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Abstract: Recent developments in quantum computing pose a significant threat to the asymmetric
cryptography currently in use. Neural cryptography offers a potential alternative that is resistant
to attacks of known quantum computer algorithms. The considered solution is lightweight and
computationally efficient. If a quantum computer algorithm were successfully implemented, it
could expose IoT sensors and smart grid components to a wide range of attack vectors. Given the
lightweight nature of neural cryptography and the potential risks, neural cryptography could have
potential applications in both IoT sensors and smart grid systems. This paper evaluates one of the
suggested enhancements: the use of integer-valued input vectors that accelerate the synchronization
of the Tree Parity Machine. This enhancement introduces a new parameter M that indicates the
minimum and maximum values of input vector elements. This study evaluates the nonbinary
version of the mutual learning algorithm in a simulated insecure environment. The results indicate
that, while the Nonbinary Tree Parity Machine may involve some trade-offs between security and
synchronization time, the speed improvement is more substantial than the decrease in security. The
impact of this enhancement is particularly significant for smaller adjustments to parameter M.

Keywords: cybersecurity; key agreement; neural networks; mutual learning; smart grids

1. Introduction

Asymmetric cryptography and key agreement protocols are necessary for communi-
cating parties over public networks to authenticate each other and perform secure data
exchange. The well-known solutions capable of achieving this goal are the RSA algorithm
and the Diffie–Hellman protocol. The security of both and their successors is guaranteed by
the current inability to effectively solve certain number theory problems, such as prime fac-
torization or discrete logarithm problems. The security of these two and similar algorithms
was undisputed until the discovery of Shor’s algorithm. This algorithm needs a quantum
computer with a sufficient number of qubits. However, it is capable of successfully solv-
ing the fundamental problem of number theory: finding the prime factors of an integer.
Therefore, modern communication requires new solutions to ensure data security [1].

Numerous research studies have focused on finding algorithms that are resistant to
Shor’s algorithm. One of the proposed solutions is mutual learning by two neural networks,
called Tree Parity Machines (TPMs) [2,3]. TPMs performs key agreement by exchanging
arbitrary input vectors and applying learning rules. Properly selected learning rules ensure
that the mutual learning process finishes in a finite time [2]. Furthermore, mutual learning
algorithms do not require computationally intensive numerical calculations, making them
suitable for a wide range of applications, including smart grids. However, maintaining a
proper level of security using this solution is still a challenge.

Smart grid systems are no exception here and would become prone to attacks provid-
ing successful implementation of Shor’s algorithm. Additionally, power systems are being
challenged to become more flexible due to factors such as energy distribution from renew-
able sources [4]. The vastness of interconnected sensors magnify the potential attack vectors
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that could be exploited. Hence, power systems become more distributed, and this poses
additional threats to the system as a whole. Authorization, authentication and accounting
need to be provided by design to prevent data integrity attacks. Further, appropriate cyber-
security mechanisms prevent some physical layer attacks, particularly man-in-the-middle
attacks, which require the attacker to access the communication medium. A key agreement
protocol plays a crucial role in the cybersecurity system, ensuring that smart grids can
resist a wide range of potential attacks. Another important branch in securing smart grid
systems is immediate threat detection [5]. Neural cryptography could find its potential
application in every component of smart grid systems, such as SCADA components, IoT
sensors and all smart appliances [6].

A special case of TPM is Nonbinary Tree Parity Machine (NBTPM), which uses integer-
valued input vectors instead of binary ones. This improvement results in reduced syn-
chronization time of TPM and introduces the parameter M, which is responsible for the
variability of input vectors and creates another dimension for finding the optimum TPM
structure.

Given the difficulty of finding and verifying the security of TPMs, this article aims
to evaluate the security of TPM and its nonbinary variant in various attack scenarios.
Furthermore, it aims to offer guidance on determining the optimal structure of TPM for a
given cryptosystem. The paper presents the results of a security analysis of NBTPM and is
organized as follows. Section 2 reviews related literature. Section 3 introduces the TPM
model, mutual learning and potential attacks. Section 4 details the research methodology,
the results of simulations and the analysis of the findings. The last section concludes
the paper.

2. Related Work

The Diffie–Hellman protocol was the first proposed algorithm for two parties to ex-
change a cryptographic key based on the difficulty of efficiently solving a mathematical
problem, specifically the discrete logarithm problem [7]. Further, the algorithm was im-
proved by utilizing elliptical curves [8]. However, both solutions are susceptible to being
compromised by quantum computing.

