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Abstract: To limit climate change, decarbonization of the transportation sector is necessary. The
change from conventional combustion vehicles to vehicles with electric drives is already taking
place. In the long term, it can be assumed that a large proportion of passenger cars will be battery–
electric. On the one hand, this conversion will result in higher energy and power requirements for the
electricity network; on the other hand, it also offers the potential for vehicles to provide energy for
various systems in the future. Battery–electric vehicles can be used to shift grid purchases, optimize
the operation of other components and increase the self-consumption rate of photovoltaic systems.
An LP model for the optimal energy management of the neighborhood consisting of buildings
with electricity and heat demand, a PV system, a BEV fleet, a heat pump and thermal storage was
formulated. The potential of the BEV fleet to provide energy via V2B in the neighborhood was
investigated, considering electricity tariff models and individual charging/discharging efficiencies
of vehicles and stochastic mobility profiles. The vehicle fleet provides between 4.8 kWh sqm−1 a−1

(flat-fee) and 25.3 kWh sqm−1 a−1 (dynamic tariff) per year, corresponding to 6.7, 9.5% and 35.7%
of the annual energy demand of the neighborhood. All tariff models lead to optimization of self-
consumption in summer. Dynamic pricing also leads to arbitrage during winter, and a power price
tariff avoids peaks in grid draw. Due to individual charging efficiencies, the power supplied by
the fleet is distributed unevenly among the vehicles, and setting limits for additional equivalent
full cycles distributes the energy more evenly across the fleet. The limits affect the V2B potential,
especially below the limits of 20 yearly cycles for flat and power tariffs and below 80 cycles for a
dynamic tariff.

Keywords: linear optimization; battery electric vehicle fleet; neighborhood; photovoltaics; sector
coupling; V2H; V2B; heat pump

1. Introduction

To halt man-made climate change, it is necessary to reduce global greenhouse gas
emissions to net zero in the coming years. Since more than 80% of emissions are energy-
related [1], this results in an immense need for the expansion of renewable energies. In
Germany alone, only one of many industrialized nations, wind energy and photovoltaic
(PV) plants with an installed capacity of between 500 and 750 GWel must be built [2] to
reduce emissions by 95% by 2050 [2]. Furthermore, to balance load fluctuations, there is
a need for 100 to 160 GWel of controllable electric power plant capacity and stationary
battery storage totaling 50 to 400 GWhel [2]. This illustrates the scale of the challenge of
decarbonizing the energy system.

As part of the decarbonization of the transport sector, battery–electric vehicles are
accounting for steadily higher market shares and could reach a market volume of 50
to 75 million vehicles worldwide by 2025 according to analyses by the International Energy
Agency [3]. However, this expansion can have a negative impact on the stability of the
power grid if many vehicles charge at the same time [4]. Because cars are not moving for
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more than 23 h a day on average [5], it is possible to integrate battery–electric vehicles
as distributed energy storage in a future energy system. Technologies to provide energy
or power to the power grid or other consumers using battery electric vehicles are called
vehicle-to-home (V2H), vehicle-to-building (V2B) or vehicle-to-grid (V2G) systems [6].
Providing electrical energy to multiple buildings via electric cars can help to shift and
shave peaks and increase self-consumption of renewable energies in microgrids, helping
to balance the fluctuating energy supply of renewable energies [7]. Therefore, electric
vehicles could also reduce the amount of stationary batteries required to decarbonize the
energy system.

One challenge of energy provision using vehicles is that electric vehicles are not
always available for the on-site energy exchange. If several vehicles are used to provide
energy for different consumers, the problem can be offset by differing consumption and
mobility behavior, thus increasing the potential of feedback-capable vehicles. For this
reason, sharing multiple vehicle batteries for multiple buildings, i.e., a V2B implementation
in a neighborhood, is of particular interest. However, according to a literature review
by [7], V2B is less studied than V2G. Therefore, focused our study on a small neighborhood
with mixed commercial and residential buildings with a heat pump, a photovoltaic system
and an electric vehicle fleet in which the optimal operating strategy is determined for the
whole neighborhood.

1.1. Related Work

Within the framework of a literature review, existing literature was examined for the
following similarities in this study. Studies investigating several vehicles with different
driving profiles, several buildings with different load profiles, different pricing models, an
annual potential and joint optimization of heat and electricity were considered. The most
relevant studies with regard to these questions are presented below.

