
Citation: Peng, Y.; Jiang, W.; Wei, X.;

Pan, J.; Kong, X.; Yang, Z. Microgrid

Optimal Dispatch Based on

Distributed Economic Model

Predictive Control Algorithm. Energies

2023, 16, 4658. https://doi.org/

10.3390/en16124658

Academic Editors: Vivek Prakash,

Bhanu Pratap Soni and Kailash

Chand Sharma

Received: 22 April 2023

Revised: 25 May 2023

Accepted: 29 May 2023

Published: 12 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Microgrid Optimal Dispatch Based on Distributed Economic
Model Predictive Control Algorithm
Yuxiang Peng 1, Wenqian Jiang 1, Xingqiu Wei 1, Juntao Pan 1, Xiangyu Kong 2 and Zhou Yang 1,*

1 Guangxi Power Grid Co., Ltd., Nanning 530023, China; 18587748446@163.com (Y.P.); jwqqsky@163.com (W.J.);
wei_xq.sy@gx.csg.cn (X.W.); pan_jt.sy@gx.csg.cn (J.P.)

2 Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China;
eekongxy@tju.edu.cn

* Correspondence: yangzhouwanshui@163.com

Abstract: A microgrid cluster is composed of multiple interconnected microgrids and operates in
the form of cluster, which can realize energy complementation between microgrids and significantly
improve their renewable energy consumption capacity and system operation reliability. A microgrid
optimal dispatch based on a distributed economic model predictive control algorithm is proposed
in this paper. Firstly, the control task of the microgrid power generation system is defined, which
is required to meet the load demand while reducing the economic loss of the system and realize
dynamic economic optimization. The global objective function is designed based on the control task,
and the detailed design method of the distributed economic model predictive controller is given.
The control law is obtained by an iterative calculation using the Nash optimal method, which can
effectively reduce the amount of data in the communication network. Finally, a microgrid group
composed of four microgrids is used as an example for simulation verification. The simulation results
show that the distributed economic model predictive control algorithm proposed in this paper has
good economic benefits for microgrid dispatching.

Keywords: distributed model predictive control; microgrid dispatching optimization; Nash
optimization; dynamic economic optimization

1. Introduction

With the development of the economy and society, the global electricity consumption
required for production and living has risen sharply, which means that more electricity is
needed to meet the growing demand. Power systems are facing huge challenges. Since
entering the 21st century, green, low-carbon and sustainable development has become
highly valued by all countries. In particular, with the continuous development of new
and renewable energy represented by wind energy, solar energy and biomass energy, the
traditional centralized power grid model can no longer meet people’s needs. In order to
meet the requirements of high-quality, low-cost and environmentally friendly of power
production, the application of microgrids is increasing [1–3].

A microgrid is a small power system formed of multiple distributed energy sources,
multiple forms of energy storage devices, loads and the grid for coordinated control [4,5].
In order to make better use of distributed energy and solve the problems caused by the
grid connection of distributed energy, a variety of distributed energy combinations with
complementary characteristics are usually operated in the form of a microgrid. A microgrid
has complete power generation and distribution functions, including distributed energy,
load, energy storage devices, energy conversion equipment, etc. [6,7]. A microgrid can
control distributed power sources that were originally distributed, and environmentally
friendly renewable energy can be connected to a microgrid, which is conducive to achieving
the maximum use of energy. Compared with traditional large grids, the advantage of a
microgrid is that it can absorb distributed power locally, which is conducive to reducing the
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cost of planning and operation and can effectively improve the economic performance of
power generation systems. At the same time, it can also exchange energy with a large grid.
Microgrids have very broad application prospects in remote areas with sparse population
and fragile ecology and urban areas that cannot completely rely on the power supply
of large grids [8,9]. The application of microgrid technology can not only improve the
reliability and resilience of power systems but also effectively reduce the dependence
on traditional grids and the use of fossil energy. Reference [10] introduced the entropy-
independent G1 method for weight calculation. Reference [11] introduced the concept of a
smart energy hub, aiming to simplify system deployment. References [12,13] introduced
the design of a microgrid in an isolated mode. Therefore, research on microgrids is of
great significance.

The scheduling and optimization of microgrids is the key to achieving their efficient
operation. Reference [14] conducted a feasibility analysis and a power system response
analysis using MATLAB/Simulink. It was found that a load-following dispatch strategy
yields the most favorable cost and power system responses. Reference [15] compared the
fuel savings achieved through the utilization of energy storage and solar generation by
employing an enhanced control logic and optimal dispatch strategy. Microgrid systems
contain multiple distributed energy sources and loads, as well as multiple energy storage
devices, and their scheduling problems have become more complex as a result. Traditional
microgrid scheduling methods are often modeled based on a single optimization algorithm
such as a pure genetic algorithm and a particle swarm algorithm [16,17]. However, these
methods are usually limited to the optimization of a single objective, due to which it is diffi-
cult to meet the optimization needs of microgrids with multiple objectives and constraints.
Therefore, new models and optimization algorithms are needed to solve the microgrid
scheduling problem. Reference [18] introduced a constraint network generator based on a
preferential attachment model, showing that real-world constraint networks have scale-free
characteristics. The study demonstrated the impact of degree-based search heuristics and
smaller backdoor sizes in preferentially attached networks. Reference [19] discussed the
unique design goals, operating constraints and business models of resilient microgrids
that serve multiple power system customers during extended main-grid unavailability.
Reference [20] explored the integration of renewable energy resources at the distribution
level to create grid-connected DC microgrids. The paper discussed the primary control
mechanism and power management of microgrids using batteries.