As a response to the potential threat, a new family of post-quantum algorithms was
proposed. This family consist of algorithms based on mathematical problems that are
resistant to Shor’s algorithm, such as supersingular elliptic curve isogeny, error correction
codes and lattice-based and multivariate cryptosystems [9]. This paper focuses on another
quantum-proof algorithm: TPM and its nonbinary variant. TPMs serve as an alternative to
currently known secure key-exchange protocols. Currently, no known algorithms make
TPM vulnerable to quantum computing. However, there is no mathematical proof of the
security of TPM, and the computational power required to break the mutual learning is
also unknown [10].

TPM has been the subject of much research [2,3,10–25]. Metzler et al. [2], Kinzel
et al. [3] and Ruttor et al. [11] have shown that interacting neural networks can synchronize
efficiently by using the mutual learning algorithm. In [10], the application of TPM in the
field of cybersecurity was presented, wherein the synchronization of two neural networks
allowed the performing of secure key agreement. The findings from these studies were
consolidated in [12].

In [13–19], various improvements to TPMs were proposed. Researchers proposed
an improved variant of the learning algorithm in scenarios where both parties are able
to share a secret beforehand [13]. Furthermore, Santhanalakshmi et al. [14] and Sarkar
et al. [15] proposed improvements based on a genetic algorithm application and whale
optimization algorithms, respectively. In [16], the authors proposed a Gaussian distribution-
based selection of initial weights that resulted in shorter synchronization time. Another
set of improvements is based on altering the values an input vector can take. The first
of them is Complex-Valued Tree Parity Machine (CVTPM), which proposes the usage
of complex binary numbers during the learning process [17]. Vector-Valued Tree Parity



Energies 2023, 16, 3997 3 of 11

Machine (VVTPM) is the generalization of this idea and uses binary vectors as inputs [18].
The last improvement from this group is NBTPM, wherein the authors proposed the usage
of integers instead of binary numbers [19]. NBTPM speeds up the synchronization of TPMs
and introduces a new parameter M, which controls the variability of input vectors and
adds an additional dimension for determining the most suitable TPM structure for users.
Moreover, in [19], the authors discuss the effect of extrema of values and the reason for
synchronization time reduction caused by the introduction of parameter M.

The application of TPM is presented in [20–22]. Sarkar et al. proposed the usage
of TPMs in wireless networks and examined the energy consumption of the proposed
solution [20]. The research conducted in [21] presents an error reconciliation protocol
based on the mutual learning of neural networks in quantum cryptography. Gomez et al.
presented hardware implementation of TPM [22].

Additionally, the security of TPMs has been studied extensively [23–25]. Ruttor
et al. [23] and Shacham et al. [24] defined two different attacks and evaluated TPM security
under them. The first attack is a standard man-in-the-middle genetic attack, and the second
one is a geometric attack in which the attacker updates the weight of the neural network
even when the outputs of benign parties do not match. Furthermore, in [25], the authors
defined a probabilistic approach that could lead the evil party to gain some knowledge
about a shared key.

Related research that involves the application of machine learning in quantum com-
munication to achieve cryptographic keys is also presented in [26,27]. In [26], the authors
define continuous-variable quantum key distribution and the framework for estimating
the phase of the pilot signal. The framework is further expanded in [27]

3. Tree Parity Machine and Mutual Learning

Mutual learning in terms of TPMs is the key agreement process wherein two TPMs
share information over a public medium and synchronize their weights. Once both neural
networks achieve full synchronization, their weights can be used as a shared secret in
further security operations. This section describes the details of the network’s model, TPM
learning and possible attack scenarios.

3.1. Model

TPM has a unique architecture. The network consists of two layers: an input layer and
an output layer. Similar to the feed-forward network model, all of the input neurons are
connected to exactly one output neuron. TPM inputs are grouped equally in number and
are associated with only one hidden unit (σk). The outputs of all hidden units are connected
to the output neuron (τ), which creates an output layer. The number of hidden units and
the number of inputs per hidden unit are denoted by K and N, respectively. Every input
has its associated weight (wkn) that is bounded by range < −L; L >, where L is a positive
integer. The learning rules guarantee that the values of the weights stay within the specified
range. The activation function of every hidden unit is a modified signum function, and its
formula is presented in (1). A and B denote the parties taking part in the mutual learning
algorithm.

sgn′(xA/B) =

{
1, xA > 0∨ xB > 0
−1, xA < 0∨ xB 6 0

(1)

Having defined the activation function, we are able to define the output of the k-th
hidden unit σk, which is the sum of the products of weights and inputs. The formula is
presented in (2).

