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Abstract: With the ongoing transformation of electricity generation from large thermal power plants
to smaller renewable energy sources (RESs), such as wind and solar, modern renewable power
systems need to address the new challenge of the increasing uncertainty and complexity caused by
the deployment of electricity generation from RESs and the integration of flexible loads and new
technologies. At present, a high volume of available data is provided by smart grid technologies,
energy management systems (EMSs), and wide-area measurement systems (WAMSs), bringing more
opportunities for data-driven methods. Deep reinforcement learning (DRL), as one of the state-of-the-
art data-driven methods, is applied to learn optimal or near-optimal control policy by formulating the
power system as a Markov decision process (MDP). This paper reviews the recent DRL algorithms and
the existing work of operational control or emergency control based on DRL algorithms for modern
renewable power systems and control-related problems for small signal stability. The fundamentals
of DRL and several commonly used DRL algorithms are briefly introduced. Current issues and
expected future directions are discussed.

Keywords: data-driven; artificial intelligence; deep reinforcement learning; control; modern renewable
power system

1. Introduction

An electric power system is a comprehensive system that includes energy generation,
transmission, and transformation, as well as consumption of electricity and other compo-
nents. It is crucial to the continuing smooth operation of modern society. Power system
failures, such as prevalent power outages, will inevitably lead to substantial economic
losses [1] and social instability. For instance, the power system outage that happened in the
United States and Canada in 2003 caused an estimated USD 10 billion [2]. Therefore, it is
crucial to maintain stability and ensure the reliability of power systems.

In recent decades, the power system has been experiencing ongoing transformation
and reconstruction to be more intelligent, sustainable, and distributed. Power systems have
been evolving toward the objective of depending on a greater proportion of high-efficiency
renewable energy sources, such as wind and solar power, which brings growing complexity
and uncertainty for both the generation and demand sides in operating and investment
decision-making processes [3]. Power electronic converters are commonly used to connect
the renewable energy source (RES) generators to the power grid. Due to the fact that RESs,
especially the grid-following RESs, usually do not have the capability to actively respond
to frequency changes, the system inertia decreases and frequency stability issues become
increasingly prominent; therefore, as a consequence, frequency regulation (FR) becomes
more complex. Currently, renewable generation covers all levels of the power system,
including transmission, distribution, and micro-grids (MGs). The complexity of power
networks is also raised by the addition of new types of electrical loads to the system, such
as the fast rise of electric cars (EVs).
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The deployment of advanced communication infrastructures and newly installed
devices, such as phasor measurement units (PMUs) in transmission systems, advanced
smart meters in distribution networks in power systems, and high-performance compu-
tational capabilities provide a solid basis for advanced control techniques. For instance,
reinforcement learning (RL) is a model-free technique for updating control actions based
on observing the operational conditions of power systems. The goal of RL is to interact
with the environment to develop the optimal policy that will yield the maximum reward.
Since the early 20th century, the most common RL algorithm, including Q-learning and
state-action-reward-state-action (SARSA), have been used to control power systems.

The combination of RL and deep learning is known as deep reinforcement learning
(DRL). In order to handle problems involving sequential decision-making, DRL approx-
imates a function using a deep neural network (DNN). DRL has become a recognized
approach in many fields, such as gaming [4–6], computer version (CV) [7], smart trans-
portation [8], automatic piloting [9], and other fields with great success. In addition, DRL
became active in the control field of power systems in recent years by describing the power
system as a Markov decision process (MDP). For safety concerns, DRL is usually used
in power grid simulators and updates the control actions to find a (near-)optimal control
policy.

This paper reviews the recent DRL-based control application in a normal operating
state, emergency state, and control-related applications. The main advantages of this
research following a recent review of DRL for applications in power systems [10–12] are
as follows:

• This paper focuses on the state-of-the-art DRL-based methods for operational control
and emergency control in modern renewable power systems;

• Rather than presenting comprehensive applications for power systems, this paper
focuses on the control field according to the current operating states and levels;

• The significant limitations and potential remedies of DRL-based approaches in power
system control applications are thoroughly concluded and discussed.

The structure of this paper is as follows. In Section 2, the foundations of (D)RL and
various widely used algorithms are presented. In Section 3, an overview of DRL-based
methods for power system control applications is given. Section 4 presents the discussion
and future directions, and Section 5 concludes with a summary. The structure and main
content of this paper are shown in Figure 1.

DRL

Overview of  DRL

Classification of DRL

State-of-art DRL algorithms

Control-related application of DRL in 

power systems 

Operational control

Emergency control

Small signal stability Control

Figure 1. The structure and main content.
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2. Review of the Deep Reinforcement Learning Algorithms

The majority of artificial intelligence (AI) issues that occur today are resolved via machine
learning, a subfield of AI. Typically, there are three types of machine learning: supervised
learning, unsupervised learning, and RL [13]. Supervised learning is generally used to
train and improve the learning system for predictions, classifications, or regressions by
evaluating the output and confirming the labels of data [14]. There are two underlying
assumptions of supervised learning. Firstly, the input data are assumed to be independent.
Otherwise, it is difficult for the learning system of supervised learning to improve itself.
Secondly, the learning system has been told by the data label to correct its predictions
through the actual labels. Unsupervised learning is used to discover the hidden patterns
and search for the differences in unlabeled training datasets, and is generally is applied for
clustering and reducing dimensions.

2.1. The Fundamentals of Reinforcement Learning

There are two main components of RL. As shown in Figure 2, the agent and the envi-
ronment. Unlike supervised or unsupervised learning, RL allows the agent to explore the
actions with maximum cumulative rewards instead of being told which actions should be
taken [15]. Moreover, the agent still needs training in many episodes through trial and error
in the environment. In particular, each episode is a trajectory of states, actions, and rewards
across time. (s0, a0, r0, s1, a1, r1, . . . ) in RL will be terminated when it reaches a certain goal.
Moreover, RL is sequential, long-term, and emphasizes on the accumulation of rewards
over time as opposed to the immediate rewards of supervised or unsupervised learning.

Agent

Environment

Action
t
a

State
t
s

Reward
t
r

1tr +

1ts +

Figure 2. The Interaction between the environment and agent.

The agent is both a decision-maker and a learner. The environment, which is made up
of everything around the agent, is the object with which the agent interacts. The agent and
environment interact with each other at each of a series of discrete time steps t = 0, 1, 2, 3, . . ..
At each time step t, the agent obtains some representation of the state St of the environment,
where St ∈ S and S are the sets of potential states. On the basis of that representation, the
agent chooses an action At, where At ∈ A(St) and A are the sets of available actions in the
current state St of the environment [15].

2.2. Markov Decision Process

The issues that need to be solved in RL can be dealt with in an MDP. The purpose of
an MDP is to simplify the environment. While the state signal and environment satisfy
the Markov property, i.e., the next state and the expected reward must only be decided
by the current state and action, it can be formulated as an MDP. An MDP is applied to
provide a mathematical framework for describing decision-making problems in a situation
where results are both partially unpredictable and partially under the decision maker’s
control [15]. An MDP can be described as a tuple 〈S, A, R, P, γ〉, where R is the reward
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function, P is the transition probability (1) with the transition matrix (2), γ is the discount
factor, and γ ∈ [0, 1).

