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Abstract: In this paper, three metaheuristic optimization algorithms: genetic algorithm (GA), particle
swarm optimization (PSO), and differential evolution (DE) are compared in terms of minimizing
the total owning cost (TOC) of the active part of a three-phase shell-type distribution transformer.
The three methods use six inputs: power rating, primary voltage, secondary voltage, primary
and secondary winding connections, and frequency. The TOC of the transformer, which includes
the cost of the basic materials of the transformer plus the cost of losses, is minimized under the
imposed constraints (excitation current, impedance, no-load losses, load losses, and efficiency) usually
specified in the standards. As a case study, the three algorithms are applied to optimize the design of
a three-phase shell-type distribution transformer of 750 kVA. All applied metaheuristic algorithms
provide good results, while DE avoids local optima leading to better TOC reduction. The results
of the optimization algorithms used are superior to those of the manufacturer, showing a 6% TOC
reduction. Optimization of the design of a power transformer may have important implications for
reducing greenhouse gas emissions and extending the lifetime of the equipment.

Keywords: evolutionary algorithms; genetic algorithm; particle swarm optimization; differential
evolution; total owning cost

1. Introduction

To survive in a highly competitive world, transformer manufacturers need to run
algorithms capable of producing optimal designs in a short duration. A transformer is an
important element in the power supply system. It is a device in which a common magnetic
circuit links two or more electrical circuits into one system. Since the invention of the
first transformer in 1885 by the Hungarians K. Zipernowsky, O. Blaty, and M. Dery, the
technology of transformer production has evolved significantly. The computer was first
used in transformer design in 1955 [1]. Since then, computer technology has become an
important element in the transformer design process. Several specialized computational
techniques have been developed after 1970 [2] in this field. Then, the so-called metaheuristic
optimization methods have become a suitable alternative in transformer design after
1999 [2] because they require less time and less computational resources (compared to the
Finite Element Method, for instance) to obtain competitive solutions while minimizing the
TOC of the transformer.

In [3], the so-called brute force methodology for the design of a single-phase trans-
former was presented. However, the disadvantage of the implemented method was that it
analyzed all possible combinations of the input values to achieve a good solution. In [4],
GA and Simulated Annealing techniques were used to minimize the mass of the windings
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and the core of a high-frequency transformer, resulting in a reduction in mass compared to
the results of the geometric programming. A GA was also used to optimize the active part
of single-phase and three-phase transformers in [5]. The results were compared with those
of FEM and the specifications of the physical prototype, showing a significant reduction in
total losses. However, the cost increased in the case of the three-phase transformer. Rectifier
transformer optimization using GA and PSO metaheuristics was performed in [6]. The
overall estimated cost as well as the core and load losses were minimized, resulting in a
similar performance compared to traditional methods. In [7], a GA was implemented to
design a three-phase core-type transformer. The results were also compared with those of
the conventional design methods. Two programs have been employed, both considering
four objective functions: total active part cost, total losses, percentage impedance, and
transformer tank volume. Unlike the second, no additional constraints were imposed in
the first program. In [8], the DE was used with several strategies to minimize the cost of
the active part of a distribution transformer, obtaining a significant reduction of the TOC.

