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Abstract: Remaining useful life (RUL) prediction of batteries is important for the health management
and safety evaluation of lithium-ion batteries. Because lithium-ion batteries have capacity recovery
and noise interference during actual use, direct use of measured capacity data to predict their
RUL generalization ability is not efficient. Aimed at the above problems, this paper proposes an
integrated life prediction method for lithium-ion batteries by combining improved variational mode
decomposition (VMD) with a long short-term memory network (LSTM) and Gaussian process
regression algorithm (GPR). First, the VMD algorithm decomposed the measured capacity dataset of
the lithium-ion battery into a residual component and capacity regeneration component, in which
the penalty factor α and mode number K in the VMD algorithm were optimized by the whale
optimization algorithm (WOA). Second, the LSTM and GPR models were established to predict
the residual component and capacity regeneration components, respectively. Last, the predicted
components are integrated to obtain the final predicted lithium-ion battery capacity. The experimental
results show that the mean absolute error (MAE) and root mean square error (RMSE) of the proposed
lithium-ion battery capacity prediction model are less than 0.5% and 0.8%, respectively, and the
method outperforms the five compared algorithms and several recently proposed hybrid algorithms
in terms of prediction accuracy.

Keywords: lithium-ion battery; variational mode decomposition; remaining useful life prediction;
long short-term memory; Gaussian process regression

1. Introduction

With the development of battery technology, lithium-ion batteries (LIBs) have become
the most frequently employed battery type because of their high density, light weight,
cleanliness, environmental friendliness, and excellent electrochemical performance. LIBs
are widely employed in electric vehicles, logistics, aerospace, and military fields [1,2]. Since
the existing lithium-ion battery will work at high and low temperatures, this will cause a
significant reduction in battery charging efficiency and life, especially in the field of electric
vehicles. If the battery health status is not monitored in a timely manner, the battery is
likely to thermal runaway, resulting in serious losses [3,4].

Lithium-ion batteries play various important roles in life, and the health status man-
agement and RUL prediction of lithium-ion batteries are getting more and more attention.
The battery management technology is changing from passive safety protection to active
risk prediction [5]. Model-based and data-driven methods are now commonly used for
lithium-ion battery RUL forecasting [6].

The model-based prediction methods mainly analyze the electrochemical character-
istics of lithium batteries, establish a mathematical or physical degradation model, and
predict battery degradation through the model. Shimamoto et al. [7] proposed a method
to evaluate the remaining useful life of a battery based on experiments and a degradation
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database of lithium-ion battery usage patterns. However, this method has difficulty accu-
rately analyzing the degradation state of the battery. He et al. [8] established an empirical
model for the physical degradation behavior of lithium-ion batteries. The parameters of the
model were initialized by Dempster–Shafer (DS) theory, and the parameters of the model
were updated by Bayesian Monte Carlo (BMC). The RUL of the battery was predicted by
the available data in the monitoring data of the battery capacity. Presently, battery RUL
prediction combined with a filtering algorithm is a commonly employed technology based
on model prediction methods, such as the Kalman filter (KF) and the particle filter (PF).
Zhang et al. [9,10] proposed a method based on the extended Kalman filter (EKF) to predict
the RUL of lithium-ion batteries. Xiong et al. [11] proposed a double-scale particle filter
method to predict the state and parameters of the battery on two different time scales to
observe the state of the battery. Park et al. [12] combined anomaly detection technology
with the PF algorithm to adaptively predict the RUL according to the state changes during
battery degradation. However, the previously described model-based prediction methods
have two significant drawbacks: 1© Due to its complex electrochemical characteristics,
the lithium-ion battery is vulnerable to being disturbed by external environmental factors
such as temperature and humidity; therefore, it is complicated to establish an accurate
mathematical or physical model, and many parameters are needed [13,14]. 2© Particle
filtering has obvious particle degradation problems, which can affect the accuracy of the
prediction experiment.