P(st+1 | st, at) = P(st+1 | s0, a0, · · · , st, at) (1)

P =


P(s1 | s1) P(s2 | s1) . . . P(sN | s1)
P(s1 | s2) P(s2 | s2) . . . P(sN | s2)

...
...

. . .
...

P(s1 | sN) P(s2 | sN) . . . P(sN | sN)

 (2)

The illustration of an MDP is shown in Figure 3. At each epoch of the MDP, the agent
takes action at based on the current state st of the environment, receives reward rt from the
action, and moves to the next state st+1.

Figure 3. Illustration of the Markov decision process.

The problem is supposed to match the framework of the MDP to support the theoretical
result of RL. In addition, RL can still be an acceptable approach even though it slightly
deviates from the definition of an MDP. Conversely, suppose the Markov property is
not satisfied with the problems, e.g., the partially observable Markov decision process
(POMDP). In that case, RL may suffer from non-stationary issues, which results in an
inaccurate outcome.

2.3. Value Functions

An essential criterion for judging the action in most RL algorithms is to estimate the
value functions of the states or state-action pairs. The state-value function or action-value
function evaluates how acceptable the action is for the agent to accept a given state. For an
MDP, the state-value function Vπ(s) can be defined as:

Vπ(s) = Eπ [Rt | St = s] (3)

where E denotes the expected value for the agent by following policy π at any time step
t. In addition, Rt is the total discounted return that estimates the value of cumulative
future awards:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞

∑
k=0

γkrt+k+1 (4)

Furthermore, the state-action function Vπ and the action-value function Qπ(s, a) can
be decomposed into a Bellman equation as:

Vπ(s) = Eπ

[
∞

∑
k=0

γkrt+k+1 | st = s

]
= Eπ [rt+1 + γVπ(st+1) | st = s]

(5)
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Qπ(s, a) = Eπ

[
∞

∑
k=0

γkrt+k+1 | st = s, at = a

]
= Eπ [rt+1 + γQπ(st+1, at+1) | st = s, at = a]

(6)

For instance, classic Q-learning uses the action-value function to determine the Q
value, the updating rule is shown in an iterative form:

Q(st, at)← Q(st, at) + α[rt+1 +γ max
a

Q(st+1, a)−Q(st, at)
]

(7)

The optimal policy π∗ denotes the policy that obtains the highest cumulative reward in
the process. The following are the optimal state-value function and action-value function:

V∗(s) = max
π

Vπ(s)

Q∗(s, a) = max
π

Qπ(s, a)
(8)

In RL, the DP applies Equation (5) and determines the current value based on the
following state’s value (bootstrapping). However, the DP method is required to obtain the
model’s state transition probability p, and the model must be known. The value function
of the DP is:

V(st)←∑
a
π(a | st) ∑

st+1,r
p(st+1, r | st, a)[r + γVπ(st+1)] (9)

Temporal difference (TD) learning combines the advantages of the DP and model-free
Monte Carlo (MC), which uses sampling means instead of expectation. Like the MC, TD
learning also learns from the experience but updates the parameter at each time step t
instead of at the end of the MC episode. TD learning applies the original value function
and single return to determine the target value, which can be expressed as (10). TD learning
is used for predictions and is commonly used for learning approaches, such as Q-learning
and Sarsa, for evaluating value functions via bootstrapping in an online, model-free, and
entirely incremental manner [16].

V(st)← V(st) + α[rt + γV(st+1)−V(st)] (10)

where α is the learning rate.
Bootstrapping methods are similar but not gradient descent methods because the

objective function depends on the predicted weights. TD learning, as a bootstrapping
approach, is easier to learn since it can continuously learn online. In addition, because
the objective depends on the predicted weights, bootstrapping methods are not examples
of gradient descent. Furthermore, bootstrapping approaches will cause a non-uniform
overestimation issue in DRL, which will be discussed in the policy-based algorithm section.

2.4. Classification of Deep Reinforcement Learning Algorithms

DRL algorithms break the barrier and exceed the limits of both RL and deep learning
algorithms. Classic RL usually suffers from the curse of dimensionality [17] in various
sequential decision-making problems. The number of states generally rises exponentially in
proportion to state variables. Moreover, some states and variables in the real environment
are continuous and highly dimensional. Therefore, these problems bring many challenges
for RL methods to be applied in practice. To address this problem, a DNN is used as the
function approximator with extra hidden layers between the input and output layers. As
a result, a new representation of the input from the previous layer is typically obtained
by a non-linear transformation or activation function, such as a logistic and rectified
linear unit (ReLU). Deep learning is built around the concept of distributed representation,
which implies that a feature may be the result of multiple inputs, and an input may be
used to denote various features. Distributed representations have exponential advantages
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over centralized representations, which help RL overcome the problem of the curse of
dimensionality. While combing deep learning and RL, DNNs also can be used for the
approximation of RL components, such as value functions, v̂(s; θ) or q̂(s, a; θ), policy
π(a | s; θ), where θ is the parameter of the neural network [13]. Therefore, DRL combines
deep learning and RL to solve control problems with more high dimensional states and
larger state spaces. In general, DRL-based approaches can be classified as value-based and
policy-based, as shown in Figure 4.

DRL 

algorithm

DRL 

algorithm

value-basedvalue-based

policy-basedpolicy-based

DQNDQN

Proximal Policy

Optimization

PPO

Proximal Policy

Optimization

PPO

Actor CriticActor Critic

Trust Region 

Policy 

Optimization 

(TRPO)

Trust Region 

Policy 

Optimization 

(TRPO)

Double DQNDouble DQN

Dueling DQNDueling DQN

Prioritized DQNPrioritized DQN

A2C,A3CA2C,A3C

Soft Actor-Critic 

(SAC)

Soft Actor-Critic 

(SAC)

DDPGDDPG

Actor-Critic with 

Experience Relay 

(ACER)

Actor-Critic with 

Experience Relay 

(ACER)

Figure 4. The classification of common DRL algorithms.

2.4.1. Value-Based Algorithm

Almost all model-free RL-based approaches are either value-based or policy-based.
The deep Q-network (DQN) is one of the representative value-based methods that ignited
the field of RL in 2015 [4]. In the DQN algorithm, a DNN is used as an approximator to
fit the action-value function instead of the tabular value in classic Q-learning. The main
contributions of the DQN are to build a replay buffer and develop an experienced replay
mechanism to store transitions that mitigate the correlations in the training data sampled
by a mini-batch. Another contribution is the target network. The target network Q(s, a; θ′)
is a clone of the online network Q(s, a; θ) that has the same network structure but different
parameters. Parameter θ of the online network is updated by stochastic gradient descent
(SGD), but parameter θ′ is kept frozen in each episode and is only updated in a specific
period by replacing the value of θ or the weighted average value of θ and θ′. To minimize
the difference of the output between the target network and the online network, their
parameters can be optimized by minimizing the loss function, as shown in (11).

L(θ) = Eπ

[(
Q(st, at | θ)− r(st, at)− γ max

a
Q
(
st+1, at+1 | θ′

))2
]

(11)

Furthermore, action at is selected between a random action or the output of arg maxa
Q(φ(st), a; θ) by following the ε-greedy policy, where φ(st) is sequence st.