Other recent optimization methods have performed well in transformer design. In [9],
the designs of transformers with cores made of grain-oriented steels and amorphous mate-
rials are compared, considering the temperature effects in the windings and dielectric oil in
the design process. In [10], the covariance matrix adaptation evolution strategy (CMA-ES)
and Self-adaptative differential evolution (SaDE) algorithms were used to optimize the
transformer design. It was demonstrated that CMA-ES shows faster convergence than
SaDE in the four analyzed objective functions (purchase cost design, mass design, total
loss design, and total lifetime cost). In [11], metaheuristic algorithms such as Crow Search
Algorithm (CSA), Moth Flame Optimization (MFO), Vortex Optimization Algorithm (VOA),
Particle Swarm Optimization (PSO), and Social Learning-Particle Swarm Optimization
(SL-PSO) were used to determine the main design parameters of a dry-type transformer.
The specifications obtained by using the metaheuristic algorithms are validated with Finite
Element Method (FEM) analysis. The problem of transformer designing as a mixed-integer
non-linear programming problem with the branch-and-bound method was formulated
in [12]. The results obtained are confirmed by FEM. The authors claim that the respective
software created is more user-friendly than metaheuristic algorithms. In [13], the so-
called Harmony Search Multi-Objective (MOHS) and Rick Harmony Search Map (MHSR)
methods were used to solve the problem of optimizing the design of a transformer as a
multi-objective problem. Both proved to be equally effective and resulted in similar design
parameters. In [14], a tree-pruning method was implemented inspired by plant growth and
fertility. This method reduces the cost of materials in a 200 MVA transformer compared to
the results obtained with other optimization algorithms such as Genetic Algorithm, Un-
limited Population Algorithm, Evolutionary Multi-objective Optimization Algorithm, and
Heuristic Algorithm. In [15], geometric programming with the branch-and-bound method
is used in designing autotransformers to deal with short-circuit impedance sensitivity.

The literature on minimizing the TOC of three-phase distribution transformers does
not mention the use of the statistical verification method when applying metaheuristic
optimization. However, this is an important issue due to the stochastic nature of these
methods. The need for additional minimization of TOC of the transformers of this type is
due to the fact that some manufacturers use the so-called brute force methodology, which
is less efficient.

In this paper three evolutionary algorithms solve the distribution transformer opti-
mization problem by minimizing TOC, including material cost and total loss. Over time,
standards evolve calling for higher equipment efficiency, which is happening as govern-
ments worldwide introduce stricter energy efficiency policies to deal with greenhouse gas
emissions. Optimizing the design of the transformer is the key to solving these problems.
Although transformers are mostly made from the same materials and designed according
to the laws of electromagnetism, each manufacturer has his own design programs that are
difficult to apply directly to another manufacturer.
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The proposed design methodology satisfies the customer specifications and all con-
straints imposed by national or international standards and manufacturing process con-
straints. The useful life of a transformer is strictly dependent on its design, so design
optimization is critical to increasing the useful life of the transformer, especially since some
companies do not use optimization techniques for design, and in some cases, brute force
or spreadsheets.

The advantages and disadvantages of each of the three evolutionary algorithms are
shown in one example, where cost and material savings and loss reduction are shown
using a 3Φ, 750 kVA, 13.2/0.44 kV transformer at 60 Hz. We consider the comparison of
three different algorithms to be more representative since most scientific articles provide
information on only one or two algorithms.

A comparison of our results with the results of the manufacturer showed a decrease
in TOC by 6% and a significant reduction in the calculation time. This test is especially
interesting because it is rare to find such comparisons in the literature since manufacturers
are extremely jealous of the information regarding the transformer design. Furthermore,
this is a new approach to the problem, as only a few papers test the design optimization
results on a manufactured prototype (see Table 1).

Metaheuristic optimization algorithms have become an alternative design technique
due to their efficiency, low time, and computational resource consumption. Following are
some applications where metaheuristic algorithms have proven to be successful: electrical
network design [16], transformer equivalent circuit parameter estimation [17], induction
motor equivalent circuit parameter estimation [18], speed and position estimation for AC
motors [19], electricity cost forecasting [20], economic dispatching [21,22], reactive power
flow dispatching [23], optimal power flows [24], control tuning [25,26], and automatic
design analog integrated circuits [27].

Table 1. Recently applied transformer design methods.

References Method
Applied Validation

Number of
Design

Equations

Number of
Objective
Functions

Transformer Type Transformer
Rating

[9] No information FEM 8 1 Shell-type,
3-phase.

800 kVA,
1600 kVA,
2500 kVA.

[10] CMA-ES, SaDE FEM No information 4 Core-type,
3-phase. 150 kVA.

[11]
CSA, MFO,
VOA, PSO,

SL-PSO
FEM 3 No information Core-type,

Dry-type, 3-phase. 100 kVA.

[12] MINLP FEM No information 1 Shell-type,
3-phase. 400 kVA.