Compared with the model-based RUL prediction methods for lithium-ion batteries,
the data-driven methods do not rely on establishing a physical or chemical model to predict
battery capacity decline. Instead, the data-driven methods extract voltage, temperature,
current, and other data from the charging–discharging of lithium-ion batteries and analyze
the relationship between these data and the capacity decline, and they realize the RUL
prediction of lithium-ion batteries through intelligent algorithms. Commonly employed
data-driven methods include the support vector machine (SVM) [15], artificial neural
network (ANN) [16], correlation vector machine (RVM) [17,18], and recurrent neural
network (RNN) [19]. Yang [20] designed a hybrid convolutional neural network (CNN)
to predict the RUL of the battery through the voltage, current, and temperature curves
during the charging cycle of lithium-ion batteries. Wei et al. [21] proposed an indirect
health indicator combined with Monte Carlo dropout (MC_dropout) and gated recurrent
units (GRUs) to model and predict battery RUL. Due to the different degradation trends
of lithium-ion batteries at different stages, it is difficult to establish an accurate battery
RUL model [22]. Zhang et al. [23] proposed an extreme learning machine (CTC-ELM)-
based prediction model for predicting the RUL of a battery under small sample conditions.
Gaussian process regression (GPR) models can be used to solve problems with large
dimensions, small amounts of data, and nonlinear regression [24]. Richardson et al. [25]
proposed a method for predicting battery remaining useful life based on a Gaussian process.
Yu [26] proposed a new prediction method combining multi-scale logical regression (LR)
and a GPR model to predict the decline of battery capacity.

Although the above methods can predict the RUL of lithium-ion batteries, the complex
degradation trend of lithium-ion batteries will still have the problem of poor prediction
accuracy if a single-scale intelligent algorithm is used to predict it. Tong et al. [27] integrated
the characteristics of an adaptive dropout long short-term memory network (ADLSTM)
and a Monte Carlo (MC) simulation algorithm to enable prediction of the state of health
of lithium-ion batteries. Ren et al. [28] proposed a model combining an improved convo-
lutional neural network (CNN) and LSTM algorithm, which uses a CNN to mine deep
information and LSTM to obtain time series to predict the remaining useful life of a bat-
tery. The above hybrid data-driven method captures the degradation trend of the battery
and improves the accuracy of prediction to a certain extent. But they all use the capacity
sequence of lithium-ion batteries to predict directly.

The capacity of the original battery sequence fluctuates greatly and contains much
noise, so it is difficult to predict it directly [29]. To solve this problem and improve the
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prediction accuracy, Cheng et al. [30] selected the empirical mode decomposition (EMD)
method to decompose the measured lithium-ion battery capacity series into signals of
different frequencies. After removing the capacity regeneration components representing
the lithium-ion battery, the bidirectional LSTM predicts the battery life by predicting the
residual component. However, the EMD has limitations and is prone to modal confusion,
affecting the prediction accuracy. The VMD algorithm is an adaptive signal decomposition
technique. Compared with the EMD, this algorithm overcomes the shortcomings of modal
aliasing in the EMD algorithm and is more robust to sampling and noise [31].

To effectively capture the phenomenon of the steep rise and fall of battery capacity
and solve the problem of insufficient accuracy in prediction, we proposed a hybrid model
for the RUL prediction of lithium-ion batteries based on a combination of improved VMD,
LSTM, and GPR algorithms. The major contributions are presented as follows:

(1) A new method for predicting the RUL of lithium-ion batteries is proposed. First, the
measured battery capacity sequence is decomposed by the VMD algorithm, and the
capacity data are decomposed into residual components and capacity regeneration
components. Second, the residual component is predicted by the LSTM algorithm,
and the capacity regeneration component is predicted by the GPR algorithm. Last,
the predicted components are added to predict the RUL of the battery. This method
solved the problem of low accuracy of individual models and the inability to fully
predict the battery degradation trend.

(2) An improved variational modal decomposition algorithm is proposed. The value
of modal layers K and the penalty parameter α in the VMD algorithm are gener-
ated by the WOA with the minimum envelope entropy as the fitness function. The
decomposed components are more easily captured by the subsequent prediction
algorithms, which improve the prediction accuracy and are verified in subsequent
RUL prediction experiments.