A double DQN (DDQN) [18] and dueling DQN [19] are two improved examples
of DQN algorithms. To address the non-uniform overestimation issues caused by TD
learning in a DQN, a DDQN follows the action selection through the greedy policy and
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naïve update as the DQN does, but it evaluates the value of the action through the target
network. A DDQN alleviates the overestimation issue compared to the naïve update and
target network update, although the overestimation issue still exists. Therefore, a DDQN
has better performance than a DQN for playing Atari games. A dueling DQN adopts a
dueling network architecture to estimate the action-value function Q(s, a) by combining it
with the state-value function to achieve faster convergence.

2.4.2. Policy-Based Algorithm

The majority of value-based techniques produce deterministic policies that take the
same action under the same set of circumstances. Since the agent employs a certain policy to
investigate, it may cause the agent to try insufficient actions to find helpful learning signals.
Additionally, value-based methods, such as a DQN, are usually not suitable for handling
high-dimensional or continuous action space applications since they need to discretize
the action domain, resulting in a partial optimal solution and exponential increase of
calculations. To address these issues, policy-based methods, such as a policy gradient
(PG), obtain DNNs to produce a stochastic policy πθ(a | s) to estimate the probability of
taking action a in given state s by updating parameter θ via gradient ascent methods [20].
In addition, a PG can be applied in either a discrete or continuous action space, which
depends on how the policy model is built.

Actor–critic is a policy-based RL approach that blends TD learning and a policy
gradient, in which the actor refers to the policy function π(a | s) and the critic refers to the
value function Vπ(s). The critic network estimates the value function of the current policy
to evaluate how ’good’ the policy is. The actor–critic algorithm’s parameters are updated
at each time step rather than at the conclusion of each episode thanks to a characteristic of
the value function.

As an extension of the PG, an actor–critic algorithm named the deep deterministic
policy gradient (DDPG) [21], which combines deep learning and deterministic policy
gradient (DPG), adopts the experience replay mechanism and target network from the
DQN and can deal with continuous states and action spaces. To improve the efficiency
of exploration, a common approach is to add the correlated time-dependent Ornstein–
Uhlenbeck (OU) noise [22] or the uncorrelated Gaussian noise to the action selected by
the actor online network. In practice, the Gaussian noise might not be chosen since the
Gaussian hyperparameters in the noise process are hard to tune manually and more likely
result in sub-optimal policy [23].

To ensure the stability of both actor networks and critic networks, the fixed network
is used in a DDPG. Following the training of mini-batched data sampled from the replay
buffer, the DDPG usually updates the parameter of the online actor network by the policy
gradient shown in (13). For the critic online network, the parameter is updated by the TD
algorithm of the loss function shown in (12). Compared to the DQN, the parameter of each
online network is updated by the soft target update shown in (14) instead of replacing the
value of the parameter at regular intervals.

L(θQ) = 1
N ∑i

(
yi −Q

(
si, ai | θQ))2 (12)

∇J(θµ) ≈ 1
N ∑i∇aQ

(
s, a | θQ)∣∣∣

s=si ,a=µ(si)
∇θµ µ(s | θµ)

∣∣∣∣
si

(13)

where N is the number of transitions (si, ai, ri, si+1) sampled in one batch; θµ and θQ

are, respectively, the parameters of the actor and critic online networks; θµ′ and θQ′ are,
respectively, the parameters of the actor and critic target networks.

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′ (14)

where τ is a constant� 1 and is usually set as 0.001.
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The policy-based RL methods usually provide more excellent convergence guarantees
than value-based RL methods [24], especially when using neural networks to approximate
functions, which can handle larger scales of state and action spaces [25].

2.5. Multi-Agent Deep Reinforcement Learning Algorithm

For single-agent DRL methods, the critical issue is that the environment is not station-
ary from each agent’s perspective, while each agent is changing its policy in a multi-agent
environment. Thus, the corresponding change in the environment is not explainable for
each agent, which causes learning instability issues and discards the experience replay
mechanism. However, straightforwardly mapping the single-agent DRL to a multi-agent
environment to train each agent separately [26] usually results in no convergence or over-
fitting issue because each agent carries different policy networks with the distinct policy
score function J(θi). Then, the individual agents’ long-term rewards are now dependent on
the policies of all other agents, which means that while an individual agent updates the
policy network, other agents will change their policy network correspondingly.

The multi-agent deep reinforcement learning (MADRL) algorithm is proposed to
solve sequential decision-making problems in a multi-agent environment with multi-
ple agents. The behaviors of each agent impact both the state of the entire environ-
ment and the reward for each agent. In this case, as an expansion of an MDP, Markov
games, also known as stochastic games [27] that deal with the discrepancy among the
agents, are required in MADRL algorithms. A Markov game is described as a tuple
〈N ,S ,

{
Ai}

i∈N ,P ,
{

Ri}
i∈N , γ〉, which can be explained as follows:

• N = {1, · · · , N} is the set of agents i, where i ∈ N ;
• State space S is the observation of the state space from all agents;
• Ai is the action space of agent i;
• P is the transition probability from s to st+1, where s, st+1 ∈ S for any joint action

a ∈ A, where A := A1 × · · · × AN ;
• Ri is the reward function that estimates the reward for agent i from the transition of

(s, a) to st+1;
• γ is the discount factor and γ ∈ [0, 1).

Accordingly, the value function of MADRL (15) also needs to be modified to adapt
to the multi-agent scenarios. At each time step, action ai

t is taken by agent i based on
the observation of environment state st. Reward Ri(st, at, st+1) is gained by agent i as the
environment transits to the next state st+1, while reward Ri is also dependent on another’s
action ai. As a result, the value function Vi

πi ,π−i (s) is used to explore the optimal policy

π(at | st) := ∏i∈N πi
t
(
ai

t | st
)

for all joint policies according to state st, since the optimal
policy of each agent is not only decided by its own.

Vi
πi ,π−i (s) := E

[
∑
t≥0

γtRi(st, at, st+1) | ai
t ∼ πi(· | st), s0 = s

]
(15)

where −i denotes all indexes in N of the agents except agent i.
The most common standard to determine the convergence of MADRL is the Nash

equilibrium (NE) [28]. The situation of a stationary NE (16) of a Markov game is that it is
impossible for agent i to have a better-then-expected performance by modifying its policy,
while the policies of other agents −i remain the same [29]. In other words, once the NE
indicates the convergence, agents are not supposed to change their policy because none of
the agents has any incentive to deviate.

Vi
πi,∗ ,π−i,ε(s) ≥ Vi

πi ,π−i,∗(s) for any πi (16)

Conventional voltage/frequency control approaches can be classified according to the
communication modes: centralized, decentralized, local, and distributed control. Central-
ized control can obtain global optimization but it requires costly and reliable communication
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lines, and this is hard to achieve in the current power systems. Similarly, distributed control
can coordinate well among control devices but it is also limited to communication condi-
tions. Additionally, local control can respond quickly without extensive communication
linkages and only needs the local measurement. However, poor coordination often results
in sub-optimal solutions that might not satisfy all constraints required for power systems.
An alternative approach is centralized training and decentralized execution (CTDE). By way
of illustration of the CTDE framework, an agent can view the other agents’ observations
and actions as a part of its training, providing a complete picture of the status in the whole
system. Agents are expected to consider others and adjust themselves during a decen-
tralized execution. Ref. [30] present an adaptation of actor-critic methods that considers
action policies of other agents and is able to successfully learn policies that require complex
multi-agent coordination, besides, a training regimen utilizing an ensemble of policies for
each agent that leads to more robust multi-agent policies is introduced.