σk = sgn′(
N

∑
n=1

xkn · wkn) (2)
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The final output τ of TPM is a product of all hidden layer outputs and is defined in (3).

τ =
K

∏
k=1

σk (3)

An example TPM model is presented in Figure 1.

Figure 1. Structure of TPM model.

3.2. Synchronization and Learning Rules

Successful synchronization of TPM is a necessary part of key agreement protocol [28].
Both parties need to execute the following steps to distill the cryptographic key as a result
of the whole process.

1. Both parties initialize their own TPM with randomly chosen weights. These neural
networks must be the same variant of TPM and must share the same set of parameters
uniquely defining its behavior, shape and size (i.e., K, L, M, N parameters).

2. Synchronizing parties randomly choose an input vector X consisting of K × N ele-
ments and share it via a public channel. Based on the selected TPM variant, the input
vector consists either of binary values, complex binary values/vectors or integers.

3. Both participants calculate the output of their neural network and share it publicly.
4. The matching outputs are preliminary for updating the TPM weights. The learning

rules are responsible for updating the weights, and users can choose one of the
following:

• Hebbian learning rule

w′kn = wkn + τxknΘ(σk, τ) (4)

• Anti-Hebbian learning rule

w′kn = wkn − τxknΘ(σk, τ) (5)
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• Random walk learning rule

w′kn = wkn + xknΘ(σk, τ) (6)

where Θ is a function returning 1 if all of its arguments are equal and returns 0
otherwise, xkn/wkn denotes the k-th neuron n-th input/weight accordingly, and
w′kn denotes the updated weight value.

5. The parties repeat Steps 2–4 until full synchronization of their TPMs is achieved.

Once synchronization is complete, both neural networks are exactly the same. This
results in the same weight vector that can be further applied in selected security operations,
e.g., as a cryptographic key to encrypt confidential data using symmetric ciphers. All the
notations used in the paper are presented in Appendix A in Table A1. The remaining part
of this Section presents the training process of TPMs, which is later called synchronization,
and attack vectors that might be used against cryptosystems using TPM.

3.3. Attack Scenarios

A man-in-the-middle attack is inherently the most efficient way of exploiting flaws in
key agreement protocols. With regard to TPM, the described attack comes down to placing
an eavesdropper between benign parties and learning an adversarial neural network based
on captured communication. Three possible scenarios can happen when parties A and B
are under a man-in-the-middle attack.

• τA 6= τB—neither benign TPMs nor the adversarial TPM proceed with synchronization.
• τA = τB 6= τC—only TPMs A and B synchronize to each other, while the attacker

cannot proceed.
• τA = τB = τC—all the TPMs, including the adversarial one, update their weights

accordingly.

The last of the described scenarios brings the evil TPM close to performing a successful
attack. However, these conditions occur significantly less frequently than the others.

While neural cryptography is quantum-proof, there exist other attack vectors that
pose a threat to the security of TPM. The prerequisite for all the attacks presented in this
subsection is the sharing of input vectors and neural network outputs via an insecure public
channel. This allows an evil party E to eavesdrop on the exchanged information. Possible
attacks under these circumstances are as follows [25].

1. Man-in-the-middle attack—the simplest attack, wherein an evil party eavesdrops
on the communication between benign parties. Based on this, entity E is able to
synchronize the TPM. The synchronization only happens when τA = τB = τE, where
τA and τB denote the outputs of the benign parties’ TPMs. The attacker may increase
the odds of a successful attack by synchronizing more than one neural network.

2. Geometric/flipping attack—an attack that uses a geometric representation of inputs
and a weight vector in N-dimensional space. This is an improved man-in-the-middle
attack using an additional step that happens when τA = τB but τA 6= τE. During this
step, the attacker finds the i-th hidden unit with the lowest ∑N

n=1 xin · win. Once such
a hidden unit is found, the evil party flips the output σi and applies the learning rule
while pretending the outputs τA, τB, τE are equal.