[13] MOHS, MHSR Analytical 14 2
Shell-type,
dry-type,
1-phase.

400 VA.

[14] TPA-FEM FEM and
Experimentation 1 1 Core-type,

3-phase. 200 MVA.

[15] GP- BBS FEM 17 1 Autotransformer,
core-type, 3-phase. 200 MVA.

Note: Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Self-Adaptive Differential Evolution (SaDE),
Crow Search (CSA), Moth-Flame Optimization (MFO), Vortex Optimization (VOA), Particle Swarm Optimization
(PSO), Social Learning-Particle Swarm Optimization (SL-PSO), Mixed Integer Nonlinear Programming (MINLP),
Multi-Objective Harmony Search (MOHS), Rick Maps harmony Search (MHSR), Tree Pruning Method-Finite
Element Method (TPA-FEM), Geometric Programing-Branch and Bound Search (GP-BBS).
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This paper is organized as follows: Section 2 provides the description of the procedure
of obtaining the costs of the core and winding; in Section 3, the objective function and the
corresponding constraints are obtained. We explain the simulation and the results obtained
by the GA, PSO, and DE in Section 4. In Section 5, our observed conclusions and future
work are presented.

2. Three-Phase Shell-Type Transformer Design Procedure

The design of the proposed shell-type three-phase distribution transformer has the
following initial parameters: rated power 750 kVA, primary voltage 13,200 YT/7620 V with
copper winding, secondary voltage 440 Y/254 V with an aluminum coil, and a core made
of electrical M-3 steel. Figure 1 shows the active part of the transformer, consisting of a
wound core and corresponding windings.

Figure 1. Transformer active part.

2.1. Windings

The mass of the conductors depends on the average length of the primary and sec-
ondary coil, number of turns, number of phases, the conductor cross-section, and the
density of the conductor material [3], and is determined by the following expression:

Mwin = Vm · Ncoil · Nθ · Scond · ρcond · 10−6 (1)

where

Mwin : Winding mass (kg)
Vm : Coil half-turn (mm)

Ncoil : Number of coil turns
Nθ : Number of phases

Scond : Winding conductor cross-section (mm2)
ρcond : Conductor density (kg/mm3)

The power losses in the primary and secondary windings are obtained as follows [3]:

Wwin = J2
win ·Mwin ·Wd(cond) ·Wk (2)

where

Jwin : Current density (A/mm2)
Wd(cond) : Volumetric resistivity and density of the conductive material (Ω ·mm4/kg)

Wk : Eddy current losses factor

For the cost of the winding, we get

Cwin = kmat ·Mwin (3)

where kmat is the unit cost of the conductive material (copper or aluminum) [US$/kg].
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2.2. Core

The magnetic circuit is the essential active part of a transformer that transfers energy
from one electrical circuit to another. It is composed of laminations providing thereby a low
reluctance path to the magnetic flux produced by the energized winding [28]. When the
winding of the three-phase transformer is energized with a sine-form wave, the induced
voltage then becomes:

Vprim =
√

2 · π · Nprim ·Φm · f (4)

where

Vprim: Primary voltage
Nprim : Number of primary turns

Φm : Magnetic flux (Wb)
f : Frequency (Hz)

The effective area in the core considering a frequency of 60 Hz can be obtained
according to the formula:

Ae f =
34,945.3281 · (Vsec/Nsec)

Bm · Fl
(5)

where the number of volts per turn Vsec/Nsec = Vprim/Nprim is the same in both windings
and Fl is the lamination factor which quantifies the insulating material in the core [29].
From [3] the core thickness and mass are obtained as follows:

E =
Ae f

2 · D

Mcore =
(

2 · E · (F + G) + E2
)
· Fl · D · ρcore · 10−6

respectively. Here,

F : Core window width (mm)
G : Core window height (mm)
D : Core sheet width (mm)

ρcore : Density of the magnetic core material (kg/mm3)