3. DRL for Modern Renewable Power System Control Applications: A Review of
Recent Works

The power system control applications are reviewed in terms of operating states:
normal operating state and emergency state. Restorative and preventive control is not
included in this paper because there are rare considerations in these fields. Furthermore,
the considerations under each operating state are reviewed according to the control level
and the type of DRL algorithms. The summary table is shown in Table 1.

3.1. Application of DRL in the Operational Control of a Modern Renewable Power System

Voltage deviation is the main criterion to identify the normal operation of the power
system. Large voltage deviations can affect the operating efficiency, shorten the life of
electrical equipment, and bring safety concerns. It is imperative that the voltage remains
within a range around the nominal value. Generally, the voltage magnitude at substations
should remain within the normal range around ±10% nominal voltages for the distribution
system and ±5% for the transmission system. At present, the common devices used for
voltage management in distribution networks are on-load tap changers (OLTCs), shunt
capacitors, PV inverters, and static var compensators (SVCs). The author of [31] proposes a
DDPG-based approach to adjust tap ratios of OLTCs and determines the optimal policy to
maintain the voltage within a safe range while considering minimizing the economic costs
in distribution networks. However, the life span of the traditional VVC devices would be
drastically reduced under an excessive number of procedures. Moreover, the slow-action
devices cannot handle the rapid voltage fluctuation caused by the renewable generations
and demand response. In [32], a surrogate-model-enabled DDPG-based approach is pre-
sented to control PV inverters, SVCs, and the active power curtailment of PV inverters to
solve the voltage fluctuation caused by PV generations in real-time. The surrogate model
learns the optimal control policy by interacting with a DRL agent in a supervised manner
to represent the non-linear mapping relationship of the power injection and the voltage
fluctuation of each node.

The voltage regulation devices can be divided into slow and fast regulation devices.
Conventional devices, including static capacitor banks (CBs) and OLTCs, are mechanical
devices that are sluggish to respond to changes in voltage (e.g., seconds or minutes) [33].
While the static var compensators (SVCs) and static synchronous compensators (STAT-
COMs) have a faster reaction time (e.g., seconds or under a second) and better reactive
power injection capability as an alternative. In this regard, the voltage regulation can be
broken down into multi-timescale optimizations because of the different reaction times and
characteristics of mechanical and power electronic devices. The author of [34] decomposes
voltage control in distribution grids in two timescales and applies both physical-driven
and data-driven-based methods to the voltage control problem. For the former, the precise
or approximate grid models are used to obtain the optimal setpoints for inverters in a fast
timescale. The latter applies the DQN algorithm to determine the reactive power control
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strategy of switching the shunt capacitors in a slow timescale (e.g., hours, days). Moreover,
the author of [35] applies hybrid DRL algorithms to different timescale control devices to
generate optimal control policy in both fast and slow timescales with the continuous and
discrete domain. In particular, multiple agents are divided into DQN-based and DDPG-
based agents, which are used for discrete actions, including the configuration of capacitors
in a slow timescale and continuous actions, such as the control strategies of PV inverters
and energy storage batteries, in a fast timescale. Unlike the DQN, the DDPG can directly
handle continuous state-action spaces instead of discretization. Furthermore, the two
types of agents work collaboratively to produce real-time voltage control strategies. The
author of [36] designs a DRL-based two-stage volt/var (VVC) architecture that coordinates
voltage-regulating devices in real-time while reducing the power loss. In the first stage,
the scheduling of the OLTCs and CBs are sent a day ahead from the hourly PV and load
predictions using optimal power flow (OPF) in the central controller. Then, in the second
stage, the dispatch results of the OLTCs and CBs are regarded as the input of the MADDPG
algorithm to learn and explore the optimal reactive power point of PVs using PV inverters
in a fast timescale. To alleviate voltage violations caused by the uncertainty of EVs and
load in the active distribution network (ADN), the author of [37] applies the DDPG to a
two-stage method to alleviate voltage violation. To extend the previous work, reactive
power dispatch is also sent a day-ahead to lessen the power losses using the mixed-integer
second-order cone programming (MISOCP) in the first stage. Then, the DDPG-based
method is applied at each charging station (CS) for voltage control within an acceptable
range in the second stage.

A single objective for optimization might be insufficient to satisfy the required goals
of the sequential decision-making process in dynamic systems. While dealing with these
situations, the MDP of DRL-based VVC approaches is replaced by the constrained Markov
decision process (CMDP) [38] to achieve the objective with constraints, which also helps
comprehend the trade-off between several purposes. The author of [39] formulates the VVC
problem as a CMDP and introduces a high-efficiency off-policy constrained soft actor–critic
(CSAC)-based approach to provide optimal VVC strategies with operating cost constraints
in the distribution network to satisfy the high-security requirements. Likewise, the author
of [40] proposes a safe DDPG-based DRL approach to achieve optimal voltage control by
coordinating multiple hybrid distribution transformers (HDTs) with minimal power losses
in the formulation of a CMDP, where data are collected from the HDT sensors and ADN.
The physical constraints are illustrated with the applicable range of the available reactive
power of an HDT. The formulation of the CMDP combines the objectives of keeping all bus
voltages within acceptable limits while reducing power losses in the environment of the
ADN. In particular, the definition of ‘safe’ is reflected in the safety layer at the top of the
DDPG’s actor network, which helps correct the control strategies and ensure that the bus
voltage does not exceed the acceptable range. However, it is worth noting that HDTs are
considered as the significant control devices in [40], which are not equipped in most of the
existing distribution networks.

