on altering the cavity volume, which could be changed via three
parameters: (1) the horizontal length (Lc), (2) the vertical depth (Hc) and (3) the incline
angle (θc). Considering that the fluid volume could be varied due to the change in the
cavity structure, it is important to calculate the cavity volume Vc. It can be determined as

Vc =

(
Lc +

Hc

tan(θc)

)
· Hc ·Wc, (10)

The dimensionless cavity length Lc_dims with respect to x-direction is derived below:

Lc_dims =
Lc

L
. (11)

The dimensionless cavity height Hc_dims with respect to z-direction is derived below

Hc_dims =
2·Hc

H − 2·T . (12)

The axial location and the bottom horizontal length do not change when we conduct a
parametric study with respect to the incline angle θc. The detailed ranges of these three
parameters involved in the cavity dimensions are listed in Table 3.

Table 3. The parameters of cavity volume.

Cavity Volume
Vc (mm3)

Lc
(mm)

Hc
(mm)

θc
(◦)

Wc
(mm)

0 < Vc ≤ 22 0 < Lc ≤ 5 0 < Hc ≤ 0.5 15 ≤ θc ≤ 75 8
Vc = 0

(Reference case) 0 0 0 0

3.2.1. Variation of the Cavity Height Hc_dims

The OWMT and standard deviation under various inlet velocities and cavity heights
(Hc)—where the cavity is located at xc/L = 1/9 and the equivalence ratio is set to be
1.0—are shown in Figure 8. At a low inlet velocity, the thermal performance tends to have a
negligible difference. With increasing the inlet velocity, the OWMT increases. Additionally,
the OWMT with the cavity height of 1/3 is the highest among the three configurations at
the inlet velocity of 1.0 m/s. On the contrary, the OWMT is the lowest at the cavity height of
1/15 mm, and the flame starts to become unstable, which has an extremely high standard
deviation. To get a more comprehensive understanding of the flame characteristics, a
center-plane temperature contour with iso-velocity at the inlet velocity of 0.8 m/s is shown
in Figure 9. The highest temperature zone located near the inlet at the cavity height is set
to 1/5 and 1/3. However, the highest temperature zone shifts downstream at the cavity
height of 1/15. It should be noted that increasing the cavity height is associated with an
increase in the contact area between the combustion fluid and the solid wall. Thus, the
residence time and the heat exchange between the combustion fluid and the solid wall
are increased. Therefore, increasing the cavity height can enhance the heat transfer effect,
thereby resulting in a more uniform temperature distribution, which can be expressed as
a low standard deviation. Additionally, though the cavity height of Hc_dims = 1/5 is the
critical height Hcc of the micro-combustor and is sufficient enough to get a satisfactory
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thermal performance, the minor difference between the cavity height of 1/5 and 1/3 with a
higher inlet velocity still needs to be further analyzed.
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The centerline temperature distribution of three cavity heights at the outer wall along
the axial direction under the inlet velocities of 0.8 m/s and 1.0 m/s is indicated in Figure 10.
When the inlet velocity is increased, the highest temperature regions are found to be shifted
downstream at three inlet velocities. The highest temperature is close to the outlet at a low
cavity height (1/15). As the cavity height is increased, the highest temperature is closer
to the inlet, and the gap between the start and end points is getting smaller, which also
indicates the temperature distribution is more uniform with a higher cavity height.
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3.2.2. Variations of θc and Lc

Table 4 summarizes the OWMT and standard deviation under various inlet velocities,
cavity lengths (1/18, 3/18 and 5/18) and cavity angles (15◦, 45◦ and 75◦). It can be seen
that there is a negligible difference in the calculated wall temperature and its standard
deviation, as the cavity height and angle are varied. This suggests that the effect of these
combustor parameters on the thermal performance can be neglected, but the cavity height
should be given sufficient consideration when attempting to optimize the combustor
working performance.

3.3. Effect of the Equivalence Ratio φ

Now the effect of the equivalence ratio on the thermal performance of the micro-
cavity combustor is investigated. Figure 11 shows the outer wall temperature contours
under various equivalence ratios (0.9, 1.0, 1.1), where the inlet velocity and the cavity
dimensionless axial location are set to be 0.8 m/s and 1/9, respectively. It can be observed
that the high-temperature region at the equivalence ratio of 1.0 is the largest, followed by
the case with φ = 1.1 and 0.9. This is due to the fact that for off-stoichiometric conditions,
either the fuel or the oxidant is not sufficient to sustain combustion. Furthermore, it is
worth mentioning that a slightly fuel-rich condition is more desirable compared to a slightly
fuel-lean condition for maximizing thermal performance.
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Table 4. Mean temperature and standard deviation of the outer wall under various inlet velocities,
cavity lengths (Lc) and cavity angles (θc), where xc/L = 1/9 and φ = 1.0.