Kobashi et al. [8] presented the SolarEV City concept, in which photovoltaic systems
(PV) and electric vehicles (EVs) are used to supply the energy needs of a city, with EVs
used as storage. The study was carried out for nine urban areas of Japan. The concept can
increase self-sufficiency from between 20% and 30% to between 50% and 90%, depending
on the district (if a feed-in tariff is considered). The self-consumption rate can also be
increased from between 20% and 60% to between 55% and 95%. It can also decrease cost
and CO2 emissions. Based on their SolarEV City concept, Kobashi et al. [9] showed how
much which districts of Japanese cities could benefit from integrated “PV + EV” systems.
Aggregated energy demand profiles were created for heating and electricity of the simulated
districts. Systems with PV and stationary batteries and systems with PV with bidirectional
charging were evaluated. The EVs were not modeled individually but as stationary storage
with time-dependent capacity due to vehicle driving patterns. The authors assumed that
EV availability is mitigated in a system with more than 40 EVs. Tariffs for residential
and industrial customers with and without feed-in tariffs were applied. The NPV for
different system configurations was calculated, and the optimal system was analyzed. The
authors concluded that utilizing EVs as storage is more economical for households than for
commercial buildings. Chang et al. [10] applied the aforementioned concept of “PV + EV”
to five areas in the Republic of Korea. The concept was found to achieve self-consumption
rates of up to 95% and self-sufficiency rates of up to 75%. Ginigeme and Wang [11] studied
the impact of the pricing model (minimizing the maximum grid purchase power, as well
as minimizing the variance of the grid purchase) for one day, taking into account battery
degradation and a real-time electricity price. The peak grid demand was reduced by 7.8%,
and the variance of the grid demand was reduced by 81.9%. EVs can fully offset the
battery degradation costs when feeding back energy. Nguyen and Le [12], on the contrary,
investigated the simultaneous optimization of charging (and discharging) an electric vehicle
and thermal systems. A thermodynamic model of a building and a temperature comfort
range were used to calculate the thermal load. The cooling load in the optimization model
was controlled by penalty costs for deviating from the comfort zone. The model was
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found to be able to reduce the electric energy demand during peak hours. Biroon et al. [13]
presented two optimization models for charging and discharging electric vehicles. A
maximum price model was used, and it was found that the electricity price model and
the connection time of the electric vehicles at the charging point have a key influence on
the grid load. Das et al. [14] conducted a multiobjective technoeconomic environmental
optimization study to schedule the charging and discharging of an electric vehicle. Energy
cost, battery degradation, grid interaction, CO2 emissions, frequency regulation services
and a real-time price were considered. Eight days from four seasons were investigated in
the study. One scenario also included peak demand charges. The framework was able to
optimize the grid operation while also minimizing battery degradation. Zenginis et al. [15]
presented a model for optimal sizing and power management of a microgrid, utilizing the
Nash bargain method. They took into account different building demands, PV, charging
and discharging of EVs and stationary energy storage. The presented approach was found
to reduce the operational cost by up to 34.6% for the studied microgrid in Barcelona. Borge-
Diez et al. [16] presented a case study proposing a V2B operating strategy whereby cars are
charged during the night at private homes and discharged during the day at the workplace.
The authors evaluated energy cost savings and battery degradation. The method was found
to reduce peak demand and energy costs; furthermore, the V2B can repay between 55%
and 103% of the energy cost. Quddus et al. [17] proposed a collaborative decision model to
optimize the operation strategy of an energy system consisting of multiple commercial
buildings and EV charging stations, taking into account demand uncertainties. Heating
and cooling loads of the building were also taken into account, with buildings operating
on photovoltaic systems, combined heat and power units, stationary batteries and thermal
energy storage. A case study (in the City of San Francisco) was conducted to show that
collaborative optimization can lead to a decrease in operating costs. Buonomano [18]
proposed a concept whereby electric energy is exchanged between buildings, utilizing
electric vehicles as energy vectors. The goal was to reduce the energy demands of buildings
to near zero on a microgrid level. A case study of an energy system was presented,
consisting of two buildings (residential and office), PV systems, one electric vehicle and
stationary battery storage. While the energy supply from the grid can be significantly
reduced, the scheme is not yet profitable under the assumed energy and battery costs.
Wang et al. [19] presented a vehicle-to-microgrid system in which the power demands of
an off-electricity-grid building are supplied by a combination of PV, wind energy and a
CHP unit/fuel cell. EVs, fuel-cell EVs and thermal units are used as storage. The EVs
are charged with 487 MWh annually, supplying 166 MWh to the building, considering a
building electricity load of 189.5 MWh. Cardoso et al. [20] proposed an aggregator model
for an EV fleet that can handle investment and operation problems of distributed energy
resources. The authors presented a case study in which the energy demands of a medium-
sized office building in San Francisco are fulfilled by several energy resources, including
heat resources, electricity resources and EVs. A time-of-use tariff and driving schedules
from a US commuting survey were utilized. In the case study, investment in EV energy
storage was preferred over stationary energy storage. The peak shaving ability of EV energy
storage during a summer week was reported. Zhou et al. [21] presented a multicriteria
optimization method of energy management in an energy-sharing network consisting
of buildings and vehicles. The energy system features building-integrated PV, nearby
wind turbines and static batteries; the vehicle comprise electric shuttle buses and electric
passenger cars. A special emphasis was placed on the battery degradation model due to the
charging and discharging of the battery. A high-rise office building and a high-rise hotel
located in Hong Kong with corresponding electricity demand, cooling demand and heating
demand were considered. The energy supplied by stationary and mobile batteries ranged
between 27.9 kWh sqm−1 a−1 and 33.4 kWh sqm−1 a−1, while mobile batteries supplied
between 85.6% and 94.1% of this energy. In [22], the author presented a similar study but
additionally considered commercial and residential buildings with rooftop and building-
integrated PV and wind turbines. It was reported that V2B can reduce the annual import of
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electricity by 1.3% and electricity export by 2.0%. Guo et al. [23] presented a model-predictive
control approach for a multienergy system consisting of an electric vehicle fleet connected
to offices in one scenario and residential buildings in a different scenario, as well as electric
and thermal loads of buildings. In addition, CHP units supply electricity and heat locally.
Moura et al. [24] developed an optimization model to manage the power flows in larger
building complexes, taking into account feedback-capable electric vehicles (B2V and V2B)
and current legal regulations in Portugal. The authors showed that the approach leads
to a maximization of the matching between local electricity production and electricity
consumption, which is associated with an average reduction in total costs of 22.3% in
the considered scenarios compared to the so-called baseline scenarios. Schreck et al. [25]
studied the effects of grid tariff designs in a local energy market with photovoltaics, electric
vehicles, heat pumps and stationary storage. They took into account energy-based fees,
topology-based fees and time-variable fees. They concluded that power fees can reduce
the demand peaks by 30% to 60% and feed-in peaks by 46% to 64%. Furthermore, they
concluded that time-variable fees might increase demand peaks compared to flat fees.
Ahsan et al. [26] proposed a framework that optimizes the profits of an energy system
consisting of a main building with PV systems, stationary battery storage and 15 EVs, with
other buildings also served by the main building. The profits of the main building were
increased by up to 62%, while the two secondary buildings can achieve cost decreases
of up to 20%. Furthermore, EVs save between 35% and 65% in charging costs. It was
shown that bilateral contracts for prosumers and consumers can lead to benefits for both.
Kern et al. [27] analyzed the potential of vehicle-to-home and vehicle-to-grid arbitrage
trading for a single-family household and a single EV complemented by a PV system,
stationary battery storage and a heat pump. They concluded that V2H is mostly conducted
during summer months (over 90%) and that V2G arbitrage trading is more profitable during
winter months. It was also concluded that non-linear (dis)charging efficiencies lead to a 30%
decrease in V2H potential. Singh and Singh [28] developed an MINLP model to optimize
welfare in two different microgrids consisting of active users, inactive users and two types
of prosumers. Welfare takes into account personal, societal and environmental benefits.
The introduction of prosumers can increase welfare; furthermore, they can also achieve grid
independence during peak price hours. Higashitani et al. [29] analyzed the profitability
and energy provision potential of V2H. Different electricity demand profiles, PV system
sizes and vehicle driving patterns were taken into account. It was concluded that V2H is
economically preferred over stationary storage. In addition, a larger PV size and shorter EV
absence are economically beneficial for V2H. Moura et al. [30] analyzed energy sharing in
microgrids through local energy markets. A university campus in Portugal was considered
in simulation scenarios. The energy system consisted of campus buildings, PV systems,
stationary battery storage and EV energy storage (workplace charging). Optimization led to
an increase in the self-consumption of the PV system, as well as lower electricity costs. Shen
et al. [31] presented an algorithm to optimize the energy management of a microgrid in real
time. The microgrid consisted of buildings with electricity and heat demands, a CHP unit,
a water tank and a boiler. The microgrid was connected to the public power grid, with local
renewable energy and an EV charging station serving as a storage. It was shown that the
proposed algorithm can find an asymptotically optimal solution with limited information.
For a broader review of V2B, the reader is referred to [7].

1.2. Scope and Contribution

In the course of the literature analysis, it became clear that few studies consider all
aspects described above at the same time, including limiting yearly feedback cycles, different
electric vehicle types with different driving patterns and showing the annualized potential of
combined V2B in a neighborhood while also showing the contributions of individual vehicles.

In some of the presented studies, a battery degradation model was utilized. However,
it was recently reported that an OEM plans to limit simply the amount of energy that can
be applied by an electric vehicle to 10,000 kWh (and 4000 h) per battery lifetime or about
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130 battery-equivalent full cycles if a 77 kWh battery is considered [32]. In this context,
it would be of interest to conduct V2B studies from the perspective of limited additional
equivalent full battery cycles per vehicle battery to answer the questions of how many
cycles would be needed in practice and how the limitation influences the potential.