Typical control system structures include centralized control, decentralized control and
distributed control. The controllers corresponding to these three control structures can be
various controllers such as PID controllers and model predictive control (MPC) controllers.

Under a centralized control structure, all the output or state information of the whole
system is fed back to a central controller, and the controller calculates the control input
of the whole system. The advantage of this control structure is that there is only one
central controller, and the system structure is simple, but its disadvantage is that the system
is not scalable enough, and the central controller has a heavy calculation burden. In a
decentralized control structure, there is a coupling between the two subsystems, which
can be input coupling or coupling between system states. The advantage of this control
method is that there is no communication burden between controllers. The advantages
of decentralized control in terms of solving the control problems of large systems include
reducing the calculation burden of each subsystem through decentralized calculation,
the fact that multiple controllers can improve the scalability and fault tolerance of the
system and the fact that they can solve the dispersion of the geographical distribution of
their subsystems.

A distributed control design also has many problems that are caused by distribution.
Too frequent communication between subsystems may cause a heavy communication
burden and affect the real-time performance of the control system, especially when the
sampling time is short. In a decentralized control structure, when the coupling between sub-
systems is relatively strong, the decentralized control system may not achieve a satisfactory
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control performance, or the system may even be unstable [21]. For the convergence prob-
lem, because the control input is obtained through a distributed calculation, the stability of
the system needs to be rediscussed [22].

Therefore, the design goal of a distributed control system is to achieve the best control
performance with as simple a system communication mode as possible and as little a
communication burden as possible while ensuring the convergence of the control algorithm
and the stability of the system. Distributed model predictive control (DMPC) can be
obtained by completing the design of the distributed control structure under MPC control.

The mature development of MPC in industrial applications and in theory has laid the
foundation for the development of MPC into a distributed control system. A distributed
control system has many advantages, including the effective use of resources, the ease
of system expansion and maintenance, high flexibility, reliability and the convenience of
remote operation. The key advantage of DMPC is to achieve the control effect of the original
centralized MPC through the coordination of multiple MPC controllers, under which the
calculation burden of each MPC sub-controller can be reduced. However, when DMPC is
applied to large systems, a large increase in the number of decision variables, state variables
and measurement data may significantly increase the computational time required to solve
the DMPC optimization problem. At the same time, in order to deal with interaction
between the constraints and subsystems, communication between subsystems is inevitable.
Therefore, a good DMPC method needs to be able to handle the coupling of the system while
maintaining a good control performance and having the lowest communication burden.

Distributed economic model predictive control is an approach that uses multiple nodes
to collaborate in economic forecasting and control tasks [23,24]. The basic principle is to
decompose the economic system into multiple subsystems, each of which is controlled by
a node and accomplishes tasks collaboratively by exchanging information. Distributed
economic model predictive control has the following advantages:

(1) Multi-node collaboration can make full use of the information and arithmetic power
of each node to improve the prediction accuracy.

(2) Due to multi-node collaboration, the system is more fault-tolerant and will not cause
the failure of the whole system due to the failure or collapse of a single node, which
enhances the robustness of economic control.

(3) Since the data are dispersed in different nodes, it can avoid some risks associated
with the centralized storage and transmission of sensitive data and protect privacy
and security.

At present, hierarchical DMPC strategies are mostly used in industry to control micro-
grids, including wind, light and storage. The upper layer of the controller uses the DMPC
strategy to calculate the power reference value, and the lower layer uses the supervisory
predictive control strategy to track the power. However, there are many shortcomings
in the above two-layer structure, such as the inconsistency of models with two layers,
which makes the lower layer unable to track the set points of the upper layer, resulting
in unreachable set points and different time scales of the two layers [25–27]. Economic
model predictive control (EMPC) combines a two-level control structure into one layer and
optimizes the economic performance of the system in real time, effectively overcoming
the abovementioned shortcomings of a two-level control structure. EMPC eliminates the
restriction of steady-state constraints on economic objectives, integrates real-time opti-
mization and feedback control into an optimal control framework and does not rely on
steady-state economic optimization.

In this paper, we propose an optimal scheduling method for microgrids based on
the distributed economic model predictive control (DEMPC) model. The method uses
a DEMPC algorithm to achieve the efficient and optimal dispatching of each node in a
microgrid. The algorithm not only takes into account the multi-objective optimization re-
quirements of microgrids but also enables the multi-constrained optimization of microgrids.
Compared with the traditional single optimization algorithm, this algorithm has a higher
efficiency and better feasibility.
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The microgrid system is described in Section 2. The microgrid cluster optimal dispatch
model is developed in Section 3 in terms of both the optimization objectives and constraints,
respectively. In Section 4, a distributed economic model predictive controller is designed,
and a Nash-optimal-based method is proposed to solve the optimization. In Section 5, a
microgrid group composed of four microgrids is used as a practical example for simulation
verification, and the corresponding simulation results are presented. Finally, conclusions
are made in Section 6.