3. Majority attack—an attacker uses a set of TPMs (I) and performs a geometric attack
on all of them. However, just before the weight update, the voting process begins
on the most common output vector (σi

1, σi
2, · · · , σi

K) that will be used in the weight
update step. All the evil TPMs become more and more similar to each other as the
attack progresses, which might be a flaw of the attack scenario. Using the majority
attack and the flipping attack interchangeably might mitigate this issue.

4. Genetic attack—a genetic attack uses at most I TPMs to intercept key establishment.
While the attacker has fewer than I/2K−1, after every step, new 2K−1 are created
with all possible (σi

1, σi
2, · · · , σi

K) hidden unit values. Once the limit I/2K−1 has been
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reached, only the fittest TPMs should remain. The algorithm’s success is highly
dependent on the fitness function, which determines which neural networks remain
between generations.

4. Results

The following section presents the results of testing the security of TPM using non-
binary input vectors. This section is split into two parts. The first presents the research
methodology, and the second presents the collected results and their analysis.

4.1. Methodology

The conducted research consists of simulations that run attack scenarios on two benign
TPMs. Benign TPMs perform the key agreement protocol described in Section 3.2. The
attack scenario assumes that an attacker is able to eavesdrop on the communication. Based
on this, we performed the attacks defined in Section 3.3. To mimic the conditions of an
insecure channel, all the exchanged information between benign parties is also delivered to
the malicious party responsible for the attack. Every scenario is repeated 1000 times. Many
different sizes and parameters of TPMs are tested against man-in-the-middle attacks. The
considered parameters are as following:

• K = 3,
• L ∈ {9, 10, 11, 12},
• M ∈ {1, 2, 3, 4, 5},
• N = 50.

By using these parameter selections, it is possible to evaluate how different values of
parameter M affect various TPM forms (for M = 1 NBTPM becomes standard TPM defined
in [2]) and to determine if parameter M improves the overall security. Furthermore, utilizing
the selected parameters enables the attainment of a secure key length of approximately
500 bits [28].

The selected attacks against TPMs seem to be the most popular and successfully
performed ones. Additionally, the attack vectors consist solely of man-in-the-middle
attacks, as this is the main attack vector for key agreement protocols. For every attack,
the eavesdropper is allowed to have a maximum of 50 neural networks. We consider the
synchronization as failed when the eavesdropper is able to achieve a synchronization score
equal to 1 for any of the evil TPMs. This means at least one neural network has perfectly
synchronized its weights to either of the two TPMs performing mutual learning. The source
code of the simulation framework is release to the public space (the source code of the
simulation framework is available at https://github.com/mstypinski/tpm (accessed on
8 May 2023).)

During simulations, the number of total iterations, number of weight update steps,
synchronization scores of benign TPMs and synchronization scores of the best-synchronized
adversarial TPMs are gathered. The formula for synchronization score is defined in (7) [19].
Additionally, the index of synchronization when Sscore of one evil TPMs is equal to 1 is
also collected. In cases where the adversarial party does not fully synchronize any neural
network, this value is equal to the total number of synchronization iterations in a particular
scenario. All the results are presented along with 95% confidence intervals.

Sscore =
∑K

k=1 ∑N
n=1 Θ(wkn, wA

kn)

K× N
(7)

A genetic attack is a special case of man-in-the-middle attacks. It needs a fitness
function that selects the proper individuals across whole populations for the next iteration
of the genetic algorithm. The function used for this purpose is:

f = max(SscoreA , SscoreB). (8)

https://github.com/mstypinski/tpm
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In other words, this is a perfect fitness function since it selects the neural networks that have
the most common weights with either of the two benign TPMs. In real-world scenarios,
this function cannot be implemented because the attacker would need to know the exact
weights of the legitimate neural networks. Moreover, the algorithm is allowed to select
at most 50 neural networks that persist between iterations of attacks. This means that,
internally, the population can be larger and can reach up to 50× 2K−1 individuals.

4.2. Results

Similar to the research conducted by the authors in [19], the benign TPMs synchronize
in a faster manner by increasing parameter M. Figure 2 presents the number of required
iteration steps and successful synchronizations for all considered neural networks. An
iteration in the context of a mutual learning algorithm refers to a single cycle of the
algorithm. Synchronization, on the other hand, refers to an iteration that results in an
update of the weights for benign TPMs.

Figure 2. Number of key-exchange algorithm synchronizations and iterations of benign TPMs.