Apart from the control applications at the distribution network control level, the
system-wide control is more complex for decision-making. The author of [41] designs
the DQN-based autonomous voltage control (AVC) framework ‘grid mind’ for the power
grid voltage control in a steady state. Specifically, the ’grid mind’ framework is separated
into offline and online training. In particular, agents can adapt to the environment and
explore optimal control actions based on experience in offline simulations. In the online
session, the agent implements the control action based on the real-time data collected
from SCADA or directly from PMUs, and the supervisor will verify the submitted control
policy. Additionally, the author of [42] extends the work of the ‘grid mind’ framework for
the AVC in the power grid and applies both the DQN and DDPG to train DRL agents in
different schemes. The DDPG is used for the problems with continuous action space, such
as controlling the voltage set-points of generators, and the DQN is applied for the issues
with discrete action space, such as switching shunt capacitors.
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With the increasing scale of power systems, it is inappropriate for single-agent DRL
algorithms to regard the whole power system as a single region for calculations. It should
be proportionally distributed to target regulation units. However, agents increased ex-
ponentially along with the dimension of state and action spaces, known as the ‘curse of
dimensionality’. The recent research shows that the MADRL-based methods with com-
posite function approximation can improve scalability. The MADRL-based approaches
for voltage control at the distribution network level are introduced below. The author
of [43] applies the multi-agent soft actor–critic (MASAC) algorithm to the approach in
centralized training with a surrogate model and decentralized execution manner, which
coordinate both the battery storage system (BSS) and SVCs to decrease the voltage deviation
while keeping a low degree of active power curtailment for PVs. In particular, a sparse
pseudo-Gaussian process (SPGP) replaces the original power flow model to determine
the reward function in the training process. The SPGP is equivalent to the power flow
equations in terms of the input–output relationship to learn about the mapping between
node voltage magnitude and both reactive and active power injection but it requires fewer
measurements. Similarly, it is necessary to apply a network partition before applying the
MADRL algorithm to voltage control problems. The entire network is divided into several
sub-regions according to active and reactive voltage sensitivity as well as to electrical
distance. The centralized training manner guides all agents to achieve coordinated control
using the SPGP mode. As opposed to a single cumulative bonus in common DRL algo-
rithms, the SAC actor functions maximize the sum of the expected rewards and entropy to
encourage agents to explore more in the training process. The author of [44] explores an
optimal VVC control strategy that coordinates the reactive power of SVCs and PV inverters
in sub-networks in an ADN based on the multi-agent twin delayed deep deterministic
policy gradient (MATD3) algorithm integrated with an attention model based on the CTDE
framework. The optimal partition results of the ADN are determined using spectral cluster-
ing, which is an unsupervised learning technique derived from spectral graph theory based
on voltage-reactive power sensitivity. The improved MATD3 algorithm with an attention
model is used to allow each agent to pay more attention to the detailed information that is
primarily concerned with the reward. Additionally, compared to the other decentralized
and distributed methods, the proposed method only needs local information, and no com-
munication among agents is required in a distributed manner. The author of [45] designs
a two-timescale multi-agent voltage control framework to coordinate different layers of
agents for the ADN. Agents are categorized into two levels, upper-level agent and lower-
level agent. For instance, the upper-level agent takes the ADN’s global states into account
to decrease the voltage variation and minimize long-term switching numbers of OLTCs
and SCs by the SAC algorithm in the slow time-scale control. In addition, the upper-level
agent’s actions are sent to the lower-level agents for the coordinated management of PV
inverters at each time step by the MASAC algorithm in fast time-scale control instead of
pre-determination by the stochastic programming method. Moreover, the lower agent
is responsible for network partition based on the voltage-reactive power sensitivity. The
two-level agents are then trained simultaneously while exchanging information from the
reward signal computed by the surrogate model to establish the systematic coordination
among different assets. In [46], a robust regionally coordinated VVC (RRV-VVC) approach
is described in a multi-agent context. The RRC-VVC approach maintains the coupled
power flow linkages while dividing the distribution network into numerous sub-networks.
In order to regulate voltages while reducing power losses in the presence of spatial and
temporal uncertainty in PV power generation and loads via PV inverters, the MADDPG is
applied to each sub-network based on the CTDE architecture. Because loads and renewable
energy generation vary according to location and are subject to short-term intermittency
and volatility, stochastic programming is used to account for the spatial and temporal uncer-
tainty. Similar to the previous literature, voltage deviation and power loss are considered
in the reward function by the classic weight sum algorithm. Therefore, the multi-objective
functions are converted into a single-objective function.
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There are also considerations of the micro-grid level using MADRL-based methods
for voltage control. In [47], the PowerNet algorithm, which is a decentralized on-policy
MADRL approach, is presented to achieve secondary voltage control (SVC) in the micro-
grid. The proposed communication protocol allows each agent to communicate with its
neighbors for the required data, such as the encoded information of states, to boost learning
effectiveness. Then, a spatial discount function is introduced to describe the physical
distance’s correlations between different agents, which is included in the reward function
to solve the problem of instantaneous global reward, such as the credit assignment problem.
Moreover, to address the noise problem caused by the on-policy RL approach, the sampled
stochastic actions are smoothed by PowerNet to mitigate the action fluctuations to ensure
the desired performance.

The OPF-based approach has been widely applied to support system-wide voltage
regulation in power systems by utilizing the convex relax methodology [48] to tackle non-
linear and non-convex issues [49]. Nevertheless, single-point failure, communication delay,
and scalability concerns may distort the results and affect the performance of the real-time
control of OPF-based methods. The partition-based distributed coordination control using
MADRL methods is a trendy alternative approach in recent research [50–52]. Since the
standards of the communication condition required by the MADRL approaches in most
scenarios are relatively low, which are appealing to the current limited communication
conditions in today’s power system, they mitigate the high-cost deployment of communi-
cation devices. The MADDPG is refined by assigning an individual replay buffer to each
agent and is applied to the multi-agent AVC (MA-AVC) scheme in [53]. The power grid
is first segmented into several partitions roughly according to geographic considerations,
and an agent is assigned to each partition with an individual actor, critic, coordinator, and
replay buffer. In addition, the partition remains until it is guaranteed that there are no
uncontrollable buses. This process is called the post-portion adjustment. Furthermore, the
proposed MA-AVC scheme ameliorates the problems caused by delayed communication
since only some specific data are needed to be shared among agents, such as the next
estimated action value after execution in the training process. The author of [54] adopts an
optimal steady-state voltage regulation in the urban power grid. The MADDPG associated
with the dynamic reward function is applied to solve the power flow equations to minimize
the voltage deviation, and N-1 contingencies are also taken into consideration. There are
two types of agents in the control scheme, SVC and system agents. The SVC agent calcu-
lates active power injections based on local data and the setpoint by the DDPG algorithm,
and the system agent provides the available voltage setpoint for the SVC agent using the
MADDPG algorithm. They are coordinated to achieve voltage regulation. Specifically, the
DDPG is applied to train the SVC agent to determine the active power injections based
on the local measurement and the voltage setpoint is decided by the system agent with
the MADDPG.

Active and reactive power must be balanced between generation and consumption,
which is frequently accomplished by employing centralized control centers equipped with
automated generation control (AGC) capabilities to manage the different generating units
in secondary frequency/voltage control. Load frequency control (LFC) is included in
AGC and refers to the active power and frequency regulation. LFC is used to fulfill a
region’s local demands first and later to reduce the steady-state frequency ∆ f to zero with
a fast response in only a few seconds to maintain the system stability. The author of [55]
introduces an MADDPG approach to regard each generation unit as an agent to perform
primary and secondary frequency control in a decentralized manner. The author of [56]
presents an MADDPG-based method for the optimal coordinated control by load frequency
controllers to adjust the power generation through multiple areas. In addition, an LFC
database is established during the initialization process to reduce the training time of the
parameter of the DNN based on stacked-denoising auto-encoders (SDAEs), where the
training data are collected with labels from area control error (ACE) signals and fine-tuned
PID controllers.
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The Federal Energy Regulatory Commission (FERC) proposed the performance-based
frequency regulation market [57] to maximize the control performance while reducing
regulatory mileage in 2011. A secondary frequency regulation encourages fast-responding
regulation units, such as wind turbines, photovoltaic power plants, and flexible loads. The
author of [58] designs an intelligent AGC (IAGC) framework for proportional–integral (PI)
controllers to achieve multi-area comprehensive optimal frequency regulation by adjusting
its coefficient in each area and satisfying the performance-based frequency regulation
market mechanism and coordinating the dispatch and control algorithm. Specifically, the
parameter of each PI controller is trained from the local resources, and tuners are added
in each controller for applying the guided-exploration multi-agent twin-delayed DDPG
(GE-MATD3) algorithm to achieve the multi-area coordination of the frequency regulation
in real-time. The author of [59] applies the curriculum multi-agent DDPG (EIC-MADDPG)
algorithm to the distributed intelligent coordinated AGC (DIC-AGC) framework in a
CTDE manner for the optimal controller coordination of a multi-area integrated energy
system (IES) in the performance-based frequency regulation market. The adoption of
the CTDE mechanism only requires the agent in each area of the IES to observe the local
state instead of the global state in the whole system. The author of [60] develops a multi-
agent distributed multiple-improved DDPG (MADMI-TD3) algorithm based on the virtual
generation alliance AGC (VGA-AGC) framework to achieve the coordination of the control
algorithm and dispatch algorithm in the performance-based frequency regulation market.
In particular, the VGA-AGC framework is mapped to a pyramid structure. To assort the
agents into five levels, starting from the top: king agent, general agent, lord agent, and
knight agent. More specifically, the task of the agents at the lower level is to execute
the generation command from the upper-level agent. The king agent plays the role of
the traditional PI controller to observe the global state of the power grid and adjusts the
action accordingly.