2. Prediction Model
2.1. Vmd Algorithm

Variational mode decomposition (VMD) is an adaptive signal processing method
based on Wiener filtering, which has significant advantages in processing nonlinear and
nonstationary signals. Therefore, the VMD model is used to decompose the battery ca-
pacity sequence [31]. VMD decomposes the input signal into K intrinsic mode functions
(IMFs), and each mode component µk(t) surrounds the center frequency ωk(t). Variational
modal decomposition has two steps: constructing and solving variational problems. The
construction steps of the variational problem are listed as follows:

Step 1: Solve the unilateral spectrum of each mode component µk(t) by the Hilbert transform,

(δ(t) +
j
π
)× µk(t) (1)

where δ(t) represents the impulse function;
Step 2: Modulate the spectrum of each modal component onto the fundamental band,

[(δ(t) +
j
π
)× µk(t)]× e−jωkt (2)

Step 3: Construct variational problems according to Formulas (1) and (2),

min{µk},{ωk}

{
K

∑
k=1

∣∣∣∣∣∣∣∣∂t[(δ(t) +
j
π
)× µk(t)]× e−jωkt||22

}
(3)

s.t.
K

∑
k=1

µk(t) = f (t) (4)
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where ∂t represents the partial derivative with respect to t, and K is the number of modal
components, {ωk}= {ω1, . . . , ωK} is the frequency centers of each IMF, {µk}= {µ1, . . . , µK}
represents the K decomposed IMF components.

To solve the variational problem, introducing the Lagrange operator λ and the
quadratic penalty factor α to Formula (2) turns the constrained conditional variational
problem into an unconstrained conditional variational problem:

Γ({µk}, {ωk}, λ) = α
K
∑

k=1

∣∣∣∣∣∣∂t[(δ(t) +
j
π )× µk(t)]× e−jωkt

∣∣∣|22+∣∣∣∣∣∣ f (t)
−

K
∑

k=1
µk(t)

2
2− < λ(t), f (t)−

K
∑

k=1
µk(t) > .

(5)

2.2. Improvement of the VMD Algorithm

According to the theory of VMD, the number K of the eigenmode components to
be decomposed and the penalty parameter α will influence the decomposition effect. In
VMD, the value of K determines the number of decomposed IMF components. Excessive
K value will lead to excessive decomposition; otherwise, under-decomposition will occur.
The penalty parameter α determines the bandwidth of the IMF component. The size of
the penalty parameter α is inversely proportional to the bandwidth of the IMF compo-
nent [32]. The phenomenon of lithium-ion battery capacity rising and falling is complex
and changeable. It is vital to select appropriate K and α values for the subsequent algorithm
to accurately predict the battery life. However, K and α are mostly chosen by manual
experience, which is likely to influence the decomposition effect of the VMD algorithm.

Entropy is often used to express a signal’s degree of randomness and inherent chaos [33].
The smaller the uncertainty of the signal, the stronger the periodicity, and the smaller the
entropy value. The more robust the uncertainty of the signal, the greater the interference,
and the greater the entropy value. The size of the envelope entropy reflects the sparseness
of the signal. The smaller the envelope entropy value is, the stronger the sparseness of the
signal and the stronger the periodicity of the decomposed IMF component. In contrast,
the signal with a large envelope entropy has weaker sparsity and periodicity. Signals with
strong periodicity are more likely to be captured by the LSTM and GPR algorithms, and
the information contained in the signal can be better predicted. The whale optimization
algorithm (WOA) is a metaheuristic algorithm proposed in 2016 [34]. Simulating the unique
bubble net attack hunting behavior of humpback whales is simple to implement, avoids
local optimization, and has strong robustness. The WOA has three stages: prey hunting,
bubble net predation, and random search. Therefore, in this study, the minimum envelope
entropy of the IMF component is employed as the fitness function of the WOA to select the
best [K, α] parameter combination for VMD decomposition. The formula for calculating
envelope entropy is expressed as follows:

Ep = −
N
∑

i=1
pilgpi

pi = a(i)/
N
∑

i=1
ai

(6)

where the pi is the normalized form of a(i),a(i) is the envelope signal after the signal is
demodulated by Hilbert.

The algorithm flow chart of WOA-VMD is shown in Figure 1 and specific steps are
described as follows:

(1) The lithium-ion battery capacity sequence is input, the parameter ranges of K and
α are set in VMD, and the main parameters in the WOA, including the size of the
population, maximum number of iterations, and number of variables, are initialized.

(2) VMD decomposition is performed on the input capacity sequence, where the number
of modal component K and penalty factor α are optimized by the WOA, the enve-
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lope entropy corresponding to each whale individual is calculated, and the optimal
individual position is recorded.