Increasing parameter M improves the security features of TPMs in terms of how
quickly the parties are able to synchronize; hence, they can achieve a longer cryptographic
key in the same amount of time. However, increasing parameter M also improves the
eavesdropper’s ability to retrieve the hidden state of the neural network. Figure 3 depicts
the average index of iterations at which a malicious neural network executed the attack
successfully, later called the adversarial synchronization point. The most notable is the
average synchronization index difference between M = 1 and M = 2, which means
the eavesdropper is able to synchronize more effectively with increases to parameter M.
However, taking into consideration the decrease in the number of required iterations
(Figure 2), the ratio between the median adversarial synchronization point and the median
number of required synchronizations stays approximately the same.

Furthermore, it can be observed that the genetic attack performs significantly better
than the other three attacks. This is due to the fact that the fitness function acts as an
oracle-like determinant, selecting the TPMs most similar to the benign neural networks.
To create a fitness function that is applicable in real-world scenarios, one may maximize
or minimize the difference between the product of hidden outputs (σk) and weights and
the input dot product (wk · xk). The impact of different fitness functions on attack success
probability requires further research. Additionally, while the attacker selects only the
50 most-fit TPMs that persist between generations, the generation may consist of more than
50 neural networks. This results in a meaningful advantage over the other attacks.
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Figure 3. Average synchronization index at which evil party fully synchronizes its TPM.

The attacks against the examined TPM with the aforementioned set of parameters are
effective. The least effective attack is the simple attack performed with many adversarial
neural networks. Only when parameter M = 5 was the malicious party able to retrieve the
cryptographic key. This result follows the outcomes from the initial research of NBTPM [19].

The majority attack had a success rate varying from almost 0.2 for M = 1, L = 13 up
to 0.45 for M = 5, L = 9. The attack success probability rises with increases to parameter
M; however, at the same time, the synchronization time decreases. The median of mutual
learning iterations decreases more than twice for parameters M = 1 and M = 2, while
the attack probability rises by at most 20.6%. Further, the attack success probability de-
creases with the increase to parameter L. This is true for all the attacks except the genetic
attack. However, the greater values of parameter L result in more key-exchange algorithm
iterations.

The geometric attack is successful with 0.8 probability in almost all scenarios. The
conclusions from the majority attack are similar to those from the geometric attack. While
the attack probability increases by at most 10%, the median number of required iterations
decreases by at least 60% for parameters M = 1 and M = 2. Unfortunately, the success rate
being at least 0.8 renders TPMs with the considered parameters ineffective in real-world
scenarios. To avoid such situations, it is necessary to make more parameter adjustments,
such as increasing the value of parameter L, which leads to a decrease in the median
probability of successful geometric attacks. Unfortunately, these adjustments may result in
an unwanted increase in synchronization time, which can be observed in the results.

The final attack evaluated is the genetic attack. This attack is successful in the majority
of scenarios. However, it is important to note that this level of performance can only be
achieved through the use of an ideal fitness function, which is not practical in real-world
situations. The minimal increase in resistance to attacks observed for M = 5 is due to
the greater standard deviation of the average number of mutual learning iterations. This
implies that in certain scenarios, a benign TPM may synchronize at a significantly faster
rate than an adversarial TPM.

The introduction of parameter M enhances the flexibility of TPMs in practical situa-
tions. A value of M = 1 corresponds to the standard version of a TPM. As M increases,
the required number of iterations drops significantly, particularly for values of M = 2 and
M = 3. The worst-case scenario for M = 3 occurs when L = 11. Despite a 35% increase in
median attack success rate when compared to M = 2, there is a 45% reduction in median
mutual learning algorithm iterations. The specific results for all simulated scenarios are
presented in Table 1.



Energies 2023, 16, 3997 9 of 11

Table 1. Synchronization time and attack success probability.