To fill the analyzed gap in the reviewed literature, in this paper, we evaluate the poten-
tial of V2B in a small neighborhood in Germany with a focus on the aforementioned aspects.

In this paper, the optimal operating strategy for the neighborhood is presented con-
sidering seasonal demand variability of different residential and commercial load profiles,
economic incentives through tariff designs, individual driving patterns, technical properties
of EVs and combined optimization of power and heat. The individual annual contribution
of EVs is analyzed; instead of applying a battery degradation model, we show the effects
of limiting the yearly energy fed back (equivalent full cycles) by individual EVs. Limiting
the annual amount of energy that can be supplied by each vehicle could be more easily
implemented in practice.

2. Modeling

The energy system, which is shown in Figure 1, is modeled in the form of an opti-
mization problem. For this purpose, a linear problem is set up with OR-Tools (version
9.0.9048) and solved with the GLOP solver [33]. It is assumed that all information for a year
regarding energy demands, weather, solar radiation and mobility behavior is known to the
model in advance so that the theoretically possible technoeconomic potential of optimizing
the operation strategy can be determined. The time-step length of the model is ten minutes.

≈
=

≈
=

≈
=

PV-Panels

Inverter
Local
substation

AC-Bus

Thermal bus

Thermal
storage

Heat
pump

Inst.
water
heater

Buildings

Heat energy flow
Electrical energy flow

1

Figure 1. Overview of the energy system. Source: Own illustration.

2.1. Objective Function

According to Equation (1), the objective function minimizes the energy costs of the
entire neighborhood, including the costs of charging the electric vehicles. These consist of
the sums of the energy purchase costs, the feed-in tariffs and a battery usage fee summed
up over the simulation periods:

min Ke = ∑
t∈T

celec,t × Eg→n,t

− ∑
t∈T

celec, f eedin,t × En→g,t

+ ∑
t∈T

∑
bev∈C

cv2h × Ebev→n,t

(1)

The energy purchase cost in time unit t is calculated as the product of the electricity
price (celec,t) and the energy flow (Eg→n,t) from the grid (g) to the node (n). In turn, the
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feed-in tariffs are composed of the product of the feed-in tariff (celec, f eedin,t) and the energy
flow (En→g,t) from the node (n) into the grid (g). The compensation for the energy pro-
vided by the vehicles is given by the price per amount of energy provided (cv2h) and the
corresponding energy flow (Ebev→n,t) from the vehicle (bev) into the node (n).

Provided that the power price is used, the objective function is extended according to
Equation (2) by the term of the cost for the maximum grid procurement (Kp):

min Ke + Kp = Ke +
12

∑
i=1

Emax,g→n,i × cmax,power (2)

The power price is calculated for each month of the calculation period and summed
up over all months (i) of the year. The price of a month (i) results from the product of the
maximum energy flow of the month (Emax,g→n,i) and the price per maximum energy flow
(cmax,power).

2.2. Constraints

In the following, the constraints are presented component by component. First, in
inequality Equation (3), the condition used to determine the maximum power flow of each
month is established. The auxiliary variable for the maximum power drawn (Emax,g→n,i)
must be greater than all grid power draws (Eg→n,t) in month i.

Emax,g→n,i=1...12 ≥ Eg→n,t

∀ tstart,i=1,...,12 ≤ t ≤ tend,i=1,...,12
(3)

Furthermore, the conservation of electrical energy represented by Equation (4) must
be satisfied for each time step. Since the energy of each energy type is exchanged through
nodes, the sum of the in-flowing and out-flowing energy of each node must be zero in each
time unit (t).

0 = ∑
t∈T

(
∑

bev∈C
(ηbev × Ebev→n,t + En→bev,t) + En→hp,t + En→iwh,t

+ Eg→n,t + En→g,t + ∑
pv∈P

Epv→n,t + ∑
build∈B

En→build,t

) (4)

where Ebev→n,t describes the energy flow from vehicle bev into node n, and C is the set of
all vehicles, where for each vehicle, the associated discharge efficiency (ηbev) is considered.
En→bev,t is the energy flowing into the vehicle (bev).Furthermore, En→hpt represents the
energy flow from node n into the air-to-water heat pump (hp), and En→iwh,t represents
the energy flow from node n into the water heater (iwh). The energy provided by the PV
system (pv) is represented by Epv→n,t, where P is the set of all PV systems. In addition, the
energy flow (En→build,t) from node n into each building (build) from the set of buildings
(B) is considered. The grid power draw is represented by Eg→n,t, and the grid feed-in is
represented by En→g,t. PV feed-in, as well as V2G, is permitted.

Equation (5) describes the conservation of energy for thermal energy in the neighborhood.

0 = ∑
t∈T

(
ηth ×Qth→n,t + Qn→th,t + Qhp→n,t + Qiwh→n,t + ∑

build∈B
Qn→build,t

)
(5)

where Qth→n,t is the energy flow from the thermal storage (th) into the node (n), considering
the charging efficiency (ηth). The energy flow into the thermal storage is represented by
the variable Qn→th,t. Qhp→n,t describes the energy flow from the heat pump (hp) into node
n, and Qiwh→n,t describes the energy flow from the instantaneous water heater (iwh) into
node n. Additional constraints are imposed on a component-by-component basis.
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Two conditions arise for the PV system. First, according to inequality Equation (6),
the energy supplied to the node (Epv→n,t) must not be larger than the product of the solar
radiation on the tilted surface (Qrad→pv,t), the efficiency of the PV panels at time t ηpv,t and
the efficiency of the inverter (ηinv).

Epv→n,t ≤ ηinv × ηpv,t ×Qrad→pv,t ∀ t ∈ T (6)

Second, according to inequality (7), the energy supply must not exceed the capacity of
the inverter at any time.

Epv→n,t ≤ Emax,inv (7)

For the buildings, it must be specified that the energy flowing from the node into
the buildings must always be equal to the energy demand calculated in advance—for the
electricity and heat flows (see Equations (8) and (9)):

En→build,t = Ebuild,req,t ∀ t ∈ T (8)

Qn→build,t = Qbuild,req,t ∀ t ∈ T (9)

As specified in the constraints of Equations (10) and (11), the maximum thermal
charging and discharging power (Qth,max) of the thermal storage must not be exceeded
when charging (Qn→th,t) and discharging (Qth→n,t) the storage.

Qn→th,t ≤ Qth,max ∀ t ∈ T (10)

Qth→n,t ≤ Qth,max ∀ t ∈ T (11)

At the same time, the storage temperature (Tth,t) must be within maximum and mini-
mum temperatures (Tmax,th and Tmin,th, respectively) at all times (inequality Equation (12)),
and an initial storage level (Tth,init) must be defined for time step t = 0 (Equation (13)).