2. Microgrid System Description

The microgrid system used in this study consists of three mutually independent sub-
systems: a wind power generation subsystem, a photovoltaic power generation subsystem
and a battery storage subsystem (used to compensate for the brief supply of electrical
energy when the power generation is insufficient) [28,29]. Figure 1 shows the structure of
the microgrid power generation system.
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2.1. Mathematical Model of Wind Turbine Electronic System

The wind turbine generator electronic system used in this study consists of four parts:
a wind turbine, a multi-pole permanent magnet synchronous generator (PMSG), a rectifier
and a DC/DC converter, and it is connected with the other equipment through a DC
bus [30], as shown in Figure 1. The DC/DC converter indirectly controls the output power
of the wind turbine generator by adjusting the PMSG terminal voltage.

In the rotor coordinate system, the model of the wind turbine generator system can be
described as follows:

.
xw =


.
iq.
id.
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√
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√
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(1)

where iq and id represent the stator current in the q− d rotor coordinate system; ωe repre-
sents the electrical angular velocity; Rs and L represent the single-phase stator resistance
and inductance, respectively; J represents the rotational inertia of the impeller; φm repre-
sents the excitation flux chain of the rotor permanent magnet pole; vb represents the voltage
on the DC bus; uw represents the control signal of the fan (duty ratio of DC/DC converter)
and P represents the number of poles of the fan.

2.2. Mathematical Model of Photovoltaic Power Generation System

The photovoltaic power generation system used in this study is composed of a pho-
tovoltaic (PV) array and a half-bridge DC/DC converter, and it is connected to the other
equipment through a DC bus, as shown in Figure 1. Similar to the wind power generation
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electronic system, a DC/DC converter is used to indirectly control the output power of the
photovoltaic cells. The mathematical model of the photovoltaic power generation system is
as follows: 

.
vpv =

ipv
C −

is
C us.

is = − vb
L +

vpv
L us

ipv = np Iph − np Irs

(
exp

(
q(vpv+ipvRs)

ns AcKT

)
− 1
) (2)

where vpv is the port voltage of the photovoltaic array; is is the current injected into the
DC bus; C and L are the electrical parameters of the step-down converter; us is the control
signal; ipv is the output current of the photovoltaic array; Iph is the photocurrent under
the reference light intensity; Irs is the reverse saturation current of the photovoltaic cell
(generally, its order of magnitude is 10−4 A); np and ns are the number of parallel and
series photovoltaic cells in the array, respectively; K is the Boltzmann constant; T is the
absolute temperature of the photovoltaic cell and Ac is the P-N constant coefficient of the
semiconductor cell in the photovoltaic cell, and its value is 1~5.

2.3. Mathematical Model of Battery Energy Storage System

In the independent wind–solar complementary power generation system in this study,
the energy storage device is mainly provided by a battery. When the supplies of wind
and light are sufficient, the system can generate enough power to meet the external load,
and at the same time, there will be extra power to supply the battery for charging. When
the supply of wind and light are insufficient, the system cannot meet the external load
demand. The battery then discharges to the system to meet the load demand and improve
the quality of the power supply. It is assumed that the battery capacity is large enough to
provide enough energy for a short time. Considering the use environment of wind–solar
complementary power generation systems, a valve-controlled sealed lead-acid battery pack
is generally used. It can be simplified as a voltage source, Eb, connected in series with a
resistor, Rb, and a capacitor, Cb. The voltage in the DC bus can be described as:

vb = Eb + vc +

(
π

2
√

3

√
i2q + i2duw + is − iL

)
Rb (3)

where vc represents the voltage of the capacitor, Cb, so the mathematical model can be
described as:

.
vc =

ib
Cb

=
1

Cb

(
π

2
√

3

√
i2q + i2duw + is − iL

)
(4)

where is represents the current injected into the DC bus of the photovoltaic system, and iL
represents the load current.

3. Optimal Dispatching Model of Microgrid Group

As shown in Figure 2, the microgrid group studied in this paper is not connected to a
large grid. The main purpose of this study is to optimize the scheduling and increase the
efficiency of typical micro electric power grid groups located in remote areas with limited
energy resources. It is mainly aimed at remote areas and consists of multiple interconnected
MGs. There is power exchange and information exchange between adjacent microgrids.
The MG contains a distributed power supply such as a photovoltaic cell, a wind turbine,
a diesel generator, a battery and a power load. The optimization strategy in this paper
is designed to minimize the operation cost of the whole microgrid group by optimizing
the controllable variables such as the diesel generator power and the battery charge and
discharge power [31–33]. The DEMPC algorithm structure proposed in this paper is shown
in Figure 3.
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3.1. Optimization Objectives

In this paper, the optimization objective of the microgrid group is to meet a certain
level of total load demand and to minimize the total operation cost of all microgrids. For a
microgrid group composed of N microgrids, the optimization scheduling objective function
can be expressed as:

min
N

∑
n=1

fn(Pn) (5)

where Pn =
[
Pch

n Pdis
n Pg

n Pex
n
]T represents the vector composed of the active power of

microgrid n, Pch
n represents the charging power of the battery, Pdis

n represents the discharge
power of the battery, Pg

n represents the active power output of the diesel engine, Pex
n

represents the exchange power of the microgrid, where a positive number represents the
output active power of the microgrid and a negative number represents the input active
power and fn represents the cost function of microgrid n.

For a single microgrid, the operation cost is mainly reflected in the cost of the battery’s
charge and discharge loss, the diesel fuel consumption and the exchange power:

fn(Pn) = Cbat
n

(
Pch

n , Pdis
n

)
+ Cg

n

(
Pg

n

)
+ γ(Pex

n ) (6)

In the above equation, Cbat
n

(
Pch

n , Pdis
n

)
represents the charge and discharge cost of the

battery, Cg
n

(
Pg

n

)
represents the fuel cost of the diesel engine ad = nd γ(Pex

n ) represents the
exchange power cost and corresponds to the overhead cost and power transmission loss.