Information about losses per unit weight in the core of the M-3 grade magnetic mate-
rial is important in the transformer design. These losses depend on the magnitude of the
magnetic flux density Bm. Such dependence is usually provided by the supplier in the form
of curves “losses/kg vs. flux density”. Nevertheless, an analytical form of such a depen-
dence is preferable in the optimization procedure. Analytically, the relationship “losses/kg
vs. flux density” can be modeled as a fifth-order polynomial [3] of the following form:

wkg = 35.7028− 15.2996 · Bm + 2.5425 · B2
m− 0.2037 · B3

m + 0.007907 · B4
m− 0.00011 · B5

m (6)

As a result, the no-load losses are calculated as follows

Wcore = Mcore · wkg (7)

and the core cost takes the form:

Ccore = kcore ·Mcore (8)

where kcore is the unit cost of the core material [US$/kg].
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2.3. Operating Constraints

Constraints, such as power, efficiency, impedance, etc. ensure that the obtained
parameters of the transformer correspond to all the necessary characteristics. The following
specifies the limitations that are included in the transformer design optimization.

2.3.1. Excitation Current

Acquiring the excitation current of transformers involves conducting a no-load test
under conditions where the high-voltage winding remains open. In contrast, the low
voltage is connected to the rated voltage. The flow of excitation current through the
transformer winding solely under the specified conditions stimulates the transformer
core. Although numerous factors significantly influence the excitation current value, it
is crucial to consider the following factors: the annealing process, mechanical process,
operating conditions, magnetic material, assembly process, and core design process [30].
The excitation current is determined by

%I =
VA f e

10 · ST
(9)

where:

ST : Transformer rating (kVA)
VA f e : Apparent core losses (VA)

The apparent core losses are given by

VA f e = Pn ·VA/kg · Fc (10)

where:

Pn : Core weight
VA/kg : Volt Ampere per kilogram for a given magnetic flux density

Fc : Core empirical constant

The exciting current magnitude is usually about 1–5% of the rated current of the primary.

2.3.2. Total Losses

Total transformer losses are divided into two components: no-load and load losses. No-
load losses refer to those that occur in the core when it is energized. They depend on six key
factors that have been identified as critical [31]: (i) lamination insulation quality, (ii) silicon
content, (iii) chemical purity, (iv) grain size, (v) crystal orientation, and (vi) core lamination
thickness. Load losses are the power dissipated during a short-circuit test including losses
in windings, copper eddy current losses, and stray losses in conducting parts. The genesis of
the stray losses is rooted in the generation of eddy currents in the structural components of
the transformer (transformer tanks). Thus, it is imperative to comprehend stray losses and
their mitigation mechanisms for the enhancement of transformer design. The phenomenon
of stray losses in transformers is dependent on a multitude of variables, encompassing the
dimensions and structure of structural elements, as well as the properties of the materials
employed in their construction. The phenomenon of stray losses exhibits an increase with
the ascending magnitude of the transformer rating [32].

2.3.3. Impedance

The short-circuit impedance in a two-winding transformer is determined by shorting
the secondary winding and energizing the primary winding with a reduced voltage until
the rated current flows. In the laboratory, the way to calculate the %Zcc is by

%Zcc =
Vcc

Vn
(11)
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where Vcc is the short circuit voltage and Vn is the rated voltage. The power transformer
manufacturing guarantee includes transformer impedance. During the design phase, the
typical short-circuit test is used to validate the impedance estimation. The ANSI/IEEE
C57.12.00 standard [33] requires a tolerance of ±7.5% for two winding transformers with
an impedance greater than 2.5%, and it must be satisfied by the difference between the
measured impedance value and the value that the customer requested. The tolerance is
±10% for impedance levels under 2.5%.