Tmin,th ≤ Tth,t ≤ Tmax,th ∀ t ∈ T (12)

Tth,t=0 = Tth,init (13)

Furthermore, in the constraint of Equation (14), the energy balance of the thermal storage
is set.

cp ×mth × (Tth,t − Tt−1,th) = ηth ×Qn→th,t−1 −Qth→n,t−1

− α× A× (Tt−1,th − Tenv)

∀ t ∈ (T\{0}) ∪ {|T|}
(14)

The product of the change of the storage temperature (Tt − Tt−1) and the heat capacity
of the thermal storage (cp × mth) is equal to the product of the charging efficiency of
the storage (ηth) and the energy supplied to the storage (Qn→th,t−1) minus the energy
extracted from the storage (Qth→n,t−1) and the energy loss of the storage. The cooling of
the thermal storage is defined according to Newton’s cooling law as the product of heat
transfer coefficient (α), the storage tank surface (A) and the temperature difference relative
to the environment (Tt−1 − Tenv). Since this balance equation is formulated recursively, this
storage balance equation must additionally be introduced for the time step after the end of
the simulation period (T) to limit the energy flows of the storage in the last time step.

For electric vehicles, it must also be ensured that the maximum charging and discharg-
ing powers (Ebev,max) are not violated (constraints of Equations (15) and (16)). Furthermore,
it is necessary to ensure that the minimum and maximum states of energy are not exceeded
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(constraint of Equations (17)) and that the initial states of energy (SoEbev,max) are defined
(constraint of Equation (18)).

En→bev,t ≤ Ebev,max ∀ t ∈ T (15)

Ebev→n,t ≤ Ebev,max ∀ t ∈ T (16)

0 ≤ SoEbev,t ≤ SoEbev,max ∀ t ∈ T (17)

SoEbev,t=0 = SoEbev,init (18)

In addition, a balance equation for the storage level of the bev is introduced in
Equation (19).

0 = SoEbev,t − SoEbev,t−1 × ζbev

+ Ebev→n,t−1

+ ηbev × En→bev,t−1

− dbev × Dbev,t ∀ t ∈ (T\{0}) ∪ {|T|}

(19)

Equivalent to thermal storage, the storage level of the previous time step (SoEbev,t−1)
is multiplied by the storage efficiency (ζbev) to represent the self-discharge of the storage.
Furthermore, the energy demand of the vehicle (bev) during trips is represented by the
product of energy demand per distance traveled (dbev) and distance traveled (Dbev,t) in time
unit t. The set of driving profiles (D) is determined in advance of the simulation based on
assumptions about mobility behavior.

Vehicle loading is only allowed based on the constraint of Equation (20) if the vehicle
is at home (λbev,athome = 1). Furthermore, if the vehicle is capable of feeding back power
(λbev,V2H = 1), discharging the vehicle is only allowed if the vehicle is at home (constraint
of Equation (21)).

Ebev,max × λbev,athome ≤ En→bev,t

∀ t ∈ T (20)

Ebev→n,t ≤ Ebev,max × λbev,athome × λbev,V2H

∀ t ∈ T (21)

Further constraints are introduced for the air–water heat pump. According to the
constraint of Equation (22), the ratio of provided thermal energy to received electrical
energy must always correspond to the CoP.

Qhp→n,t = CoPt × En→hp,t ∀ t ∈ T (22)

where the parameter CoPt is calculated in advance of the simulation depending on the
source and supply temperature. Furthermore, as shown in the constraint of Equation (23),
the maximum power of the heat pump (Qhp,max,t) must not be exceeded. This also depends
on the source and supply temperature and is calculated in advance of the simulation.

Qhp→n,t ≤ Qhp,max,t ∀ t ∈ T (23)

For the flow heater, similar constraints of Equations (24) and (25) for the efficiency and
maximum power can be formulated.

Qiwh→n,t = ηiwh × En→iwh,t ∀ t ∈ T (24)

Qiwh→n,t ≤ Qiwh,max ∀ t ∈ T (25)
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3. Parameterization of the Model

The weather dataused in the model are taken from the test reference years of the
German Weather Service (Deutscher Wetterdienst, DWD) [34]. Here, the calculated average
year 2045 was used, which already includes climate change forecasts. A location at the
center of Germany was assumed (latitude, 51.53; longitude, 9.92).

A mixed residential and commercial neighborhood is assumed, and the building loads
for electrical energy and thermal energy were modeled based on standard load profiles
from the German Federal Association of Energy and Water Industries (BDEW). Detailed
descriptions of the profiles can be found in [35–37]. The composition of the neighborhood,
including electricity and heat demands, is shown in Table 1, as well as the assumed floor
areas and the standard load profiles. The size of the neighborhood was chosen with the
goal of maximizing the number of battery–electric vehicles under the condition that the
solver still achieves a reasonable solving time. These assumptions result in a total annual
electricity demand of 187 MWh and a heat demand of 154 MWh per year.

Table 1. Structure and annual energy requirements of the assumed neighborhood.

Type Floor Area [m2]
Heat Demand

[kWh/m2a]

Electricity
Demand

[kWh/m2a]

Profile Type
(Heat/Electricity)

SFH 600 53.3 16 HBHEF03/H0
MFH 2400 38 16 HBHMF03/H0

Gastronomy 100 47 84 GGA/G2
Retail 200 41 323 GHA/G4
Health 200 108 73 GBD/G1

Daycare 50 76 31 GKO/G1
Office 447 56 38 GKO/G1

Sums 3997 186.5
[MWh/m2a]

154.15
[MWh/m2a] —

To model the PV system, the global radiation taken from the test reference years must
be converted to the radiation on the tilted plane of the PV modules. For this purpose, an
algorithm proposed in [38] was used. It was assumed that the floor area of the neighborhood
of 3997 m2 extends over three floors, resulting in a building footprint of 1332 m2. Together
with an assumed utilization rate of the flat roof area of 50% and a PV module size of 1.84 m2,
this results in a maximum possible module number of 362. It is further assumed that 162 of
these modules are oriented toward the south and with a tilt of 35°, whereas 100 modules
with a module tilt of 15° are oriented toward the east and west. The other module properties
were taken from a manufacturer’s data sheet and are shown in Table A1. A model proposed
in [39] was used to calculate the temperature-dependent efficiency. Combined with the
above radiation data, this results in an annual energy supply of 154 MWh, where 48%
corresponds to fields with southern orientation, 27% to the fields have a western orientation
and 25% of the fields have an eastern orientation.

A vehicle fleet of 26 battery–electric vehicles was determined by random selection
based on registration figures from the German Federal Motor Transport Authority (see [40]).
The technical characteristics of the vehicles relevant for the calculations (battery size, energy
requirement and maximum charging power) were determined based on the results of the
ADAC eco-Test (see [41]) and manufacturer data sheets. Furthermore, the maximum
possible AC charging power and efficiencies of the vehicles were taken into account for
both charging and discharging. The driving profiles of the vehicles were determined
randomly based on data from the study Mobility in Germany (Mobilität in Deutschland,
MiD) [5]. However, the maximum trip length was limited to 100 km, and for longer trips
it was assumed that additional charging facilities outside the neighborhood are used.
Hence, the average annual driving length was limited to 8785 km. The vehicles are at home
between 69.5% and 88.3% of the time. With this he combination of vehicles and the assigned
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mobility profiles, all vehicles have a combined charging demand of about 44 MWh/a. For
the air-to-water heat pump , the CoP, electrical power consumption and heat output were
modeled based on manufacturer catalog data [42]. Accordingly, a regression calculation
was performed. For the CoP as a function of outside temperature (Toutside) and supply
temperature (Tsupply), the formula shown in Equation (26) was obtained. Similarly, the
formula for the maximum heat power was obtained, which is shown in Appendix B.