Cbat
n

(
Pch

n , Pdis
n

)
= ach

n

(
Pch

n

)2
+ bch

n Pch
n + cch

n +

adis
n

(
Pdis

n

)2
+ bdis

n Pdis
n + cdis

n

(7)

Cg
n

(
Pg

n

)
= ag

n

(
Pg

n

)2
+ bg

nPg
n + cg

n (8)

γ(Pex
n ) = aex

n (Pex
n )2 (9)
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where ach
n , adis

n , ag
n and aex

n represent the quadratic coefficients of the cost of battery charging,
battery discharging, diesel fuel and exchange power, respectively. bch

n , bdis
n and bg

n represent the
cost of battery charging, battery discharging and diesel fuel, respectively. cch

n , cdis
n and cg

n represent
the cost constant items of battery charging, battery discharging and diesel fuel, respectively.

3.2. Constraint Conditions

The constraints of microgrid group optimization can be divided into the internal con-
straints of the sub-microgrids and the global constraints of the microgrid group. The internal
constraints of the sub-microgrid include the internal power balance constraints, the upper
and lower limits of the diesel engine output constraints, the upper and lower limits of the
exchange power constraints and the battery operation constraints. The global constraint of
the microgrid group refers to the exchange power balance constraint between the microgrids,
that is, the sum of the input or output power of all the sub-microgrids is zero [34].

The switching power balance constraint of the micro-electric network group is as follows:

N

∑
n=1

Pex
n = 0 (10)

For microgrid n, the internal power balance constraint is as follows:

Pch
n − Pdis

n − Pg
n − Pw

n − Ps
n + Pl

n + Pex
n = 0 (11)

where Pl
n represents the load active power of microgrid n and Pw

n and Ps
n represent the

active power of the wind turbine and the photovoltaic cell, respectively.
The upper and lower limits of the diesel engine output are as follows:

Pg,min
n ≤ Pg

n ≤ Pg,max
n (12)

where Pg,min
n and Pg,max

n represent the lower limit and upper limit of the diesel
engine, respectively.

The battery operation constraints are as follows:

Pch,min
n ≤ Pch

n ≤ Pch,max
n

Pdis,min
n ≤ Pdis

n ≤ Pdis,max
n

Smin
OCn ≤ SOCn ≤ Smax

OCn
Pch

n Pdis
n = 0

(13)

where Pch,min
n and Pch,max

n represent the lower limit and upper limit of the battery charging
power, respectively; Pdis,min

n and Pdis,max
n represent the lower limit and upper limit of the

battery discharging power, respectively; SOCn represents the state of charge of the battery
and Smin

OCn and Smax
OCn represent the lower limit and upper limit of the battery state of charge,

respectively. The last equation in Equation (13) indicates that the battery cannot be in a
charging and discharging state at the same time. If the charging power and discharging
power of the battery are not zero, then the optimal solution of the optimization problem is
not achieved. Therefore, the last equation of Equation (13) is ignored, and the optimization
result is still satisfied, i.e., Pch

n Pdis
n = 0. In addition, considering the randomness of wind

and wind output and the fluctuation of the load, in order to ensure the power balance in
the control time domain, the battery should have a certain margin of reserve capacity.

In the optimization problem, the decision variables xn are used to represent Pn, i.e., the
quantity to be solved in the optimization model, where xn =

[
xch

n xdis
n xg

n xex
n
]T . The

optimization problem of the above micro electric network group can be written in the
following compact form:

min
N

∑
n=1

fn(xn) (14)
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s.t. gn(xn) = 0, n = 1, · · · , N (15)

hn ≤ hn(xn) ≤ hn, n = 1, · · · , N (16)

g0(x1, · · · , xn, · · · , xN) = 0 (17)

where Equation (14) represents the objective function of the microgrid group, i.e., the sum of
the objective functions of each sub-microgrid, corresponding to Equation (5). Equation (15)
represents the equation constraint set of each sub-microgrid, corresponding to Equation (11).
Equation (16) represents the inequality constraint set of each sub-microgrid, corresponding to
Equations (12) and (13). Equation (17) represents the global constraints of the micro-electric
network group, corresponding to Equation (6). Equations (15) and (16) contain only the variables
inside each sub-microgrid, while Equation (17) contain the variables of different microgrids.

4. Distributed Economic Model Predictive Controller
4.1. Controller Design

The primary control requirement that the total generation of each subsystem in the
microgrid meet the load demand is set as the coupling constraint of the optimization control
problem. The subsystem needs to meet:

(Pw(k) + Ps(k) + Pb(k))− Pl(k) = 0 (18)

where Pl(k) is the power load demand at any time (W).
The coupling constraint of Equation (18) is given by strict equality constraints, and the

problem of recursive infeasibility may occur in the process of controller optimization. If the
relaxation variable is added to the equality constraint, it can be modified into an inequality
constraint so that the problem can be solved in a larger feasible region. The inequality
constraint can be expressed as:

−εp ≤ (Pw(k) + Ps(k) + Pb(k))− Pl(k) ≤ εp (19)

In addition, the variable constraints in the wind power generation system also intro-
duce the relaxation variables εw and εT . After relaxing the constraint conditions, in order to
make the variable not violate the constraint, it is necessary to adjust the objective function
and punish the relaxed variable. The mathematical equation is as follows:

Π = rpε2
p + rsε2

w + rTε2
T (20)

where rp, rs and rT are weight coefficients.
Next, the first economic performance to be considered in the design of the objective

function is the loss due to the mechanical parts of the wind turbine electronic system, which
can be expressed as:

le1 = α1θ2 + α2v2
t

le2 = α3β2 + α4∆β2

le3 = α5∆T2
g

(21)

where ∆β is the change in the pitch angle (◦), and ∆Tg is the change in the generator torque
(N·m). le1 refers to the fatigue load of the transmission system caused by the torsion of the
transmission shaft and the fatigue load caused by the tower movement; le2 refers to the
blade fatigue loss caused by the high-frequency change in the pitch angle and le3 indicates
the generator fatigue loss caused by the high-frequency variation in wind turbine torque.
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The economic performance of the battery energy storage system needs to consider
avoiding the frequent charging and discharging of the battery, thus optimizing the use of
the battery and extending its service life, and it can be written as follows:

le4 = α6∆P2
b − α7SOC (22)

where ∆Pb is the change rate of the battery power, and αn(n = 1, . . . , 7) is the relative weight.
Therefore, the economic cost function of the microgrid power generation system is

expressed as:
Le = (le1 + le2 + le3 + le4) (23)

To sum up, the objective function of the microgrid power generation system is as follows:

L = ρ1Le + ρsΠ
= ρ1(le1 + le2 + le3 + le4)

+ρs

(
rpε2

p + rsε2
w + rTε2

T

) (24)

where ρl and ρs are the weight coefficients, and the control objective is to minimize the sum
of the economic loss and constraint violation.

In addition, all subsystems in the microgrid power generation system need to meet
variable constraints, where the state constraint set is marked as Ψi, the control constraint
set is marked as Xi and the output constraint set is marked as Zi.

Ψw =


ωrmin − εω ≤ ωr ≤ ωrrated + εω

ωgmin ≤ ωg ≤ ωgrated
θmin ≤ θ ≤ θmax

Xw =


0 ≤ Tg ≤ Tgrated + εT
βmin ≤ β ≤ βmax
−∆βmax ≤ ∆β ≤ ∆βmax
−∆Tgmax ≤ ∆Tg ≤ ∆Tgmax

Zw = {0 ≤ Pw ≤ Pwmax}
Xs =

{
0 ≤ upv ≤ 1

}
Zs = {0 ≤ Ps ≤ Psmax}

Xb = {−ibmax ≤ ib ≤ ibmax}
Zb = {Pbmin ≤ Pb ≤ Pbmax}

(25)

Collaborative distributed predictive control has an objective function that includes the
information of all subsystems. In addition, the communication network enables information
exchange and sharing among the subsystems, which simplifies the optimization process.
In addition, the calculation amount is effectively reduced. The distributed economic
model predictive control optimization problem of subsystem i designed in this paper is
expressed as:

min
ui

J =
Np−1

∑
p=0

ρl Le

 X(k + p|k)
U(k + p|k)
Y(k + p|k)

+ ρsΠ

s.t. xi(k + p + 1|k) = fi


xi(k + p|k)
ui(k + p|k)

x−i(k + p|k)
u−i(k + p|k)


yi(k + p|k) = fi

 xi(k + p|k)
ui(k + p|k)

x−i(k + p|k)


xi(k|k) = xi(k)

xi ∈ Ψi, ui ∈ Xi, yi ∈ Zi
SOCmin ≤ SOC ≤ SOCmax

−εp ≤ (Pw(k) + Ps(k) + Pb(k)− Pl(k)) ≤ εp

(26)
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4.2. Control Quantity Solving Algorithm

The controller of subsystem i in Equation (26) uses the global objective function
in the optimization calculation. The objective function contains the information of other
subsystems. This requires subsystem i to know the optimal solution of the other subsystems
in advance to solve the optimization problem. However, in fact, it is impossible to meet
this requirement. Therefore, we adopted a distributed economic model predictive control
algorithm based on the Nash optimal method. Specifically, if Equation (27) is satisfied, it is
called u∗i and is the Nash optimal solution of subsystem j.

J∗i (u
∗
1 , · · · , u∗i , · · · , u∗N) ≤ J∗i

(
u∗1 , · · · , u∗j , · · · , u∗N

)
(27)

where u∗j represents the Nash optimal solution of subsystem j, where j ∈ {1, . . . , N}.j 6= i.
The Nash optimal solution is also called a “selfish solution”. If each controller obtains

the Nash optimal solution through the optimization calculation, it will not change randomly
because the current conditions reach the local economic performance optimum. When each
subsystem obtains the Nash optimal solution, the whole system is said to be in the Nash
equilibrium state. At this time, if other subsystems keep the control strategy unchanged,
any subsystem will not obtain a better economic performance by changing the control
strategy. In this way, the Nash optimal method is carried out to calculate the Nash optimal
solution according to the Nash optimal solution of other subsystems, and the Nash optimal
solution is a very important balance point. Using the Nash optimal method, for a certain
subsystem, assuming that the Nash optimal solution of other subsystems is known, the
controller only optimizes its own control input and transmits it to other subsystems through
a distributed communication network.