Inlet Velocity
(m/s)

Outer Wall Mean Temperature (K) (Upper Values) Standard
Deviation (Lower Values)

Lc = 1/18 Lc = 3/18 Lc = 5/18 θc = 15 (◦) θc = 45 (◦) θc = 75 (◦)

0.4
899.2 896.9 898.1 899.0 896.9 897.6
28.5 27.1 28.1 27.7 27.1 27.7

0.6
970.2 970.9 970.1 968.3 970.9 970.1
25.1 24.8 24.7 23.0 24.8 25.0

0.8
1017.6 1017.2 1016.4 1013.0 1017.2 1017.2

24.3 24.4 24.3 23.8 24.4 24.9

1.0
1048.2 1049.9 1050.4 1045.5 1049.9 1050.1

25.4 25.9 25.8 27.2 25.9 26.1

Energies 2023, 15, x FOR PEER REVIEW 13 of 21 
 

 

the case with ߶ = 1.1 and 0.9. This is due to the fact that for off-stoichiometric conditions, 
either the fuel or the oxidant is not sufficient to sustain combustion. Furthermore, it is 
worth mentioning that a slightly fuel-rich condition is more desirable compared to a 
slightly fuel-lean condition for maximizing thermal performance. 

 
Figure 11. Outer wall temperature contour under various equivalence ratios, where v = 0.8 m/s. 

To quantify the observed phenomena in Figure 11, the centerline temperature distri-
bution variations on the outer wall under various equivalence ratios and inlet velocities 
along the axial direction are shown in Figure 12. It can be seen that the centerline temper-
ature of the outer wall at ߶ = 0.9 is significantly lower than that of those at ߶ = 1.0 and 
1.1 cases, no matter what the inlet velocity is set to. This is consistent with the results 
presented in Figure 11. Another observation from Figure 12 is that, as the inlet velocity is 
increased, the centerline temperature is also elevated due to the increased chemical energy 
input, and the flame is approaching downstream. 

 
Figure 12. The distribution of the centerline temperature at the outer wall along the axial direction 
under various inlet velocities and equivalence ratios, where ݔୡ/1/9 = ܮ. 

Figure 11. Outer wall temperature contour under various equivalence ratios, where v = 0.8 m/s.

To quantify the observed phenomena in Figure 11, the centerline temperature distribu-
tion variations on the outer wall under various equivalence ratios and inlet velocities along
the axial direction are shown in Figure 12. It can be seen that the centerline temperature
of the outer wall at φ = 0.9 is significantly lower than that of those at φ = 1.0 and 1.1 cases,
no matter what the inlet velocity is set to. This is consistent with the results presented in
Figure 11. Another observation from Figure 12 is that, as the inlet velocity is increased, the
centerline temperature is also elevated due to the increased chemical energy input, and the
flame is approaching downstream.

To provide insights into the response of the wall temperature and the temperature
uniformity to the equivalence ratio, Figure 13 shows the OWMT and standard deviation as
a function of the cavity axial location at the inlet velocity of 0.8 m/s. It is noted that, for a
given equivalence ratio, OWMT decreases as the cavity is placed further downstream. This
is due to the fact that the presence of a cavity near the combustor inlet is more advantageous
for transferring heat from the gas phase to the solid phase. In addition, it can be observed
that regardless of where the cavity is located, OWMT exhibits a non-monotonical trend
with the equivalence ratio. Specifically, it increases first and then decreases as the mixture is
varied from lean to rich conditions. On the other hand, this is not the case for the calculated
temperature standard deviation. At a relatively small xc/L, there is little difference in
the standard deviation with the equivalence ratio. However, as the cavity is placed at
xc/L = 3/9, the outer temperature at φ = 0.9 tends to be the most non-uniform. Therefore,
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it can be concluded that the optimized cavity location is at 1/9 in terms of the OWMT and
the standard deviation. Next, when comparing the equivalence ratio at different cavity
locations, the worst and best mean temperatures and standard deviation remain at φ = 0.9,
and 1.0, respectively. While the best cavity location occurs at xc/L = 1/9 at all equivalence
ratios. In addition, when the cavity location is closer to the inlet, the thermal performance
is better, and the cavity appears to have no influence on the thermal performance at and
after 4/9. Therefore, the outer wall temperature variation at 1/9 is found to be the smallest
and the highest amount of heat released during the combustion process.
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4. Further Exergy Generation Investigations

In this section, the effect of the cavity on exergy [50] generation from the micro-
combustion system is analyzed. According to the second law of thermodynamics, the
exergy energy efficiency is derived as below:

Exin =
.

mCH4 ×QLHV , (13)

where Exin is the inlet exergy;
.

mCH4 is the methane mass flow rate; and QLHV is the lower
heating value of the methane (50.0 MJ/kg)

Since the outlet pressure of the combustion system is equal to the atmospheric pressure,
the equation of the total exergy loss can be simplified below

Exeg = Exloss +
.

minlet × T∞ × (cpoutlet ln
T∞

Teg
), (14)

where Exeg is the total exergy loss at the outlet; Exloss is the exergy of the exhaust gas;
.

minlet is the inlet mass flow rate; T∞ is the ambient temperature; and Teg is the exhaust
gas temperature.

Exdes = Exin − Exeg, (15)

where Exdes is the exergy utilization during the combustion process.