CoP = 8.404 + 5.257× 10−5 × T2
outside

+ 1.446× 10−3 × T2
supply

− 1.730× 10−3 × Toutside × Tsupply

+ 1.482× 10−1 × Toutside

− 1.902× 10−1 × Tsupply

(26)

Furthermore, the characteristics of the heat pump were scaled to the required heating
power output of the neighborhood. The heat pump was sized with the aim of covering 95%
of the heating load requirements over time of the neighborhood in a bivalent monoenergetic
operation. This resulted in a heating load of 50 kWth at an outdoor temperature of 2 °C.
As the supply temperature also depends on the outside temperature, a relation between
these two parameters was obtained with data from ([43], p. 59); the formula is shown in
Appendix C.

Additionally, an electrically operated instantaneous water heater with an efficiency of
is 98% was assumed to supply the remaining heating load.

The thermal storage for buffering the generated heat was sized to a volume of 10,000 L.
The heat retention losses were assumed to be such that the storage tank meets the European
Energy Efficiency Class A for thermal storage tanks (see [44]), resulting in retention losses
of 131.1 W at a storage tank temperature of 60 °C. Therefore, the term α× A from constraint
of Equation (14), i.e., the product of the heat transfer coefficient and storage surface, results
in 0.547091.

To model the energy tariff , three alternative models were considered for the electricity
price: a flat tariff, a dynamic tariff and a peak power tariff. The flat tariff was assumed to
be constant at 0.35ekWh−1. For the full dynamic tariff, a mean price of 0.35ekWh−1 was
also chosen, but because dynamic tariffs in Germany are not yet widely established, the
behavior for the time variation was assumed to be similar to that of a standard load profile [36]
so that there is a high price at times of high electricity demand (and vice versa) and one
arbitrage opportunity with a high enough price spread per day. The dynamic price is also
always above the feed-in tariff in order to discourage V2G.

For the peak power tariff, the electricity price was divided into an energy price
component and a maximum power component. The energy price was determined according
to data from the BDEW electricity price analysis [45]. In the period from 2012 to 2021, for
example, network charges amounted to approx. 25% of the total price. By subtracting
this share from the total price, the work price is 0.263ekWh−1. The power price share
for the maximum grid power demand was determined based on monthly power prices
of German grid operators and converted to an effective electricity price of 0.35ekWh−1,
which amounts to 14.65ekW−1 in the simulation. The monthly power price provides an
ongoing incentive to reduce the maximum power drawn from the grid.

For the feed-in tariff of the PV system, a tariff at the power market level was assumed.
Based on the electricity price analysis, the electricity market prices in Germany averaged
24.27% of the retail electricity price from 2012 to 2021. In combination with the aforemen-
tioned electricity price of 0.35ekWh−1, this results in a feed-in tariff at the power market
level of 0.085ekWh−1.
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4. Scenarios

To determine both the potential of V2B in the neighborhood and the optimal operat-
ing strategy, three so-called baseline scenarios were established based on the three tariff
models already presented. Each of these baseline scenarios was also combined with both
unidirectional and bidirectional electric vehicles, resulting in the following six scenarios
that form the basis of the simulation calculations carried out in the following section. An
overview of the scenarios is given in Table 2. The number stands for the price model the
letters a and b describe the feed-back capability.

Table 2. Structure and nomenclature of the simulation scenarios.

Tariff Model Unidirectional
Electric Vehicles

Bidirectional
Electric Vehicles

Flat tariff 1 a 1 b
Dynamic tariff 2 a 2 b

Power tariff 3 a 3 b

These baseline scenarios also allow for comparison of the effects of V2B with those
reported in other studies. In further scenarios, yearly limits on additional full equivalent
battery cycles are applied.

5. Results

In the following, the calculated sums of the energy flows in the neighborhood during
one year are analyzed for the six individual scenarios, depending on the price models and
the ability to feed back energy. Furthermore, the grid power demand of the neighborhood
resulting from the scenarios is analyzed, and the distribution of the fed-back energy to the
vehicle fleet is investigated. Finally, the energy flows in the neighborhood over a week in
both summer and winter are brought into focus, and the optimal operating strategy, as well
as the temporal course of the feedback, is examined. Furthermore, the limitation of battery
cycles in the case of regenerative power supplied by the vehicle fleet is analyzed.

5.1. Yearly Energy Flows in the Six Scenarios

As mentioned earlier, the building electricity demand in all six scenarios is about
154 MWh/a, and the building heat demand is about 187 MWh/a. In addition, the PV
system always provides about 154 MWh of energy.

The energy flows for the scenario with a flat price and unidirectional electric vehi-
cles (Scenario 1a) are shown in Figure 2. Here, 134 MWh of electrical energy is drawn from
the power grid annually. The highest electrical energy demand occurs in the buildings,
amounting to 156 MWh annually. Furthermore, the heat pump accounts for 49.3 MWh,
the electric vehicles account for 44 MWh and the electric instantaneous water heater for
3.4 MWh. Furthermore, 36 MWh is fed into the power grid by the PV system. The heat
pump provides 186 MWh of heat energy annually, resulting in a CoP of 3.77. The thermal
storage reaches an annual energy turnover of 62 MWh.

If the feedback capability of the electric vehicles is considered (Scenario 1b), the electric
vehicles are charged with 65 MWh instead of 44 MWh (+47%). This allows the vehicles to
provide 17 MWh to the overall energy system annually, which is equivalent to 6.7% of the
total electrical energy required. The heat supply, on the contrary, remains almost unchanged:
49.5 MWh is provided by the heat pump and 2.9 MWh by the electric instantaneous water
heater. In total, the introduction of the feedback capability leads to a decrease in the grid
power draw of 13.4% to 116 MWh and a decrease in the feed-in of the PV system into the
public grid of as much as 55.6% to 16 MWh. Particularly relevant parameters are shown in
Table 3. The dynamic pricing model in the unidirectional scenario leads to a higher yearly
energy draw from the grid, while the energy fed into the grid remains at the same level. The
maximum self-sufficiency degrees achieved with V2B are 54% for the flat and maximum



Energies 2023, 16, 4387 12 of 24

power fees and 50% for the dynamic tariff. The smallest V2B potential exists in the scenario
with the flat tariff, in which only maximization of self-consumption is conducted, leading
to a yearly sum of 17 MWh of energy provided by the vehicles. The highest potential exists
in the case of the dynamic pricing model, in which a yearly sum of 90 MWh is fed back due
to the daily arbitrage opportunities. The feedback potential of the max power price tariff is
between that the other two tariff models: 24 MWh. Self-consumption rates in the range of
7(6% unidirectional scenario) to 90% (bidirectional scenario) are achieved.

Grid Supply | 134

PV-South | 79

PV-West | 44

PV-East | 40

Inverter | 154

Node AC | 289

Buildings | 343

BEVs (charge) | 44

HP | 186

Node Heat | 250

ThSto (discha.) | 61

ThSto (charge) | 62
Environmental Heat | 136

IWH | 3

Grid Feed-In | 36

Figure 2. Energy flows over the course of the year in MWh. Scenario 1a: flat rate, unidirectional.
Source: own illustration.