The existence of the communication network in the distributed structure provides
the basis for the iterative calculation. By adopting the global objective function based on
the communication network, the Nash optimal solution of each local controller moves
continuously to the Pareto optimal solution through the iterative solution process, thus
improving the global performance in the distributed structure. When solving the opti-
mization problem of the current subsystem, the optimal solution of other subsystems can
be estimated, and the optimization problem of the system can be solved according to the
estimated value. After each iteration, whether the iteration termination condition is met
is checked, and then the subsystem communicates the optimal solution and the iteration
termination condition check results with other subsystems through the communication
network. The estimated value is modified, and the optimization problem is re-solved.
If the solution obtained by each controller optimization calculation meets the iteration
termination condition, then the whole system is in a Nash equilibrium.

The algorithm uses the distributed economic model predictive control algorithm based
on the Nash optimal method to reduce the communication burden. The algorithm process
is shown in Figure 4. The specific steps are as follows:

1. Initialization: At the initial time k = 0, the feasible control input quantity ûi(0)
and corresponding state quantity x̂i(0) of subsystem i are initialized, and give the
prediction time domain and control time domain NP. The iteration number is set to
f lag = 0 so that the control quantity, state quantity and output quantity of the $flag$
iteration of subsystem i at the initial time are u f lag

i (0) = ûi(0), x f lag
i (0) = x̂i(0) and

y f lag
i (0) = ŷi(0), respectively, in order to transfer the information (ûi(0), x̂i(0), ŷi(0))

of each subsystem to other subsystems;
2. i = w, s, b cycle calculation:

(1) Subsystem i receives its neighbor’s information and encapsulates it as

ũ−i(k) = [u f lag
i1

(k)T . . . u f lag
id1

(k)T ]
T

, x̃−i(k) = [x f lag
i1

(k)T . . . x f lag
id1

(k)T ]
T

and

ỹ−i(k) = [y f lag
i1

(k)T . . . y f lag
id1

(k)T ]
T

;
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(2) The optimization problem (26) is solved, and the solution u f lag+1
i (k) is obtained

under this iteration;
(3) Whether the optimization solution meets the iteration termination conditions

is checked, that is, given the accuracy εi, whether it meets the requirements∣∣∣∣∣∣u f lag+1
i (k)− u f lag

i (k)
∣∣∣∣∣∣≤ εi or whether the number of iterations exceeds the

set maximum number of iterations, kmax, is checked. If the optimization
solution satisfies the iteration termination condition, the iteration ends. The
solution obtained by the controller of subsystem i in this iteration optimization
calculation is the Nash optimal solution at time k, that is, u∗j (k) = u f lag+1

i (k).
At this point, the algorithm proceeds to step (3); otherwise, f lag = f lag + 1;

(4) According to the solution u f lag
i (k) calculated in this iteration, the correspond-

ing state quantity x f lag
i (k) and output quantity y f lag

i (k) are obtained, and

the information (u f lag
i (k), x f lag

i (k), y f lag
i (k)) is transferred to other subsystems

j ∈ Ni except for subsystem i. Subsystem j is updated as per ũ−j(k), x̃−j(k)
and ỹ−j(k), and step 2 is repeated.

3. The optimal control law uj(k) = [1 0 . . . 0]u∗i (k
∣∣k) is applied to the correspond-

ing subsystem;
4. Let k = k+ 1, upon which the algorithm scrolls to the next moment, resets the iteration

number $flag$ to zero and transfers the optimization solution of each subsystem at
the previous moment, as well as the corresponding state quantity and output quantity
to other subsystems as the estimated information. The algorithm returns to step 2 and
repeats the above process.
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5. Simulation Example

This paper took a microgrid group composed of four microgrids as an example for
analysis, and its topology is shown in Figure 2. The distributed power configuration of
each sub microgrid is shown in Table 1, where ε has a value of 10. Using 15 min as the
control time domain, a period of 24 h can be divided into 96 time periods, and the predicted
time horizon of MPC is p = 16. The actual data of the wind and solar loads within 24 h
for four sub microgrids are shown in Figure 5. The predicted data of the wind and solar
loads were added with random prediction errors to the actual data. MATLAB was used for
programming and solving the distributed optimization scheduling problems.

Table 1. DG configuration of each microgrid.

Microgrid Photovoltaic
Rated Power/kW

Fan Rated
Power/kW

Diesel Engine
Rated Power/kW

Battery Rated Power/kW,
Rated Capacity

(kW·h)

MG1 350 600 300 200,800

MG2 450 650 300 230,900

MG3 800 — 400 230,100

MG4 350 550 250 200,800
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Figure 5. Curves of PV output power, WT output power and load for MG1 to MG4. 

The 96-step rolling optimization results of the microgrid group within 24 h are shown 
in Figures 6 and 7, where Figure 6 shows the controllable power output of the four sub 
microgrids and Figure 7 shows the exchange power of the four sub microgrids. From the 
57th to the 68th moment, there was ample sunlight during this period, and the output of 
the photovoltaic and wind turbines exceeded the demand of the load. The battery was in 
a charged state. From the 70th to 96th moment, the load demand was high, and the power 
was supplied by both the battery and the diesel engine rather than the battery first and 
then the diesel engine. Simultaneously supplying power can prevent diesel engines from 
operating under high loads and reduce operating costs. MG3 was not connected to the 
wind turbine, and the output of photovoltaic power was insufficient to meet the load de-
mand for most of the time. Therefore, MG3 obtained exchange power from the other sub 
microgrids, which reflected the energy complementarity advantage of the microgrid 
group. 

Figure 5. Curves of PV output power, WT output power and load for MG1 to MG4.