The number of turns in a transformer winding, the material of the transformer core, the
size of the transformer, and the transformer frequency are only a few of the variables that
determine a transformer’s impedance. The maximum level of short circuits allowed in a
transformer is determined by the transformer impedance. A transformer impedance can be
increased to reduce short circuit currents but also cause a drop in voltage. A low-impedance
transformer, on the other hand, will have a higher short-circuit current. Depending on
the application, high/low impedance transformers will be used. Transformer impedance
consists of two components, the resistive and reactive parts. The real part of the impedance
can be calculated as follows:

%R =
Wc

10 · kVA
(12)

where:

%R : Percentage resistance at 85 ◦C
Wc : Conductor losses (W)

kVA : Transformer rating

The imaginary part of the transformer impedance mainly represents the coil geometry
contribution. The percentage of reactance is obtained according to the formula:

%X =
8π2 · f ·Vm · 10−8

γ · (Vsec/Nsec)
(13)

where:
γ : Average winding heights and thicknesses (mm)

The impedance percentage represents the percentage of the nominal voltage necessary to
operate the transformer in short-circuit. The impedance percentage is calculated as follows:

%Z =
√
(%R)2 + (%X)2 (14)

2.3.4. Efficiency

The performance and aging of a transformer are directly impacted by its efficiency.
Customers have been placing high demands on transformer efficiency due to environ-
mental concerns (the greenhouse effect) and growing energy bills. Even though a modern
transformer has an efficiency of more than 99%, the loss cost is still substantial. The trans-
former core and windings experience the most significant losses, referred to as no-load
and load losses, respectively. The amount of load connected to the transformer determines
the load loss. Stray losses have been the focus of the majority of efforts to reduce load
losses [34]. Introducing new materials, improved design, and manufacturing techniques
are the key elements that increase efficiency [35]. Employing amorphous materials results
in a substantial reduction in core losses, thereby enhancing overall efficiency significantly.

The definition of the efficiency of a transformer entails the ratio of the output power
to the input power. However, it is unfeasible to measure the efficiency of a transformer
via the output-to-input method. Instead, the efficiency is determined for full load at unity
power factor using:

η =
ST

Wwin + Wcore + ST
· 100 (15)
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2.4. Objective Function: Total Owning Cost

This section presents the optimization of the cost of the active part of the three-phase
shell-type transformer, where the objective function which is to be minimized given by

min(TOC(Nsec, Bm, cal, Ssec, D) = Cwin + Ccore + A ·Wcore + B ·Wwin) (16)

subject to: 
Iexc < 1.5%
3.5 < %Z < 5.5
core losses < 1500 W
windings losses < 9700 W
η > 98.5%

(17)

where

cal : Primary winding copper conductor size
Ssec : Cross-section of the aluminum conductor of the secondary winding

Cwin : Cost of primary and secondary winding (US$)
Ccore : Core cost (US$)

Wcore : Core losses (W)
Wwin : Primary and secondary winding losses (W)

A : No-load loss cost rate (US$/W)
B : Load loss cost rate (US$/W)

Table 2 defines the optimization variables used to minimize the TOC of the three-phase
shell-type distribution transformer 750 kVA, 13.2/0.44 kV at 60 Hz.

Table 2. Optimization variables and upper and lower limit.

Variable Unit Lower Limit Upper Limit Value Alternative

Nsec Turns 10 20 10
Bm Teslas 1.7 1.9 Continuos
cal AWG 7 16 10
Ssec mm2 34.29 452.12 4
D mm 152.4 308.4 4

3. Optimization Methods
3.1. Genetic Algorithm

The Genetic Algorithm proposed in the early 1960s by John H. Holland is a metaheuris-
tic method based on the generation of random solutions and survival of the fittest [36].
Initially, a population of NP individuals of dimension dim is randomly generated, each of
which, in turn, has a certain fitness, which is evaluated using (16). Subsequently, the best
ones (known as parents) are selected based on fitness, and the worst are not considered
for breeding. Once the parents are selected in NP, the crossing operator generates NP
offspring. In the next step, the mutation operator is applied to the offspring, which consists
of randomly changing the genetic code of the offspring. The best solution for the current
population is kept as all offspring will be the population for the next generation (i.e., elitism
is considered). This process is repeated for a certain number of generations NGs. The
criteria for parent selection, considering constraints are established [37] as follows:

T1: When comparing two feasible individuals, the one with the better fitness value is selected.
T2: When comparing two individuals, where one is feasible and the other is not, the feasible

is selected.
T3: If both individuals are infeasible, then the one who violates the constraints to a lesser

extent is selected.
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Algorithm 1 describes the GA pseudocode for minimizing the TOC of the active part
of the transformer under study.