Mutual Learning Iterations Attacks (Sscore)

M L Mean Median Max Min Simple Majority Geometric Genetic

1 9 2263.19± 1139.781 2182 5711 890 0.0 0.228 0.816 0.999
1 10 2823.69± 1413.413 2739 8478 1152 0.0 0.204 0.822 1.0
1 11 3475.25± 1814.419 3331 9087 1440 0.0 0.211 0.819 0.999
1 12 4198.83± 2209.911 4052 12608 1869 0.0 0.196 0.799 1.0
1 13 5064.37± 2820.405 4826 13067 1751 0.0 0.186 0.763 1.0

2 9 927.72± 500.816 893 2342 302 0.0 0.271 0.899 0.995
2 10 1131.29± 579.344 1098 2847 445 0.0 0.246 0.882 1.0
2 11 1353.59± 700.158 1306 3690 558 0.0 0.221 0.850 0.997
2 12 1617.92± 802.934 1568 4584 651 0.0 0.215 0.871 0.999
2 13 1908.82± 951.497 1839 4434 799 0.0 0.206 0.832 0.999

3 9 514.64± 308.012 489 1559 200 0.0 0.330 0.938 0.996
3 10 625.88± 348.143 598 1509 238 0.0 0.291 0.917 0.998
3 11 749.19± 413.828 714 1783 259 0.0 0.298 0.911 0.999
3 12 888.02± 487.737 853 2626 359 0.0 0.282 0.900 0.997
3 13 1031.67± 534.667 991 2616 435 0.0 0.235 0.892 0.999

4 9 331.62± 209.76 314 986 128 0.0 0.395 0.952 0.998
4 10 403.55± 245.221 383 1020 138 0.0 0.360 0.949 0.997
4 11 485.4± 289.757 461 1298 177 0.0 0.327 0.941 0.996
4 12 566.62± 325.635 544 1568 229 0.0 0.316 0.926 0.998
4 13 661.08± 367.354 631 1707 270 0.0 0.322 0.915 0.998

5 9 235.25± 158.482 219 695 85 0.003 0.452 0.963 0.998
5 10 285.76± 184.754 267 830 96 0.001 0.410 0.966 0.995
5 11 339.3± 214.747 320 1043 121 0.001 0.364 0.961 0.997
5 12 403.74± 254.932 379 1099 151 0.001 0.348 0.948 0.997
5 13 459.22± 272.12 438 1449 171 0.0 0.338 0.938 0.997

5. Conclusions

Quantum-proof cryptography is a growing problem in modern communications. The
recent advancements in efficient factorization using quantum algorithms have highlighted
the need for secure key agreement protocols. TPMs such as NBTPM have the potential to
meet this need; however, further testing and optimization of parameters are necessary to
apply it to production-ready smart grid systems.

In this paper, the authors investigated the security of NBTPM under different types of
man-in-the-middle attacks: simple, geometric/flipping, majority and genetic. While the
TPMs we considered did not attain perfect security, the parameter M provides another
dimension for optimizing the TPM architecture for increased security. In particular, a
significant improvement might be noticed by increasing parameter M from a value of 1 to
2 and from 2 to 3. Accordingly, while the median attack success rate increases by at most
21% and 35%, respectively, the median number of mutual learning iterations is reduced
by at least 58% and 45%, respectively; hence, the conclusion can be drawn that increasing
parameter M along with fine-tuning other parameters improves the overall security of
the considered solution. Choosing a specific value for parameter M must be done by
considering all the pros and cons that follow specific selection. Further, while the increase
to M improves efficiency, it cannot be increased infinitely, as security features degrade for
large M values that approach the L parameter value. It is worth mentioning that some
applications of TPMs require even fewer interactions than assumed (e.g., TPMs used for
error correction in quantum cryptography).

In order to implement the proposed solution in a real-world scenario, further param-
eter adjustment is necessary. It is important to approach the parameter M with caution,
as it improves synchronization time but can also enhance the efficiency of adversarial
synchronization. The number of inputs per neuron and the number of hidden neurons in
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the intermediate layer of TPMs should also be adjusted carefully. Another approach to
applying the described solution successfully in a smart grid could be an implementation of
authenticated TPMs. Further research in this field should focus on exploring a wider range
of parameters, including the number of hidden neurons in the intermediate layer, in order
to find more secure variants of TPMs.

Appendix A

Table A1 presents the list of all notations used in the paper and their descriptions.

Table A1. Table of notations.

Variable Description

K TPM parameter denoting the number of neurons in a hidden layer
L TPM parameter denoting the maximum value the weight modulus can take

M NBTPM parameter denoting the maximum value the input vector element modulus
can take

N TPM parameter denoting the number of inputs per neuron in a hidden layer
xkn Input value of n-th input of k-th neuron
τ Output of TPM
σk Output of k-th hidden neuron
Θ Function returning 1 if all its arguments are equal and 0 otherwise

wkn Weight value corresponding to n-th input of k-th neuron
w′kn Next iteration value of wkn

Sscore Synchronization score
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