Table 3. Sums of selected energy flows over the course of a year, considering a yearly electricity
demand of 156 MWh, heat demand of 187 MWh and energy provision by the PV system of 154 MWh.
Source: own illustration.

No.
Electricity

Price
Model

Charging
Behavior

Grid
Supply

(MWh/a)

Feed in
(MWh/a)

Charging
BEV

(MWh/a)

Feedback
BEV

(MWh/a)

1a flat uni 134 36 44 0
1b flat bi 116 16 65 17
2a dynamic uni 139 36 44 0
2b dynamic bi 127 16 158 90
3a power uni 135 37 44 0
3b power bi 117 16 74 24

5.2. Energy Supply by Electric Vehicle Fleet

The following section shows more detail about how energy is provided by the electric
vehicles. For this purpose, the time series of power flows in the neighborhood are pre-
sented for one exemplary summer and winter week each depending on the three different
tariff models.

For the scenario with a flat price in summer (see Figure 3), the vehicles and the thermal
storage are charged in the considered week mainly when there is a surplus of PV energy.
On four of the seven days of the week, the heat pump is also operated when there is a
surplus of PV energy so that the generated heat both covers the heating demands of the
neighborhood and charges the thermal storage. As soon as the output of the PV system
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is no longer sufficient to supply the neighborhood with energy, the vehicle batteries are
discharged. The summer week under consideration shows that no grid supply is necessary,
and even a portion of the excess PV power can be fed into the power grid. In winter,
the operating behavior is different. The heat pump is operated continuously due to the
significantly higher heat demand, with the support of the instantaneous water heater on
four out of seven days. For electric vehicle charging, on the contrary, no particular pattern
is apparent due to low PV production and lack of pricing incentives. No V2B is observed
during this week.

0

50

100
Grid supply

Cars charge

Buildings

Heat pump

Electric heater

Mo 05.06 Di 06.06 Mi 07.06 Do 08.06 Fr 09.06 Sa 10.06 So 11.06
Time

0

50

100
Grid feed-in

Cars
discharge

PV

0.00

0.25

0.50

0.75

1.00

S
ta

te
of

ch
ar

ge
th

er
m

al
st

or
ag

e

P
ow

er
[k

W
]

Figure 3. Energy flows in scenarios with a flat price over the course of one summer week. Source:
own illustration.

In the case of a dynamic price, a qualitatively similar operating strategy as in the case
of the flat-rate price model is observed. In contrast to the summer week of the scenario
with the flat-rate pricing model, however, it can be seen that there is a significantly higher
grid feed-in. In winter (see Figure 4), on on the contrary, the operating behavior is different.
The vehicles are charged at full power at night because, according to the assumptions made
for the pricing model, there is a low electricity price due to the generally low electricity
demand at night. Additionally, during these time units, as well as due to the low price of
electricity, the heat pump and the instantaneous water heater are both operated. The water
heater is also operated during the day in addition to the heat pump when the thermal
storage has a low level of charge. When the vehicles are no longer being charged due
to a lack of PV power, they are immediately discharged to provide energy to power the
buildings and operate the heat pump, as they can temporarily replace the grid purchase of
electrical energy.

Another optimal operating strategy can be observed for the scenarios with power
price. However, during the considered summer week (see Figure 5a), a largely similar
operating strategy as in the other scenarios can be observed. A difference relative to the
summer week with a flat price model is particularly evident in the pattern of electrical
energy fed into the power grid. On the contrary, when looking at the exemplary winter
week (see Figure 5b), it becomes apparent that the control of the instantaneous water heater
and the charging of the vehicles differs significantly from the other tariff scenarios. In
particular, it can be observed on several days how both the energy of the PV system and the
energy supplied by the electric vehicles are used to operate the electric heater, in addition
to the heat pump, to achieve a constant grid power draw. In addition, feedback of vehicles
can be observed on several days at the beginning of the week. The vehicles provide energy
mainly when the building load increases to keep the grid power draw constant. This can
be explained by the fact that the total costs in a month depend strongly on the peak power
drawn in that month and that the more constant and therefore the lower the peak load of
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the electrical grid power draw, the more favorable it is to use power already paid for as
often as possible.
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Figure 4. Course of energy flows in scenarios with dynamic price for one summer week and one
winter week. Source: own illustration.
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(a) Summer
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(b) Winter

Figure 5. Course of energy flows in scenarios with power price for one summer week and one winter
week. Source: own illustration.
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5.3. Grid Power Draw

If the grid purchases are considered over the course of the year (see Figure 6), there
are significant differences depending on the price model and the feedback capability. As
expected, for all pricing models, grid purchases are higher in the winter than in the summer
months, which can be attributed to both reduced solar radiation levels and higher heating
and electricity demands in the winter months.

In the scenarios with a flat-rate pricing model (Scenarios 1a and 1b), irregular peaks in
grid consumption are evident, especially from October to March. Furthermore, the peak of
power draw can be reduced by V2B, especially during summer and in the case of the peak
power tariff model.

The energy flows in Scenarios 2a and 2b with dynamic pricing show that grid pur-
chases occur primarily at times of low electricity prices, which (according to the assump-
tions) are usually at night. This results in a pattern in the winter months that can be
described as a comb: a short period of high network consumption at night followed by a
period of significantly lower or no network consumption during the day. Moreover, this
pattern extends further into the fall/winter and winter/spring transition periods in the
scenario with V2B (Scenario 2b). The maximum grid power draw was not limited, and a
high price spread was assumed, thus maximizing this pattern. If a limit was to be imposed,
the vehicles would have to be charged over a longer period, leading to lower maximum
grid power draws.

The peak power tariff model, on the contrary, leads to a significantly lower grid power
draw, and at the same time, the variance of the grid power draw is less pronounced. This
could be due to the fact that the pricing model provides an economic incentive to use the
maximum capacity that has already been paid for each month. Furthermore, the variance of
the grid purchase can be further reduced by the use of V2B (Scenario 3b).

Finally, it should be emphasized that regardless of the choice of pricing model (Sce-
narios 1b, 2b and 3b), the use of feedback-capable vehicles results in a period during the
summer months during which no energy needs to be drawn from the power grid.
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Figure 6. Grid power draw over the course of the year as a function of pricing models and feedback
capability. Source: own illustration.
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5.4. Limiting Battery Cycles per Vehicle

Because some vehicles of the fleet experience a significant number of additional battery
cycles due to high charging efficiencies, in the next step, the maximum allowed additional
cycles per year and vehicle are limited. Yearly limits of 5, 10, 20, 40, 60, 80 and 100 cycles
were simulated for each tariff model. The results for the yearly energy sum provided by
the vehicle fleet are shown in Figure 7.
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Figure 7. Yearly V2B potential, grid supply and feed-in depending on the tariff structure and
maximum permissible number of additional battery cycles. Cross signs = Simulation results. Source:
own illustration.

For the flat tariff, the potential is only significantly limited when a cycle limit of 20 or
less is applied. Between a cycle limit of 100 and 20, the V2B potential is reduced by 1.8%
from 17 MWh to 16.7 MWh, and at the same time, the grid feed-in is reduced by 2.5%. This
change is due to less efficient cars being used to provide energy. Moreover, the grid supply
sees no significant changes. If the limit is reduced further, the possibility of using different
cars diminishes, leading to significant reductions in V2B potential and significantly higher
grid supply and feed-in.