Algorithm 1 GA

Require: Material costs, initialize NP, Pcross, Pmut
1: for i = 1 to NP do
2: Create Xi = [Nsec, Bm, cal, Ssec, D]
3: end for
4: for i = 1 to NP do
5: Evaluate (16)
6: end for
7: for gen = 1 to NGs do
8: Selecting NP individuals based on the three criteria to obtain parents
9: Apply the crossover operator to the selected parents to generate NP offspring

10: Apply mutation operator to NP offspring
11: Keep the NP offspring and discard the NP individuals in X,

just keeping the best solution to replace the worst child
12: end for
Ensure: min TOC

3.2. Particle Swarm Optimization

The particle swarm optimization algorithm that emulates the social behavior of a
bird flock was proposed by James Kennedy and Russell S. Eberhart in 1995 [38]. The
particle with the best fitness value (known as leader), together with the experience of each
particle, affects the movement (flight) of each particle in the swarm. The method consists in
generating a certain number of NP particles which are placed in the domain of the objective
function (16). Each particle (Particleg

i,j) is a potential solution to the problem. Moving
Particles remember their best position so far (pbest) and can identify their best position in
the swarm (gbest). At each iteration, the velocity and position of the particle are updated
with the following expressions:

vg
i,j = K(vg−1

i,j + C1r1(pbestg−1
i,j − Particleg−1

i,j ) + C2r2(gbestg−1
i,j − Particleg−1

i,j )) (18)

Particleg
i,j = Particleg−1

i,j + vg
i,j (19)

Equation (18) is known as the constriction factor PSO [39], which is composed of three parts:
the velocity multiplied by k, the cognitive component, which is the difference between
the current position and the best position of the particle (pbest) and, finally, the social
component which is the difference between the particle and the best position of the swarm
(gbest). The criteria used in PSO to update the pbest and determine the gbest are the same
as in the GA. The Algorithm 2 describes the PSO pseudocode for minimizing the TOC of
the active part under study.
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Algorithm 2 PSO

Require: Material costs, initialize NP, K, C1, C2
1: for i = 1 to NP do
2: Create Particlei = [Nsec, Bm, cal, Ssec, D]
3: end for
4: for i = 1 to NP do
5: Evaluate (16)
6: end for
7: while g < NGs do
8: for i = 1 to NP do
9: for j = 1 to D=(6) do

10: r1, r2 = rand[0, 1]
11: Update velocity (18)
12: Update position (19)
13: end for
14: if Particleg

i ≤ pbestg−1
i (based on the three selection criteria) then

15: pbestg
i = Particleg

i
16: end if
17: if f (Particleg

i ) ≤ f (gbestg−1
i ) then

18: gbestg
i = Particleg

i
19: end if
20: end for
21: end while
Ensure: min TOC

3.3. Differential Evolution

Kenneth V. Price y R. Storn proposed the differential evolution algorithm in 1995 [40].
This is an evolutionary algorithm based on a special mutation operator applied to a linear
combination of three different individuals and then recombined with the parent to be
replaced [41]. The algorithm consists of generating a population of NP random individuals.
Subsequently, each individual is evaluated with the objective function (16). The commonly
used differential mutation is DE/rand/1/bin, which consists of randomly choosing three
individuals from the population (xr1 6= xr2 6= xr3) and adding to the first element (known
as the base) a scaled difference between the other two individuals, where F is the scaling
factor [42,43], yields:

ui ← xr3 + F · (xr1 − xr2) (20)

Algorithm 3 uses the criteria T1, T2, and T3 (analogously to GA and PSO) on line 17 to
update the solution vector (XG+1).
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Algorithm 3 DE/rand/1/bin

Require: Material costs, initialize NP, F, CR
1: for i = 1 to NP do
2: Create xi = [Nsec, Bm, cal, Ssec, D]
3: end for
4: for i = 1 to NP do
5: Evaluate (16)
6: end for
7: for i = 1 to NP do
8: Randomly select r1 6= r2 6= r3
9: jrandom = randint(1, D)