The 96-step rolling optimization results of the microgrid group within 24 h are shown
in Figures 6 and 7, where Figure 6 shows the controllable power output of the four sub
microgrids and Figure 7 shows the exchange power of the four sub microgrids. From the
57th to the 68th moment, there was ample sunlight during this period, and the output of
the photovoltaic and wind turbines exceeded the demand of the load. The battery was
in a charged state. From the 70th to 96th moment, the load demand was high, and the
power was supplied by both the battery and the diesel engine rather than the battery first
and then the diesel engine. Simultaneously supplying power can prevent diesel engines
from operating under high loads and reduce operating costs. MG3 was not connected to
the wind turbine, and the output of photovoltaic power was insufficient to meet the load
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demand for most of the time. Therefore, MG3 obtained exchange power from the other sub
microgrids, which reflected the energy complementarity advantage of the microgrid group.
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Figure 7. Optimization results of exchange power.

Figure 8 shows the convergence of the residuals in the optimization over 40 time
periods. From Figure 8, it can be seen that the optimization process at all times convergeed
after fewer than 40 iterations. The curves of each color in the figure represent an iteration.
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To illustrate the convergence of the distributed algorithm at a certain optimization
time, Figure 9 shows the expected exchange power of each sub microgrid during the
iteration process at the first optimization time. After the first iteration, the exchange power
of each sub microgrid only met its internal optimal. The optimization result was not a
global optimal and did not meet the power balance constraint of the microgrid group.
Therefore, the average expected exchange power was not 0. As the number of iterations
increased, MG4 obtained more exchange power from the other sub microgrids to achieve its
optimal power allocation, and the average expected exchange power also approached 0 to
meet the power balance of the microgrid group. After iterative convergence, the expected
exchange power of each sub microgrid met the global optimization of the microgrid group.
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Figure 10. Comparison of distributed optimization and centralized optimization. 

6. Conclusions 

Figure 9. Changes in expected exchange power of each MG during iteration.

In order to demonstrate the consistency of the results between distributed optimization
algorithms and centralized optimization methods, distributed and centralized algorithms
were used to solve the optimization problems of microgrid clusters for comparison. Taking
the 25th optimization moment as an example, Figure 10 shows the iterative process of the
energy storage output, diesel engine output and expected exchange power of MG4. In
addition, it was compared with the corresponding calculation results of the centralized
optimization. From Figure 10, it can be seen that the energy storage and diesel engine output
ultimately converged with the calculation results of the centralized algorithm after multiple
iterations of the distributed optimization algorithm. Therefore, this indicated that the
iterative results of the DEMPC algorithm proposed in this paper were the optimal solution.
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Figure 9. Changes in expected exchange power of each MG during iteration. 

In order to demonstrate the consistency of the results between distributed optimiza-
tion algorithms and centralized optimization methods, distributed and centralized algo-
rithms were used to solve the optimization problems of microgrid clusters for comparison. 
Taking the 25th optimization moment as an example, Figure 10 shows the iterative process 
of the energy storage output, diesel engine output and expected exchange power of MG4. 
In addition, it was compared with the corresponding calculation results of the centralized 
optimization. From Figure 10, it can be seen that the energy storage and diesel engine 
output ultimately converged with the calculation results of the centralized algorithm after 
multiple iterations of the distributed optimization algorithm. Therefore, this indicated 
that the iterative results of the DEMPC algorithm proposed in this paper were the optimal 
solution. 
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6. Conclusions 

Figure 10. Comparison of distributed optimization and centralized optimization.

6. Conclusions

In this paper, a microgrid optimal dispatch based on a distributed economic model pre-
dictive control algorithm was proposed. A distributed economic model predictive control
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algorithm was proposed for a microgrid power generation system. Firstly, the control task
of the microgrid power generation system was defined in order to reduce the economic loss
of the system while meeting the load demand and realize a dynamic economic optimization.
Taking the requirement of meeting the load demand as the coupling constraint and working
according to the actual situation of the system operation, the global objective function was
designed, including minimizing the fatigue loss of each component in the wind power
generation system, suppressing the fluctuation of battery power to improve the economy
of the battery energy storage system and punishing constraint violations. Next, for the
weighted summation multi-objective optimization problem, the Pareto frontier was ob-
tained by changing the weight coefficient so that a reasonable compromise of the objective
function could be achieved by selecting different weight coefficients.

Secondly, a detailed design method of a distributed economic model predictive con-
troller was given. The control law obtained by iterative calculation using the Nash optimal
method could effectively reduce the amount of data in the communication network. A de-
tailed distributed economic model predictive control algorithm based on the Nash optimal
method was given. Finally, a microgrid group composed of four microgrids was taken as
an example for simulation verification. The simulation results showed that the distributed
economic model predictive control algorithm proposed in this paper could effectively
reduce the power consumption of the distributed generation system and realize the full
utilization of new energy. The example showed that this strategy could effectively reduce
costs and had good economic benefits. In the future, we will apply the algorithm to a wider
range of microgrid clusters and extend it to microgrids connected to a big power grid.

Author Contributions: Conceptualization, Y.P. and W.J.; methodology, W.J.; software, Y.P.; validation,
W.J. and J.P.; formal analysis, Y.P.; investigation, J.P.; resources, X.K.; data curation, X.K.; writing—
original draft preparation, Y.P.; writing—review and editing, X.K.; visualization, X.K.; supervision,
Z.Y.; project administration, Z.Y.; funding acquisition, X.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This project was supported by the National Natural Science Foundation of China (51877145).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Trans. Power Electron.