(3) The location of individual whales is updated.
(4) Repeat steps (2) to (4) and output the best parameter combination (K, α) when the

minimum envelope entropy value or the maximum number of iterations is reached;
(5) VMD decomposition is performed on the signal according to the output parameter

combination (K, α).
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Figure 1. Flowchart of the WOA-VMD method.

2.3. Experimental Procedures

Aimed at the steep rise and fall of battery capacity, a new integrated method of the
RUL prediction of lithium-ion batteries is proposed in this paper. The flow chart of battery
RUL prediction is shown in Figure 2, and specific steps are listed as follows:

(1) Obtain the measured lithium-ion battery capacity degradation data.
(2) Based on the improved VMD algorithm, the optimal parameter combination [K, α] is

selected. The lithium-ion battery capacity degradation sequence is decomposed into
residual and capacity recovery components through WOA-VMD.

(3) The residual component obtained after decomposition is trained and predicted by the
LSTM network. The residual component reflects the overall degradation trend of the
battery and has stability. The LSTM algorithm has a good effect on time series predic-
tion. The decomposed capacity recovery component reflects the capacity regeneration
phenomenon of the battery, so the GPR algorithm is selected for fitting prediction.

(4) The predicted residual component and capacity recovery components are added
according to Formula (7) to obtain the predicted capacity data and to simultaneously
calculate the RUL of the battery.
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_
y i =

n

∑
j=1

IMFj + rs (7)

where rs is the predicted value of the residual component, n is the number of decomposed
components, IMFj is the predicted value of the j-th capacity escalation component, and

_
y i

is the predicted value of the battery capacity.
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3. Experimental Verification and Analysis
3.1. Datasets

The lithium-ion battery data used in this experiment are from the publicly available
dataset of the NASA PCoE Research Center [35,36]. In this study, the first degradation
datasets (battery packs B0005, B0006, B0007, and B0018) were selected for experiments to
verify the accuracy of the improved VMD-LSTM-GPR for battery RUL prediction. The
battery’s rated capacity was 2 Ah, and the ambient temperature is set to room temperature
(24 ◦C). The maximum cutoff voltage of the battery while charging is set to 4.2 V. The bat-
tery is charged at a constant current of 1.5 A until the battery reaches the maximum cutoff
voltage, then the constant voltage charge is maintained until the battery drops to 20 mA. It
discharges at a constant current of 2A until the voltage drops to the cutoff value. The pa-
rameters of the charge cutoff voltage (CV), discharge current (DC), discharge cutoff voltage
(DV), constant current charging current (CC), and battery failure threshold (TS) are shown
in Table 1. The discharge curves of the batteries are shown in Figure 3. The battery capacity
data have an obvious downward trend and many capacity regeneration phenomena.
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Table 1. Battery parameters in aging experiment.

Battery Number CV/V DV/V CC/A DC/A TS/AH

B0005 4.2 2.7 1.5 2.0 1.4
B0006 4.2 2.5 1.5 2.0 1.4
B0007 4.2 2.2 1.5 2.0 1.4
B0018 4.2 2.5 1.5 2.0 1.4
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3.2. Evaluation Criterion

The RUL of a battery is defined as the number of cycles remaining usable from the
predicted starting point to the end of the battery life. This paper selects the mean absolute
error (MAE), root mean square error (RMSE), absolute error (AE), and relative error (RE)
as the evaluation criteria of the prediction model. The smaller the value of the above
evaluation index, the smaller the prediction error and the more accurate the prediction
results. The calculation formulas of the four indicators are expressed as follows:

MAE =
1
n

n

∑
i=1

∣∣∣_y i − yi

∣∣∣ (8)

RMSE =

√
1
n

n

∑
i=1

(
_
y i − yi)

2
(9)

AE =

∣∣∣∣TRUL −
_
T RUL

∣∣∣∣ (10)

RE =

∣∣∣∣TRUL −
_
T RUL

∣∣∣∣
TRUL

× 100% (11)

where n is the predicted number of cycles,
_
y i is the predicted battery capacity value, yi is

the true capacity value, TRUL is the true value of the battery RUL, and
_
T RUL is the predicted

value of the battery RUL.
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3.3. Decomposition of Lithium-Ion Battery Capacity Squence by WOA-VMD