10: for j = 1 to D do
11: if randj[0, 1) < CR or j = jrandom] then
12: ui

j,G+1 = xr3
j,G + F · (xr1

j,G − xr2
j,G)

13: else
14: ui

j,G+1 = xi
j,G

15: end if
16: end for
17: if ui

G+1 ≤ xi
G (based on the three selection criteria) then

18: xi
G+1 = ui

G+1
19: else
20: xi

G+1 = xi
G

21: end if
22: end for
Ensure: min TOC

4. Results

A critical problem in using metaheuristic algorithms, such as those studied in this
paper, is the fine-tuning of the parameters. To ensure fair comparison and appropriate
parameter calibration, the IRACE tool [44,45] was used to determine the parameter values
for each compared algorithm. Table 3 shows some constant values required for transformer
design. Table 4 shows the values of the adjusted parameters. In addition, the population
and number of generations were fixed for the three algorithms so that they could use the
same number of estimates.

Each optimization algorithm performs thirty runs. We used Python 3.9 and a computer
with the following specifications: Intel core i5 processor, 3.10 GHz, 12 GB RAM, and
Windows 11 64 bits. Feasible and infeasible solutions were obtained. Feasible solutions
satisfy all the imposed design constraints, while infeasible solutions do not satisfy at least
one constraint. Out of the 30 independent runs, where the final solution is the one reported,
the GA and PSO obtained 23 feasible solutions, while 26 were found by DE/rand/1/bin.
To validate the results obtained, the Wilcoxon rank-sum test with 95% confidence was used.

Table 3. Constants of transformer design.

Description Value Units

Lamination factor, (Fl) 0.95 dimensionless
Aluminum density, (ρal) 2.7 g/cm3

Copper density, (ρcu) 8.9 g/cm3

Volumetric resistivity and material
density factor for aluminum, (Wd,al)

13.25 Ω ·mm4/kg

Volumetric resistivity and material
density factor for copper, (Wd,cu) 2.43 Ω ·mm4/kg

Core empiric constant, (Fc) 1.35 dimensionless
Eddy current losses factor, (Wk) 1.25 dimensionless
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Table 4. Adjusted values of the parameters with the use of IRACE for each metaheuristic algorithm.

GA PSO DE

Population 40 40 40
Iterations 40 40 40

Crossover probability 0.8394 – –
Mutation probability 0.5005 – –

k – 0.9896 –
C1 – 0.9917 –
C2 – 0.9585 –
F – – 0.9122

CR – – 0.4707

Table 5 represents the TOC of the active part of the transformer, obtained by each
compared algorithm as well as the corresponding statistical values. It can be seen that the
DE obtained better TOC, with respect to the GA and PSO. Such statistical differences are
significant as indicated by the “+” sign in the Wilcoxon rank sum test [46,47]. It is worth
mentioning that the GA obtained more robust results (i.e., lower standard deviation values
with a better worst result), but the median and mean values are not as good as those found
by DE.

Table 5. Statistical values obtained by each metaheuristic algorithm.

Stat

Methods DE GA PSO

TOC (pu) TOC (pu) TOC (pu)

Best 0.9426 0.9444 0.9549
Mean 0.9463 0.9543 0.9606

Medium 0.9444 0.9549 0.9598
Worst 0.9695 0.9602 0.9690

St. Dev. 0.0055 0.0044 0.0042

Wilcoxon rank-sum test
+ +with 95% confidence

Table 6 details the specifications of the core, the compliance with the guarantee values,
the found values of input variables, the percentage reduction in the cost of the transformer
design with respect to that provided by the manufacturer, and, finally, the time required to
find the global optimum where the reduction in time is very significant concerning to the
method used by the manufacturer.

Table 6. Comparison of the values provided by the manufacturer with respect to those obtained by
the GA, PSO, and DE.