3.2. Application of DRL in the Emergency Control of a Modern Renewable Power System

At present, two major problems (frequency and voltage instability) have been con-
sidered in the existing work so far. Although in past decades, many RL-based techniques
have considered the instability problems, including transient angle instability, these are
currently rarely considered for DRL-based methods.

The fault-induced delayed voltage recovery (FIDVR) refers to the unexpected delay of
several seconds in the voltage recovery after the fault is cleared. It is confirmed that the
root cause of the FIDVR is the stalled air-conditioner (A/C) units powered by single-phase
induction motors. The goal of emergency control for FIDVR issues is to restore the voltage
in order to meet the voltage recovery criterion while shedding the load as little as possible.
In [61], a DQN algorithm-based DRL technique to handle the FIDVR issue of under-voltage
load shedding (UVLS) is considered the emergency control strategy. The UVLS swiftly
relays the lower load demand to the substations when monitored bus voltages fall below
predetermined voltage thresholds. In addition, the author of [61] develops reinforcement
learning for a grid control (RLGC) open-source platform, and its RL module is built
on OpenAI Gym for developing, training, and testing RL algorithms in power system
simulators. In [62], a derivative-free DRL algorithm called the parallel to augment random
search (PARS) and tailored for the power system is developed to reduce voltage instability
by UVLS. In particular, simultaneous perturbation stochastic approximation is used to
explore the parameter space of the ARS for more efficient explorations. Moreover, a deep
meta-reinforcement learning (DMRL) technique is presented in [63] for emergency voltage
controls to quickly adapt to the environment of new power grids. The PARS and meta-
strategy optimization (MSO) [64] algorithms are specifically combined in DMRL, allowing
the agents to quickly adapt to the new environment of power grids, including power flow
circumstances and dynamic parameters, by learning the latent context from prior learning.
Considering that the decision-making process of DRL algorithms is usually regarded as
black-boxes, a policy extraction framework is proposed in [65] to convert a challenging



Energies 2023, 16, 4143 14 of 23

DRL model into an understandable UVLS policy. The approach proposed in [66] adopts an
event-based MDP for intelligent load shedding, and it also incorporates the knowledge of
removing negative and repetitive behaviors to increase the effectiveness of training and
decision-making. The author of [67] provides an off-policy soft actor–critic architecture
with automated entropy adjustment termed SAC auto-discrete for UVLS to enable efficient
and adaptive discrete actions for online emergency voltage control against FIDVR.

Once a system has survived fast transient processes, an imbalance between generation
and load demand causes frequency instability. The objective of power system emergency
frequency control (PSEFC) is to quickly restore the frequency to an acceptable level of the
power system after large power disturbances. In [68], a (D)RL-based PSEFC framework is
designed for the operator to make flexible selections depending on the demand of various
situations. It is worth noting that the PSEFC framework aims to employ load shedding
techniques to maintain the system frequency within an acceptable range after a major power
disturbance. Moreover, the PSEFC framework provides four (D)RL algorithms, including
multi-Q learning, single-agent Q-learning, multi-agent Q-learning, and DDPG algorithms to
help operators decide on emergency scenarios. In particular, the RL-based approaches learn
the frequency control policy in offline emergency scenarios with minimal costs. The RL-
based approaches apply the corresponding control policy learned from the offline scenario
in the online scenarios, which best matches the current emergency scenario. It is important
to note that the RL-based techniques have quick speeds but low precision. In contrast, the
DDPG algorithm-based approach can handle continuous emergency frequency control in
multiple scenarios. There is currently no interrelationship between AGC control strategy
and emergency control strategy, as they are analyzed and modeled independently [69]. In
this case, AGC cannot respond swiftly, resulting in serious risks to the system and the unit
when the system depends solely on the AGC control strategy for frequency stabilization.
The author of [70] develops a warm agent exploration distributed multiple delayed deep
policy gradient (SAE-MD3) algorithm used for AGC dispatch in the wide-area AGC (WA-
AGC) framework to achieve emergency control based on real-time measurement data
collected from WAMSs while satisfying the performance-based frequency regulation market.
In particular, the SAE-MD3 algorithm is improved from the DDPG algorithm to mitigate
the overestimation problem. The WA-AGC framework is divided into four intervals with
different starting conditions according to the frequency status of: emergency AGC (EAGC)
(∆ f > 0.5 Hz or the emergency control device is activated), conventional AGC (CAGC)
(∆ f < 0.5 Hz), AGC transition (∆ f < 0.125 Hz and ∆ f1min < 0.05 Hz within 25 control
intervals), and OPF (∆ f < 0.125 Hz and ∆ f1min < 0.05 Hz after 25 control intervals).

3.3. Application of DRL in the Small Signal Stability Control of a Modern Renewable
Power System

A DDPG algorithm-based agent is created in [71] for the virtual synchronous generator
(VSG) to synergistically alter the rotor inertia and damping coefficient in order to enhance
the system’s transient performance and small signal stability. Low-frequency oscillation
(LFO) with a frequency oscillation range of 0.1–2.5 Hz has grown to be a significant issue
in modern renewable power systems as a result of the development of the interconnected
power grid. In [72], to successfully dampen LFO, a novel sparsity-promoting adaptive
control method for online self-tuning of the PSS parameter settings is proposed, and
a DDPG is used to train an agent to learn the sparse coordinated control strategy of
the multi-PSS. According to recent studies, the system experiences ultralow-frequency
oscillation (ULFO) with a frequency below 0.1 Hz, as a result of improper hydraulic
governor settings. In [73], a brand-new dual-branch (DB) parallel damping controller is
proposed. A multi-agent DRL (MADRL)-based framework, namely a MATD3-enabled
collaborative adaptive control framework, is constructed for the decentralized self-tuning of
multi-controllers in order to guarantee the robustness of the proposed controller. Although
there is a considerable body of literature on wide-area damping control (WADC), creating
a wide-area controller based on large models is still computationally difficult. As a result,
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a collection of scalable adaptive dynamic programming (ADP)-based wide-area control
schemes that are driven solely by real-time measurements of the system states or outputs
using reinforcement learning (RL) is proposed in [74]. In [75], a faster exploration-based
DDPG algorithm is proposed to timely dampen oscillations, such as LFO, even under
various kinds of uncertainties.

Table 1. Literature summary.