Using the WOA to optimize the VMD parameters (K, α) can avoid the loss of infor-
mation or the unsatisfactory decomposition effect caused by the selection of the VMD
parameters by manual experience. The subsequent algorithms can also more accurately
predict the components obtained by decomposition. The population size of WOA-VMD is
set to 10, the maximum number of iterations is set to 30, the iteration range of K is (4, 6),
and the iteration range of α is (20, 1000). The parameters (K, α) and minimum envelope
entropy of batteries B0005, B0006, B0007, and B0018 decomposed by WOA-VMD are shown
in Table 2. The results of the decomposition of the B0005 battery by the WOA-VMD method
are shown in Figure 4. IMF1, as a residual component, can show the global degradation
tendency of lithium-ion battery capacity performance. Other recovery components can
reflect the rapid rise and fall of battery capacity and random fluctuations. After the four
battery packs are decomposed by WOA-VMD, the correlation coefficient between the de-
composition results and the real capacity data is shown in Table 3. It shows that the capacity
recovery component also contains the effective information of the real capacity sequence.

Table 2. Results of the optimization of VMD parameters by the WOA.

Battery Number K α Envelope Entropy

B0005 4 92 6.7876
B0006 4 20 6.837
B0007 4 151 6.7489
B0018 5 709 6.5357
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Table 3. Correlation coefficient between IMFS and measured capacity data for each battery group.

Battery Number
Correlation Coefficient

IMF1 IMF2 IMF3 IMF4 IMF5

B0005 0.9979 0.1025 0.0516 0.0325 -
B0006 0.9954 0.1417 0.0669 0.0419 -
B0007 0.9976 0.1142 0.0535 0.0353 -
B0018 0.9931 0.0922 0.0854 0.0507 0.0467
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3.4. RUL Prediction of LIBs

The lithium-ion battery capacity sequence is decomposed by the improved VMD
algorithm, the LSTM is used to train and predict the residual component, and the Gaussian
process regression fits the capacity recovery component. Using the B0005 battery as an
example, the data of the first 80 residual components are selected as the training set, and
the last 88 sets are utilized as the testing set. The capacity data of the first three consecutive
times are used to predict the capacity data of the next time, so the number of input nodes is
three, and the number of output nodes is 1. Adam is selected as the optimizer of LSTM
training, with an initial learning rate of 0.01. After 260 times of training, the model accuracy
will no longer rise and remain stable. The specific structure and parameters of LSTM are
shown in Table 4. The prediction results of the residual components are shown in Figure 5.
The prediction effect and accuracy in the entire testing set are excellent.

Table 4. Parameters and structure of LSTM.

Model Parameters Values

LSTM

input nodes 3
output nodes 1

optimizer Adam
learing-rate 0.01

batchsize 40
iterations 260
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With the same training and testing set divisions as the previously described residual
components, the three capacity recovery components of the WOA-VMD decomposition
are fed to the GPR model for prediction. The predicted results of the recovery components
are shown in Figure 6. The GPR model can well capture the fluctuation of the capacity
recovery components.
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The residual component predicted by LSTM and the capacity recovery components
predicted by the GPR model are added according to Formula (7) to obtain the predicted
lithium-ion battery capacity. As shown in Figure 7, the predicted battery capacity curve is
very close to the actual battery capacity curve. The battery capacity recovery and random
fluctuation phenomena are well captured, indicating that the improved VMD-LSTM-GPR
method can achieve accurate prediction of the RUL of lithium-ion batteries.

Energies 2023, 16, 313 10 of 16 
 

 

 
Figure 6. Prediction results of the B0005 battery capacity recovery components. 

The residual component predicted by LSTM and the capacity recovery components 
predicted by the GPR model are added according to Formula (7) to obtain the predicted 
lithium-ion battery capacity. As shown in Figure 7, the predicted battery capacity curve is 
very close to the actual battery capacity curve. The battery capacity recovery and random 
fluctuation phenomena are well captured, indicating that the improved VMD-LSTM-GPR 
method can achieve accurate prediction of the RUL of lithium-ion batteries. 

 
Figure 7. Capacity prediction results of the B0005 battery. 