Manufacturer GA PSO DE

Warranties

Iexc (%) 1.39 0.74 0.68 0.3
Impedance (%) 4.92 4.02 4.62 4.67

Total losses (W) 11,522.45 10,581.92 10,887.69 10,846.49
Efficiency (%) 98.49 98.61 98.57 98.57

Core

E (mm) 60 100 93 96
F (mm) 85 85 85 85
G (mm) 280 280 280 280
D (mm) 304.8 203.2 203.2 203.2
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Table 6. Cont.

Manufacturer GA PSO DE

Optimum values

Secondary turns 15 14 15 15
Bm (T) 1.818 1.76 1.76 1.7

DP (AWG) 10 10 10 10
DS (mm2) 254× 1.78 254× 1.78 254× 1.78 254× 1.78

Core width (mm) 304.8 203.2 203.2 203.2
TOC (pu) 1.0 0.9444 0.9549 0.9426

Cost reduction (%) — 5.89 4.73 6.08
Time (seg) 347.23 0.104 0.171 0.195

Figure 2 depicts the convergence curves provided by the GA, PSO, and DE algorithms,
of the run located in the median value out of those runs where feasible solutions were
found. Although GA and PSO seem to have good results early in the search process, DE is
the one that avoids local optimum and can find a lower TOC.

Figure 2. Convergence curves of the 750 kVA three-phase transformer by the GA, PSO, and DE.

5. Conclusions

In this work, the GA, PSO, and DE metaheuristic optimization algorithms were used
to minimize the TOC of the active part of a three-phase shell-type distribution transformer,
and their results and characteristics were compared. These algorithms provided better
results of the transformer optimization problem satisfying the corresponding constraints
than those provided by the manufacturer, reducing the TOC by 4.73–6.08%. Furthermore, it
was observed that DE provided the most competitive results, and it is also straightforward
to implement. In addition, the three algorithms required less than one second to find
competitive solutions to the problem, which is significantly less than the transformer
manufacturer 348 s. In general, the tested metaheuristic algorithms, particularly DE, can be
an effective alternative for design engineers seeking to minimize the time to improve the
design and performance of a transformer as the one tackled in this work. In the future, a lot
of work remains to be conducted on the design of the transformer, for example, (a) include
the calculation of the hottest spot in the program, (b) design the transformer including tank
and mineral oil, (c) Design other types of transformers (pole, lined, submersible, for wind



Energies 2023, 16, 4016 14 of 16

farms, step-up generators, shunt reactors, autotransformers, phase shifters, DC converters),
and (d) use other, more advanced versions of the algorithms used in this study.
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Abbreviations
The following abbreviations are used in this manuscript:

GA Genetic Algorithm
PSO Particle Swarm Optimization
DE Differential Evolution
TOC Total Owning Cost

Nomenclature

Mwin = Winding mass (kg); Vm = Coil half-turn (mm); Ncoil = Number of coil turns;
Nθ = Number of phases; Scond = Winding conductor cross-section (mm2); ρcond = Conduc-
tor density (kg/mm3); Jwin = Current density (A/mm2); Wd(cond) = Volumetric resistivity
and density of the conductive material (Ω · mm4/kg); Wk = Eddy current losses factor;
Nsec = Number of secondary turns; Nprim = Number of primary turns; Φm = Magnetic
flux (Wb); f = Frequency (Hz); G = Core window height (mm); F = Core window width
(mm); D = core sheet width (mm); ρcore = Density of the magnetic core material (kg/mm3);
Fl = Lamination factor (%); ST = Transformer rating (kVA); VA f e = Apparent core losses
(VA); Fc= Core empiric constant; %R = Percentage resistance at 85 ◦C; Wc = Conductor
losses (W); kVA = Transformer rating; IN = Amperes-turn of transformer; γ = Average
winding heights and thicknesses (mm); LL = Load Losses (W); NLL = No-Load Losses (W);
Bm = Magnetic field density (T); cal = Primary winding copper conductor size (AWG);
Ssec = Cross-section of the aluminum conductor of the secondary winding (mm2);
Ccore = Core cost (US$); Cwin = Cost of primary and secondary winding (US$);
Wcore = Core losses (W); Wwin = Primary and secondary winding losses (W); A = No-load
loss cost rate (US$/W); B = Load loss cost rate (US$/W).
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