For the maximum power tariff, a qualitatively similar behavior can be seen, with
potential reduced by 6.6% if a cycle limit of 20 is applied. The same behavior for grid
supply and feed-in is also observed.

If the dynamic tariff is considered, the minimal cycle number at which significant
decreases in feedback potential begin is significantly higher. Between a cycle limit of 80
and 100, the feedback potential is reduced by 1.8 MWh, and a reduction in grid feed-in
similar to the previous tariff models can be observed. Further reductions below 80 lead
to a significant decrease in feedback potential and increases in grid supply and feed-in. It
is important to note that by applying the same cycle limit to the different tariff models,
the dynamic tariff model always achieves the highest potential. At a limit of 10 cycles, for
example, the flat tariff achieves 11.9 MWh, the max power tariff achieves 11.9 MWh and
the dynamic tariff achieves 15.3 MWh.

5.5. Distribution of the Power Supply across the Fleet

Figure 8 shows the distribution of the amount of energy fed back by vehicles in the
fleet for the three different tariff models in the form of a box plot, with one plot presented
for each cycle limit.
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Figure 8. Distribution of the energy supplied per vehicle depending on the tariff model and the cycle
limit. Circles = Outliers. Source: own illustration.

In the case of the dynamic pricing model, it can be observed that the median value of
the energy provided by the vehicles decreases continuously when the maximum allowable
cycle number is reduced. The steepest decrease can be observed between 60 (median
2.5 MWh) and 20 (median 0.8 MWh) cycles. At a limit of 100 cycles, half of the fleet
provides between 1.6 MWh and 5 MWh; however, at 80 cycles, this range is increased to
between 2.3 MWh and 5.3 MWh. Below this level, the range of energy provided by the
vehicles continuously decreases.

For the maximum power tariff, the median value of provided energy does not change
until the cycle limit is reduced to 40 cycles. Above this limit, the highest outlier is decreased
from 5.6 MWh to 3.4 MWh. At a limit of 20 cycles, an increase in the median value to
0.7 MWh can be seen, with a further shift of energy across the fleet not possible, so all
vehicles need to provide more energy to maximize the energy supply.

As for the flat tariff, the same dynamics can be observed. Between 20 and 40 cycles,
the median value of energy provision is increased from 0.07 MWh to 0.57 MWh. Above
40 cycles, a decrease in the limit leads to a decrease in outliers.

One reason for the observed behavior is that the charging and discharging efficiencies
of the vehicles create an economic incentive to preferentially use vehicles with high effi-
ciency for V2B, leading to a few cars providing significantly more energy than others. This
can be compensated for by limiting the allowable battery cycles per vehicle.

6. Discussion

In the context of the presented scenarios, the potential of a feedback-capable electric
vehicle fleet (V2H + V2B) in a neighborhood was determined with combined optimization
of the energy provision of electricity and heat. For this purpose, first, a linear optimization
problem was formulated; three different scenarios were presented with a flat tariff, dynamic
tariff and power tariff; and the resulting problems were solved with GLOP the solver.

During the analysis, it was shown that depending on different economic incentives,
different optimal operating strategies emerge, although they also have common features.
For example, the optimal operating strategy in summer for all tariff models is to charge the
vehicles with energy from the PV system during the day whenever possible and to release
parts of the temporarily stored energy again at night, thus reducing or even avoiding the need
to purchase energy from the grid and increasing the self-consumption rate.
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The differences in operating strategies are most apparent during the winter months.
While no significant vehicle charging pattern is evident in the flat price scenarios, the
dynamic pricing model scenarios primarily use vehicles to shift grid purchases to times
with high energy prices. For this purpose, the vehicles are charged at night when the
assumed electricity price is low. At the same time, however, this also encourages heavy
use of the local distribution network in the short term, while at other times, no energy
is drawn. This results in fewer full-load hours for the local infrastructure compared to
the other two pricing models. However, this effect could be partly compensated for by
specifying a maximum permissible grid power draw. The power price model creates the
opposite incentive. Here, the electric vehicles are charged or discharged, and the heat pump
and the instantaneous water heater are operated in such a way that, in total, they achieve
the lowest possible and most uniform grid consumption during the individual months. It
became apparent that this economic incentive allows the lowest maximum network power
draw to be realized, as also supported by the findings of Schreck et al. [25]. In this pricing
model, the feedback from electric vehicles in the winter primarily results in a reduction
in the variance of the grid power draw, as well as an overall reduction in the grid power
draw. This means that a less powerful distribution network is required locally, which could
be utilized in a comparatively more predictable manner. Unlike in the scenarios with a
dynamic pricing model, however, there is no incentive for the energy management system
to respond to power surpluses in the electricity market.

As a result of the energy provided by the vehicles, an import reduction in electricity
in the range of 8.6% to 13.4%, as well as an export reduction of about 43% to 44%, was
observed. Ref. [22] also reported a reduction in electricity imports and exports due to V2B,
although significantly lower. These differences could be due to different pricing incentives
and different energy system structures. Self-consumption and self-sufficiency degrees
calculated in this work are in the range of those calculated in previous studies, for example,
those conducted by Kobashi et al. [8] and Chang et al. [10].

The specific energy supplied by the vehicles calculated in this study is between
4.8 kWh sqm−1 a−1 (flat fee) and 25.3 kWh sqm−1 a−1 (dynamic tariff). In case of dynamic
tariffs, it is in the same range as that calculated in Zhou et al. [21] (23.9 kWh sqm−1 a−1 and
31.4 kWh sqm−1 a−1) using peak/off-peak pricing. The differences in potential could be
due to different pricing models, building composition, cooling loads and energy supplied
by wind turbines.

To work as economically advantageous as possible, the vehicles in a fleet with the
highest charging and discharging efficiency should be used. We also showed that, especially
when using a dynamic pricing model, there is a risk that individual vehicle batteries will
be used very intensively, while others are not, which could lead to undesirable battery
aging of specific vehicles in a fleet. The effects of implementing a yearly limit of additional
permissible battery cycles per vehicle were investigated.

It was shown that this leads to a more even distribution of energy provision across the
fleet. There are two ranges when limiting the cycle number. In the first range, less efficient
vehicles of the fleet are used to provide energy. This leads to a decrease in the potential in
the single-digit percentage range and a slight reduction in grid feed-in. If the cycles are
decreased further, a significant reduction in the feedback potential, as well as a significant
increase in grid supply and feed-in, is observed.

In a possible implementation of V2B, it might therefore be beneficial to implement
a combination of dynamic prices and power prices. In this way, both the supply and
demand situation in the electricity market and the use of local infrastructure were taken
into account. The question of how to weigh both factors depends on the local infrastructure
and the situation in the electricity market and could also be the subject of further studies.
Based on the results of this study, a yearly cycle limit per vehicle between 20 and 100
seems plausible for a possible future implementation without significantly restricting the
feedback potential.
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Compared to the value of about 130 cycles mentioned in [32], this would lead to
between 6.5 years in the case of optimization of self-consumption and 1.3 years in the case
of arbitrage in which a car could provide energy to a small neighborhood via V2B (not
regarding a restriction on operation time).