To demonstrate the accuracy and robustness of the improved VMD-LSTM-GPR 
method, separate LSTM, separate GPR, separate EMD-LSTM-GPR, separate VMD-LSTM 
and VMD-LSTM-GPR were compared with the method proposed in this paper on battery 
packs of B0005, B0006, B0007 and B0018. In the VMD-LSTM and VMD-LSTM-GPR algo-
rithms, K of the eigenmode number of the VMD decomposition is directly set manually 
based on the accumulation of historical experience. The experiments were conducted 
based on MATLAB 2021a. The B0005, B0006, and B0007 batteries use the first 80 data as 
the training set. Since the B0018 battery has only 132 data points, B18 uses the first 65 data 
as the training set. The MAE and RMSE of the five different prediction methods are shown 
in Table 5. 

  

Figure 7. Capacity prediction results of the B0005 battery.



Energies 2023, 16, 313 11 of 15

To demonstrate the accuracy and robustness of the improved VMD-LSTM-GPR
method, separate LSTM, separate GPR, separate EMD-LSTM-GPR, separate VMD-LSTM
and VMD-LSTM-GPR were compared with the method proposed in this paper on battery
packs of B0005, B0006, B0007 and B0018. In the VMD-LSTM and VMD-LSTM-GPR algo-
rithms, K of the eigenmode number of the VMD decomposition is directly set manually
based on the accumulation of historical experience. The experiments were conducted based
on MATLAB 2021a. The B0005, B0006, and B0007 batteries use the first 80 data as the
training set. Since the B0018 battery has only 132 data points, B18 uses the first 65 data as
the training set. The MAE and RMSE of the five different prediction methods are shown in
Table 5.

Table 5. Comparison of errors between the algorithm in this paper and the other five methods.

Battery Number Evaluation
Criteria Propose LSTM GPR EMD-LSTM-GPR VMD-LSTM VMD-LSTM-GPR

B0005
MAE 0.0020 0.063 0.083 0.0093 0.0089 0.0023
RMSE 0.0027 0.085 0.146 0.0136 0.0122 0.0031

B0006
MAE 0.0054 0.092 0.091 0.0097 0.013 0.0071
RMSE 0.0081 0.113 0.105 0.0146 0.025 0.0086

B0007
MAE 0.0021 0.055 0.073 0.0074 0.0051 0.0024
RMSE 0.0031 0.063 0.095 0.0112 0.0062 0.0037

B0018
MAE 0.0028 0.039 0.062 0.0085 0.0073 0.0043
RMSE 0.0040 0.046 0.085 0.0108 0.0092 0.0057

The evaluation indicators in Table 5 show that the integrated method has the highest
prediction accuracy and that the prediction error of a single algorithm is relatively large.
Among the single models, the LSTM prediction model has the best accuracy, which indicates
that the LSTM algorithm has advantages in battery capacity prediction and can predict
the capacity degradation trend of the battery pack, so the LSTM algorithm is selected to
predict the residual component. Similarly, the GPR algorithm can effectively track the
sudden change in capacity degradation, so the GPR algorithm is used to predict the capacity
recovery components. Comparing the EMD-LSTM-GPR algorithm with the VMD-LSTM-
GPR algorithm, it can be seen that the VMD algorithm can reduce the impact of steep
rise and complex drop of capacity sequence on the prediction results more than the EMD
algorithm, and it can also reduce the noise of data. A comparison of the method in this
paper with the VMD-LSTM-GPR algorithm reveals that the prediction effect of the VMD
parameters [K, α] selected by the WOA is more accurate than the parameters chosen by
experience, which shows that the improved VMD algorithm can further reduce the noise
interference and improve the prediction accuracy of the algorithm.