Reference Control
State Field Algorithm Agent Type Objective

[31] Normal Distribution Network DDPG Single-agent Voltage Profile and Economic Cost
[32] Normal Distribution Network DDPG Single-agent Voltage Regulation
[34] Normal Distribution Network DQN Single-agent Voltage Regulation
[35] Normal Distribution Network DDPG, DQN Single-agent Voltage Regulation

[36] Normal Distribution Network DQN, DDPG,
MADDPG

Single/
Multi-agent VVC

[37] Normal Distribution Network DDPG Single-agent Voltage Control and Power Loss
[39] Normal Distribution Network CSAC Single-agent VVC
[40] Normal Distribution Network DDPG Single-agent Voltage Control and Power Loss
[41] Normal Micro-Grid DQN Single-agent AVC
[42] Normal Operational Control DDPG, DQN Single-agent AVC
[43] Normal Distribution network MASAC Multi-agent Voltage Deviation and Power Loss
[44] Normal Distribution Network MATD3 Multi-agent VVC

[45] Normal Distribution Network MASAC Multi-agent Voltage Deviation and
Operating Cost

[46] Normal Distribution Network MADDPG Multi-agent VVC and Power Loss
[47] Normal Micro-Grid PowerNet Multi-agent SVC
[53] Normal Operational Control MADDPG Multi-agent AVC
[54] Normal Operational Control MADDPG Multi-agent Voltage Deviation
[55] Normal Operational Control MADDPG Multi-agent LFC
[56] Normal Operational Control MADDPG Multi-agent Multi-area LFC

[58] Normal Operational Control IGE-MATD3 Multi-agent Multi-Area AGC and FR
Mileage Payment

[59] Normal Operational Control EIC-MADDPG Multi-agent Multi-Area IES AGC and FR
Mileage Payment

[61] Emergency Emergency Control DQN Single-agent FIDVR
[62] Emergency Emergency Control PARS Single-agent FIDVR
[63] Emergency Emergency Control DMRL Single-agent FIDVR

[66] Emergency Emergency Control
knowledge-

enhanced DRL
model

Single-agent FIDVR

[67] Emergency Emergency Control SACAuto-Discrete Single-agent FIDVR

[68] Emergency Emergency Control DDPG, Multi-Q
learning Single-agent PSEFC

[70] Emergency Emergency Control SAE-MD3 Multi-agent WA-AGC and FR Mileage Payment

Additionally, the technological modernization of power grid infrastructure has grad-
ually transformed modern power systems into cyber-physical systems. Therefore, cyber
security is considered as one of the control-related aspects. Recent studies have shown that
cyberattacks can mislead the system operator to perform the wrong operations based on
modified incorrect observations of information, resulting in huge economic losses. The
author of [76] proposes a DQN-based cyber security assessment to identify the most critical
component of the target system that can be used by adversaries to attack, and to mitigate
the costs of finding the optimal attack transition compared to random transition policy. In
addition, a transition graph is generated using the improved common vulnerability scoring
system (CVSS) to assess the complexity of each possible attack path considering various
adversarial methods. The author of [77] builds an MDP to describe the defensive proce-
dure against data integrity, and applies DQN detection (DQND) to prevent data integrity
attacks. Once the attacker hacks into the SCADA system, except for the long-term attack
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on the power infrastructure, it is also possible to trip all transmission lines connected to the
substation, which causes serious Nk contingency. In [78], a DDPG is used for the recovery
strategy following a cyber attack in order to generate optimal recovery actions shortly after
the attack is detected, thus alleviating cascading outage risks. The DDPG-based method
can adapt different cyber-attack scenarios and keep exploring the (near-)optimal policy.

Another potential aspect is to utilize CV algorithms to extract the information of grid
topology and transfer the knowledge to DRL agents to adapt to the fast varying topology.
The author of [79] presents a GCN-DDQN method where a graph convolutional network
(GCN) [80] is the combination of a convolutional neural network (CNN) and a graph neural
network (GNN) and is used to implement the load-shedding strategy in order to address
the short-term voltage stability issues caused by FIDVR, while adapting to the varying
grid topology. In particular, the grid topology information is embedded with the node
features using the GCN to better capture the topologies and spatial correlations among
node features.

4. Discussion and Future Directions

In the deployment of the communication infrastructure and computational ability, RL,
as an alternative solution for power system control applications, can be more efficiently
used as a model-free machine learning method. In past decades, much of the literature has
applied RL algorithms, such as Q-learning and SARSA, to power system applications. The
concept of DRL (DQN) was first proposed in 2013, and a batch of new DRL algorithms
emerged after years of research and practice. In recent years, DRL-based approaches have
been applied to power system applications. As the combination of RL and deep learning,
DRL has a greater capacity for feature extraction and generalization than basic RL-based
methods. However, there are still many limitations and issues that need to be considered.
Based on the reviewed literature, the discussion and future directions are listed as follows:

• Security. Power systems have a high standard of security requirements to guarantee
the normal operations of modern society. In the existing DRL works, a standard
method for some DRL-based approaches is to formulate the physical and operational
constraints as the penalty term and add them to the reward function. Some attempts of
safe off-policy DRL-based approaches [39,40] formulate the power system as a CMDP
to obtain a constrained policy optimization by taking the physical and operational
constraints into account. When the state reaches the boundary of the safety region,
particular action will be taken to drive it back. The state can still be outside the safety
boundary due to these methods’ ‘soft’ manner. Therefore, it is still hard to identify
whether the well-trained control policy is safe and completely abides by all possible
constraints in the real-world system;

• Scalability. The large-scale power systems are more complex and provide more opera-
tional actions and conditions for DRL-based approaches to consider. For single-agent
DRL algorithms, as the number of agents increased, the dimension of action and
state spaces also grew exponentially. This phenomenon is known as the ‘curse of
dimensionality’, especially for DQN-based approaches. Additionally, the single-agent
DRL algorithm uses the centralized framework, which cannot handle the communica-
tion burden in large-scale power systems. Compared to the single-agent DRL-based
approaches, the MADRL algorithms are helpful to improve scalability. In the existing
work, it was observed that the largest scale of test systems was the IEEE 300-bus
system. However, since MADRL-based approaches have not been applied to prac-
tical large-scale power systems yet, its performance is still needed to be verified in
the future;

• Data quantity and quality. Sample complexity is the number of training samples
required by a machine learning method to learn a target function successfully. In
this case, the larger the scale of the power system, the greater the sample complexity
becomes for the DRL-based approaches to obtain the optimal or near-optimal policy.
However, data quantity is one of the critical factors that affect the training speed, but
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is not the bottleneck of DRL algorithms because the power grid simulator can generate
data efficiently. Compared to the power grid simulator, there are a lot of ‘bad data’
(BD) in the online measurements of the power grid, including missing, outlier, and
noise data, mainly caused by electric and magnetic field (EMF) interference and meter
device failures. Hence, preprocessing the raw data from the power grid for the input of
DRL-based approaches is necessary. With the deployment of measurement devices, it
is permissible to use big data techniques to benefit DRL algorithms. The main existing
fields of big datasets in power systems include (1) field measurement, (2) weather
data, (3) geographic information system (GIS) data, and (4) market data [81]. Big
data platforms and data mining approaches can increase situation awareness (SA),
data processing, event clustering, classification, and detection. In particular, the SA
system monitors the power systems for the heterogeneous data from the SCADA
system or the installed intelligent electronic devices (IEDs) and PMUs, and identifies
potential states, such as voltage drop, transient oscillation, and line tripping [82].
The data processing, such as wrangling and dimensionality reduction of big data in
power systems, can improve the data and computation efficiency [83]. In addition, the
clustering, classification, and detection of events can enhance the scalability and data
efficiency of DRL algorithms;