However, this statement is only valid for the assumed neighborhood, and further
studies need to be conducted to generalize this statement. A sensitivity analysis of the
energy demand of the neighborhood, energy supplied by photovoltaic sources and the
number and driving pattern of electric vehicles needs to be conducted.

7. Conclusions

In this work, an LP optimization problem was formulated for the optimal energy
management of a neighborhood that consists of private and commercial buildings with
corresponding electricity and heat demands. The heat is supplied by an air–water heat
pump and stored in thermal storage. Electricity is supplied by a PV system, and EVs
are used as mobile storage. Three different tariff models, as well as stochastic mobility
patterns and individual charging and discharging efficiencies of the EVs, were taken into
account. If V2B is introduced in the neighborhood, self-sufficiency in the range of 50% to
54% degrees is achieved, the self-consumption rate is increased from 76% to 90%, the energy
feed-in to the grid is reduced by 55.6% and the energy supplied by the grid is reduced
by 13.4%. V2B is conducted differently, depending on the tariff model. All tariff models
lead to optimization of self-consumption in summer, dynamic pricing leads to arbitrage
during winter and power price tariffs avoid a peak in grid draw. The dynamic price model
leads to regular peaks in grid consumption. If V2B is introduced, there are also periods
during which no energy is drawn from the grid. The power price model avoids peaks
in the power supply and has a lower variability than the other price models. If V2B is
introduced, the maximum power drawn from the grid and the variability are reduced. The
specific energy supplied by the vehicle per area is between 4.8 kWh sqm−1 a−1 (flat-fee)
and 25.3 kWh sqm−1 a−1 (dynamic tariff). This corresponds to between 6.7% (flat tariff)
and 35.7% (dynamic tariff) relative to the energy demands of the neighborhood, depending
on the tariff model. Limiting the number of cycles results in a more even distribution
of regenerated energy across the vehicle fleet while also allowing less efficient vehicles
to be used. Especially when the number of cycles is limited to 20 for the flat-rate and
performance price models and to 80 for the dynamic price model, there is a considerable
decrease in the amount of energy fed back into the grid.
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Nomenclature
Abbreviations

B Building
BEV Battery electric vehicle
CoP Coefficient of performance
EF Energy flow
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G Electrical grid
HP Heat pump
IWH Instantaneous water heater
N Node
PV PV plant
SoE State of energy (kWh)
TH Thermal storage
V2H Vehicle-to-Home
V2B Vehicle-to-Building

Indices

elec Electrical
g Grid
n Node
f eedin Grid feed-in
v2h Vehicle-to-Home
bev Battery electric vehicle
rad Solar radiation
req Energy requirement
pv Photovoltaic
build Building
hp Heat pump
iwh Instantaneous water heater
init Initial
max Maximum
th Thermal storage
i Index of the Month (1− 12)
t Index of the time period, t ∈ T

Sets

B Set of all buildings
C Set of all BEVs
P Set of all PVs
T Set of all time periods

Variables

Eg→n,t EF from G to central N
En→g,t EF from N to G
Ebev→n,t EF from bev to N

Emax,g→n,i
max. EF from G to N
in month i

En→bev,t EF from N to BEV
En→hp,t EF from N to HP
En→iwh,t EF from N to IWH
Epv→n,t EF from PV to N
En→build,t EF from N to B
Qth→n,t EF from TH to N
Qn→th,t EF from N to TH
Qhp→n,t EF from HP to N
Qiwh→n,t EF from IWH to N
Qn→build,t EF from N to B
Tth,t Temp. of TH
SoEbev,t SoE of BEV
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Parameters

α Cooling coefficient of thermal storage
A Surface area of thermal storage
celec,t Electricity price in time period t
c f eedin Electricity grid feed-in compensation
cv2h Compensation for energy provided by BEV
cmax,power Price for maximum grid power
cp Thermal capacity of water
CoPt Coefficient of performance of heat pump
d Energy consumption of BEV per distance
Dt Driven distance of BEV in t
ηbev (Dis-)Charging efficiency of BEV
ηth (Dis-)Charging efficiency of thermal storage
ηinv Efficiency of inverter
ηiwh Efficiency of water heater
ηpv Efficiency of PV system in t
Ebev,max Max. energy flow to/from bev
Einv,max Max. energy flow to/from inverter
Ebuild,req,t Energy flow required by building in t
λbev,athome,t Is bev home in t
λbev,v2h Is bev capable of v2h
SoEbev,max Max. SoE of BEV
SoEbev,init Initial SoE of BEV
Tmin Min. temp. of th. storage
Tmax Max. temp. of th. storage
Tinit Initial temp. of th. storage

Qth,max
Max. energy flow from/to th.
storage

Qbuild,req,t Heat energy flow required by building in t
Qrad→pv,t Radiation energy to PV system
ζbev Efficiency of BEV battery

Appendix A

Table A1. Technical data of the PV modules, taken from [47].

Property Value Unit

Module name Meyer Burger White
Module area 1.84 m2

Max. power 400 W
Efficiency 21.7 %

Temp.-coefficient PMPP −0.259 %/K

Appendix B

Pmax,heat = 2.396× 102 − 4.061× 10−2 × T2
outside

+ 8.500× 10−3 × T2
supply

+ 1.114× 10−1 × Toutside × Tsupply

− 1.095× Toutside

42 + 1.337× Tsupply

(A1)
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Appendix C

Tsupply =

{
40.0 if Tsupply ≥ 15
−0.3579× Toutside + 41.975 otherwise

(A2)

Appendix D

Table A2. Technical data of the electric vehicle fleet.

Sim. ID Model Name Quantity
Bat.

Capacity
[kWh]

Travelling
Distance

[km/a]

Charging
Efficiency

[%]

Max.
Charging

Power [kw]

Energy Need
[Wh/km]

20 VW eup 1 32 8591 88 3.6 14.7

21 Mercedes
EQC 1 80 8286 86 11 19.7

22 Porsche
Taycan 1 84 6779 88 11 20.8

23, 36, 37 Renault Zoe 3 52 8242, 6778
18,516 81 22 17.9
24, 39 Kia Soul 1 64 11,764, 5241 87 7.2 16.5

25 Seat Mii 1 32 7712 85 7.2 14.8
26, 28 BMW i3 2 42 9417, 4478 78 11 14.0

27, 38, 43 VW eGolf 3 32 9856, 12,931
4968 90 7.2 16.1

29, 31 Audi eTron 2 95 7654, 8654 89 22 22.9
30 Opel Corsa 1 50 8147 85 11 17
32 Smart forfour 1 18 8786 93 22 17.1

33, 42 VW iD3 2 77 9176, 9805 90 11 17.3
34 Smart fortwo 1 18 10,293 93 22 17.1
35 Tesla Model 3 1 79 9007 88 11 17.5
40 Nissan Leaf 1 62 8264 91 6.6 20.6

41, 44 Hyundai
Ioniq 2 38 5912, 10,949 87 7.4 14.2

45 Skoda Citigo 1 32 8197 88 7.2 14.7
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