3.5. Battery RUL Prediction and Comparison with Different Prediction Starting Points

In order to test the robustness and adaptability of the improved VMD-LSTM-GPR
method, this paper selects battery data of different training samples for comparative
experiments. NASA set the failure threshold of this battery pack to 70% of the standard
capacity, so the failure threshold of the battery is 1.4 Ah. Since the capacity data of the
B0007 battery are all above 70% of the rated capacity, the other three batteries were chosen
for the experiment. The B0005 battery and B0006 battery select the first 80 samples and
100 samples, respectively, as the training set, and the B0018 battery only has 135 pieces of
data, so 60 samples and 80 samples are selected as the training set. The prediction results of
B0005, the prediction starting points according to the improved VMD-LSTM-GPR method,
are shown in Figures 8 and 9.
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To certify the reliability of the improved VMD-LSTM-GPR method, it is compared
with the latest algorithms. Yang et al. [37] proposed an ensemble algorithm based on en-
semble empirical pattern decomposition gray wolf optimization support vector regression
(EEMD-GWO-SVR) to predict the RUL of batteries. Hu et al. [38] proposed a lithium-ion
battery RUL prediction method based on the combination of the PF and LSTM algorithms.
Catelani et al. [19] proposed a method based on an RNN to predict the RUL of lithium
batteries. Table 6 compares the prediction results of the above three algorithms and the
proposed hybrid method.

Table 6. Comparison between the algorithm in this paper and other RUL prediction algorithms.

Battery Number Method Start Real Predict AE RE

B0005

EEMD-GWO-SVR
80 44 46 2 4.5
100 24 26 2 8.3

PF-LSTM
80 44 41 3 6.8
100 24 22 2 8.3

RNN
80 44 50 6 13.6
100 24 28 4 16.7

Propose 80 44 44 0 0
100 24 24 0 0

B0006

EEMD-GWO-SVR
80 28 30 2 7.1
100 8 10 2 25

PF-LSTM
80 28 30 2 7.1
100 8 10 2 25

RNN
80 28 33 5 17.9
100 8 7 1 13

Propose 80 28 29 1 3.6
100 8 8 0 0

B0018

EEMD-GWO-SVR
60 37 - - -
80 17 17 17 0

PF-LSTM
60 37 41 4 10.8
80 17 18 1 5.9

RNN
60 37 - - -
80 17 16 1 5.9

Propose 60 37 36 1 2.8
80 17 18 1 5.9

Table 6 shows that the proposed algorithm has good competitiveness compared with
the three compared algorithms (data not provided in the reference are represented by “-”).
The AE of each group of batteries does not exceed 1 at different training samples, and
the AE of the B0005 battery is 0 at both prediction starting points, which shows that the
algorithm of this paper can achieve a high level of prediction without a large number of
training samples. The overall RUL prediction results of the three groups of batteries show
that the proposed algorithm is generally better than the three compared algorithms. This
finding shows that the improved VMD-LSTM-GPR-based method is effective in capturing
the capacity recovery phenomenon of lithium-ion batteries and can make an accurate
prediction of the battery RUL.

4. Conclusions

In this paper, an improved integrated method of VMD, LSTM, and GPR for the RUL
prediction of lithium batteries is proposed for the first time. The improved VMD algorithm
decomposes the measured lithium-ion battery capacity degradation sequence to obtain the
residual component and capacity recovery components, which can significantly reduce
the battery prediction error caused by the capacity random fluctuation phenomenon. The
residual component reflects the global degradation trend of the battery capacity. The
capacity rising component represents the phenomenon of steep rise and fall of the battery
capacity and the random noise during use, where the parameters of VMD [K, α] are
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optimally selected by the WOA, which can avoid the uncertainty arising from the selection
of parameters according to manual experience. The LSTM model is used to predict the
residual component, and the capacity recovery components are predicted by the GPR model,
which solves the low accuracy problem of battery RUL prediction by a single model. The
improved VMD-LSTM-GPR method is verified on NASA datasets. The prediction results
of B0005, B0006, B0007, and B0018 batteries show that the MAE and RMSE error of the
method proposed in this study do not exceed 0.5% and 0.8% respectively, and the absolute
error of the RUL prediction does not exceed one cycle. Experiments on the above four
battery packs show that the algorithm has better predictive performance compared with a
single model, other hybrid models, and the latest literature on battery RUL prediction.

The prediction method proposed in this study uses NASA’s dataset, in which the
charging and discharging process of the battery has clear restrictions. However, in the
actual use scenario of lithium-ion batteries, the working state of the battery will have
great randomness. Therefore, we can make efforts in the following aspects in the future.
(1) Lithium-ion batteries in general use scenarios are taken as the object of study. (2) Con-
sider adding other features as inputs to the prediction model. (3) Different datasets are
chosen to validate the algorithm proposed in this study.
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