ηexergy =

(
1− Exdes

Exin

)
× 100%, (16)

where ηexergy is the exergy efficiency.
Figure 14 shows a comparison of calculated exergy efficiency between the conventional

micro-combustor and micro-cavity combustor at xc/L = 1/9. The results indicate that the
exergy is decreased with increasing the inlet velocity, regardless of with or without the
cavity. Furthermore, the exergy efficiency difference between the conventional combustor
(i.e., the reference case) and the proposed combustors with cavities is increased with
increasing inlet velocity. To be more specific, the exergy efficiency is almost the same at
the inlet velocity of 0.4 m/s, and the highest exergy efficiency difference is 9.8% at the
inlet velocity of 1.0 m/s. The reason for this phenomenon is that the outlet temperature
in the combustor with a cavity is reduced minimally at a low inlet velocity but reduced
significantly at a high inlet velocity. Therefore, adding the cavity in the micro-combustor
helps to reduce the outlet temperature of exhaust gas due to the positive effect on enhancing
the heat transfer from the combustion channel to the solid wall, hence increasing the
exergy efficiency.
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5. Effect of Blending Methane with Hydrogen

In this section, the effect of blending hydrogen with methane on the exergy and
thermal performances of the micro-combustor with cavities is examined, as the equivalence
ratio and the axial dimensionless location xc/L are kept at 1.0 and 1/9, respectively. The
hydrogen blended ratio α is defined below:

α =
VH2

VH2 + VCH4

× 100%, (17)

where VH2 is the volume fraction of the hydrogen and VCH4 is the volume fraction of
the methane.

The centerline temperature distributions at the outer wall with hydrogen additions of
25% and 50% are compared with pure methane (100% CH4 + 0% H2), as shown in Figure 15.
The results reveal that a higher α has a positive impact on locating the high-temperature
region near the inlet, regardless of the inlet velocities. This is advantageous in terms of
promoting flame stability [86] in practical combustion systems. On the other hand, the
OWMT is shown to be decreased rapidly with increasing hydrogen addition α, whatever
the inlet velocity is set to. The underlying mechanism for this phenomenon is that, when
the same amount of volume fraction of methane is replaced with hydrogen, the total
chemical energy input is reduced because of the relatively low volumetric energy density
of hydrogen.
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Figure 16 compares the variation of the exergy efficiency and the standard devia-
tion of outer walls at different blending ratios and inlet velocities. It can be seen from
Figure 16a that ηexergy of the micro-combustor in the presence of hydrogen is generally
lower compared to that of the pure methane case. Furthermore, it should be noted that
there is a negligible difference in the calculated ηexergy with hydrogen added. Figure 16b
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indicates that the temperature standard deviation of the outer walls exhibits a monotonic
trend with the hydrogen blended ratio. That is, a higher blended ratio leads to a low
value of the standard deviation. This means that the presence of hydrogen is beneficial to
improving the temperature uniformity of the combustor outer wall. This phenomenon is
desirable in practical power generation systems like the MTPV system. A comparison of
Figures 15 and 16 reveals that hydrogen addition plays a negative role in lowering OWMT
but has a positive effect on enhancing temperature uniformity.
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6. Discussion and Conclusions

In this work, a detailed three-dimensional, time-domain, computational model is
established to evaluate the effect of implementing a cavity in a methane-air-fueled micro-
combustor on enhancing thermal performances, thermodynamics and exergy efficiency.
The developed model is first validated with the experimental data in the literature. Then
it is used to explore the effects of (1) the cavity axial location, (2) the cavity volume and
(3) the equivalence ratio on improving the outer wall mean temperature (OWMT), exergy
efficiency ηexergy. The key findings are summarized below:

1. The presence of the cavity gives rises to more uniform temperature distribution and
an increase in the OWMT by approximately 64.8 K. This is due to the fact that the
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cavity contributes to anchoring the high-temperature zone in the upstream location,
especially at high inlet velocity, thus enhancing the heat transfer between the gas
phase and solid phase as well as preheating the fresh mixture.

2. The cavity height Hc plays a critical role in determining the thermal performance of
the combustor. However, the effects of the cavity length Lc and angle θc are negligible.
There exists a critical cavity height Hcc with a value of 1

5 , above which the OWMT and
temperature uniformity are less affected.

3. The OWMT is found to increase with increasing inlet velocity, regardless of the
equivalence ratio φ. The optimal equivalence ratio φopt corresponds to the maximum
outer wall temperature, and the most uniform temperature distribution is 1.0.

4. The exergy efficiency analysis reveals a monotonic trend with the inlet velocity, i.e., a
higher inlet velocity and lower exergy efficiency. The implementation of the cavity is
found to lead to an increase in the exergy efficiency by up to 9.8% compared to the
conventional combustor in the absence of any cavity.

5. The hydrogen addition plays a negative role in affecting OWMT and exergy efficiency,
but it significantly enhances temperature uniformity.

Generally, the present work demonstrates that implementing a cavity with a proper
structure and optimum volume design is a simple but effective way to enhance the thermal
performances of micro-combustors and to improve thermodynamic/exergy efficiency.
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