• Efficiency. It is observed that many widely used actor–critic algorithms, such as
a DDPG and PPO, suffer from long-time training and hyperparameter tuning in
power system applications. In particular, each gradient step requires the generation of
new samples according to the latest policy, requiring extensive training and tuning
time. Even small-scale power systems take more than days or weeks to obtain a
well-trained control policy. Otherwise, performance will be affected. In contrast, the
popular value-based DRL methods, such as DQN, are more efficient for the lower-
dimensional state and action spaces. However, the increasing size of the power system
will cause the curse of dimensionality, which makes computing the optimal policy
impossible. Many other attempts have been made to improve the efficiency of the
algorithms applied to power systems. The author of [31] employs the Q-value of each
possible action to replace the action as the input in order to improve the learning
efficiency. The author of [47] introduces the spatial discount function into the reward
function to solve the slow learning efficiency problem of MADRL caused by the
credit assignment problem of instantaneous global reward design. The author of [56]
generates the LFC database of the response data from the PID controller to train the
DNN’s parameters through supervised learning, which requires less time because it is
not necessary to employ a DDPG for explorations. The author of [62] proposes the
PARS algorithm to significantly reduce the number of manual tuning hyperparameters,
and the parallelism of power grid dynamic simulations accelerates the training speed;

• Parameter tuning. Many existing algorithms generally have more than 20 hyper-
parameters, such as the learning rate, the weighted factors, and the penalty factors.
Operators have to tune these hyperparameters manually to ensure the desired perfor-
mance. This is mainly based on experience, which is quite unfriendly to beginners.
This is also a known challenge and an active research topic within RL communities.
There are some attempts using AutoRL [84,85], which combines DRL and the gradient-
free automated hyperparameter optimization, to replace manual and complicated
hyperparameter tuning. Additionally, the alternative direction could be to reduce
the number of manual tuning hyperparameters. For instance, the PARS algorithm
proposed in [62] reduces the number of manual tuning hyperparameters to five;

• Practical ability. In contrast to computer games, it is impossible to repeatedly generate
many operating experiences in the actual power systems. For safety concerns, most
DRL-based approaches assume using high-fidelity simulators or accurate environmen-
tal models for simulating system dynamics and responses, and run offline training
in order to avoid the hazards of unsafe explorations in the real world. Therefore, the
simulator’s accuracy can affect the actual performance of the DRL-trained control



Energies 2023, 16, 4143 18 of 23

policy in the power system due to the gap between the simulator and the actual system.
Additionally, the DRL-based approaches need to use the randomization technique [86]
to apply the trained control policy to the different environments of power systems.
This might not work well in the rapidly changing power grid environment due to the
unexplained generalization capability of the DNNs. In fact, DRL has been applied
to some small-scale projects conducted by the China Southern Power Grid (CSG) in
recent decades but with undesirable performance [70]. Therefore, it requires further
research to consider the practical capacity of DRL methods;

• Generalization ability. Due to the trial-and-error property of DRL algorithms, it is
impossible to apply the well-trained control policy from DRL methods to another grid
environment. In the existing works, the previous experience is not applicable for a
DRL to be applied to a new or even similar power system. There is an attempt of
integrating adaptive algorithms with DRL to increase the speed of training. DMRL
is developed to enable DRL agents to adapt to the new environment quickly [63] by
learning the latent context from the prior learning;

• Preventive and restorative control. Currently, there is no published literature consid-
ering preventive and restorative control based on DRL algorithms. Similarly, there
are only a few RL-based approaches in this field. The possible reason is that most
control schemes in this field cannot be well formulated as an MDP since they cannot
be considered as a dynamic optimization problem. This is still a potential field that
needs to be explored in the future.

5. Conclusions

Ultimately, this paper reviewed the DRL algorithm and its control application ac-
cording to the control states and control levels, and control-related applications were also
considered. Compared to RL, deep learning in DRL can obtain attributes, categories, or
features of objects from the power systems, and then RL can make control decisions ac-
cording to this information, which makes up for RL’s deficiency in feature extraction. This
paper shows that the DRL-based approaches are feasible for the power systems, but it
also reveals many limitations from the reviewed literature. Although DRL has rapidly
improved sequential decision-making problems in theory, method, and practice in the
past few years, further research is highly encouraged to pay attention to the limitations
discussed in the previous section. Furthermore, it has to go one step further to apply DRL
to the practical scheme. Currently, DRL is encouraged to combine model-based approaches
to mutually make up for their deficiencies instead of replacing conventional methods.
Some DRL control applications in power systems, such as transfer knowledge and big data
techniques, are not included in this paper. However, they can be possible extensions for
this paper in the future. We expect to see more extensive research and eventually fill in the
blanks in control applications for more control levels and states.
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Abbreviations

ADN Active Distribution Network
AGC Automated Generation Control
AI Artificial Intelligence
AVC Autonomous Voltage Control
BSS Battery Storage System
CBs Capacitor Banks
CMDP Constrained Markov Decision Process
CNN Convolutional Neural Network
CSAC Constrained Soft Actor–Critic
CTDE Centralized Training and Decentralized Execution
CV Computer Version
DDPG Deep Deterministic Policy Gradient
DMRL Deep Meta-Reinforcement Learning
DNN Deep Neural Network
DPG Deterministic Policy Gradient
DQN Deep Q-Network
DRL Deep Reinforcement Learning
EMSs Energy Management Systems
EVs Electric Vehicles
FIDVR The Fault Induced Delayed Voltage Recovery
FR Frequency Regulation
GCN Graph Convolutional Network

GE-MATD3 Guided-Exploration Multi-Agent Twin-Delayed Deep Deterministic
Policy Gradient

HDTs Hybrid Distribution Transformers
IEDs Intelligent Electronic Device
LFC Load Frequency Control
LFO Low-Frequency Oscillation
MA-AVC multi-Agent Autonomous Voltage Control
MADDPG Multi-Agent Deep Deterministic Policy Gradient

MADMI-TD3 Multi-Agent Distributed Multiple Improved Deep Deterministic
Policy Gradient

MADRL Multi-Agent Deep Reinforcement Learning
MASAC Multi-Agent Soft Actor–Critic
MATD3 Multi-Agent Twin Delayed Deep Deterministic Policy Gradient
MC Monte Carlo
MDP Markov Decision Process
MGs Micro-Grids
MISOCP Mixed-Integer Second-Rrder 363 Cone Programming
MLMVN Multilayered Neural Network with Multivalued Neurons
OLTCs On-Load Tap Changers
OPF Optimal Power Flow
OU Ornstein–Uhlenbeck
PARS Augment Random Search
PG Policy Gradient
PMUs Phasor Measurement Units
POMDP Partially Observable Markov Decision Process
PSEFC Power System Emergency Frequency Control
ReLU Rectified Linear Unit
RES Renewable Energy Sources
RL Reinforcement Learning
SAE-MD3 Agent Exploration Distributed Multiple Delayed Deep Policy Gradient
SARSA State-Action-Reward-State-Action
SDAE Stacked-Denoising Auto-Encoders
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SGD Stochastic Gradient Descent
STATCOM Static Synchronous Compensator
SVC Secondary Voltage Control
TD Temporal Difference
ULFO Ultralow-Frequency Oscillation
UVLS Under-Voltage Load Shedding
WAMSs Wide-Area Measurement Systems
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