2012, 27, 4734–4749. [CrossRef]
2. Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based

Microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [CrossRef]
3. Tiwari, S.; Ongsakul, W.; Singh, J.G. Design and Simulation of an Islanded Hybrid Microgrid for Remote Off-Grid Communities.

In Proceedings of the 2020 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE),
Pattaya, Thailand, 20–22 October 2020; pp. 1–7. [CrossRef]

4. Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Canizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.;
Saeedifard, M.; Palma-Behnke, R.; et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [CrossRef]

5. Bidram, A.; Davoudi, A. Hierarchical Structure of Microgrids Control System. IEEE Trans. Smart Grid 2012, 3, 1963–1976.
[CrossRef]

6. Shin, Y.; Park, W.; Lee, I. Design of microgrid web services for microgrid applications. In Proceedings of the 2017 Ninth
International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 818–822. [CrossRef]

7. Bai, B.; Wang, K.; Bu, L.; Liu, S.; Cheng, M.; Yue, C. Feasibility Evaluation for a Multi-Energy Microgrid Case Study in
China. In Proceedings of the 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, China,
1–4 December 2019; pp. 1–5. [CrossRef]

8. Saldarriaga-Zuluaga, S.D.; Lopez-Lezama, J.M.; Muñoz-Galeano, N. Protection Coordination in Microgrids: Current Weaknesses,
Available Solutions and Future Challenges. IEEE Lat. Am. Trans. 2020, 18, 1715–1723. [CrossRef]

9. Jones, C.B.; Vining, W.F.; Haines, T. Current & Future Photovoltaic System Impacts on City-Wide Grid Performance & Neighbor-
hood Microgrids. In Proceedings of the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA,
5–10 June 2022; pp. 0276–0282. [CrossRef]

https://doi.org/10.1109/TPEL.2012.2199334
https://doi.org/10.1109/TPEL.2006.890003
https://doi.org/10.1109/ICUE49301.2020.9307028
https://doi.org/10.1109/TSG.2013.2295514
https://doi.org/10.1109/TSG.2012.2197425
https://doi.org/10.1109/ICUFN.2017.7993913
https://doi.org/10.1109/APPEEC45492.2019.8994575
https://doi.org/10.1109/TLA.2020.9387642
https://doi.org/10.1109/PVSC48317.2022.9938507


Energies 2023, 16, 4658 16 of 17

10. Li, Y.; Ma, W.; Zhang, Z.; Niu, G.; Wu, M.; Weng, Y. Energy Efficiency Evaluation of Multi-Energy Microgrid Based on Entropy-
Independence-Gl Method. In Proceedings of the 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing,
China, 27–29 May 2022; pp. 2232–2237. [CrossRef]

11. Xiao, J.; Zhao, T.; Hai, K.L.; Wang, P. Smart energy hub—Modularized hybrid AC/DC microgrid: System design and deployment.
In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28
November 2017; pp. 1–6. [CrossRef]

12. Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015, 3,
890–925. [CrossRef]

13. Chen, S.X.; Gooi, H.B.; Wang, M.Q. Sizing of Energy Storage for Microgrids. IEEE Trans. Smart Grid 2012, 3, 142–151. [CrossRef]
14. Ishraque, M.F.; Ali, M.M. Optimized Design of a Hybrid Microgrid using Renewable Resources Considering Different Dispatch

Strategies. In Proceedings of the 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0
(ACMI), Rajshahi, Bangladesh, 8–9 July 2021; pp. 1–6. [CrossRef]

15. Headley, A.J.; Schenkman, B.L.; Rosewater, D.M. Discrete Logic vs Optimized Dispatch for Energy Storage in a Microgrid. In
Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5.
[CrossRef]

16. Yin, T.; Du, C.; Chen, A.; Jiang, T.; Guo, S.; Zhang, H. Improved Genetic Algorithm-Based Optimization Approach for Energy
Management of Microgrid. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference
(IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 3234–3239. [CrossRef]

17. Ignat, A.; Lazar, E.; Petreus, D. Energy Management for an Islanded Microgrid Based on Particle Swarm Optimization. In
Proceedings of the IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), Iasi,
Romania, 25–28 October 2018; pp. 213–216. [CrossRef]

18. Devlin, D.; O’Sullivan, B. Preferential Attachment in Constraint Networks. In Proceedings of the 2009 21st IEEE International
Conference on Tools with Artificial Intelligence, Newark, NJ, USA, 2–4 November 2009; pp. 708–715. [CrossRef]

19. Ortmeyer, T.; Wu, L.; Li, J. Planning and design goals for resilient microgrids. In Proceedings of the 2016 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT), Minneapolis, MN, 9–12 October 2016; pp. 1–5. [CrossRef]

20. Dalai, S.K.; Prince, S.K.; Abhishek, A.; Affijulla, S.; Panda, G. Power Management Strategies for Islanding and Grid-Connected
DC Microgrid Systems with Multiple Renewable Energy Resources. In Proceedings of the 2022 IEEE Global Conference on
Computing, Power and Communication Technologies (GlobConPT), New Delhi, India, 23–25 September 2022; pp. 1–6. [CrossRef]

21. Navas-Fonseca, A.; Burgos-Mellado, C.; Espina, E.; Rute, E.; Gomez, J.S.; Saez, D.; Sumner, M. Distributed Predictive Secondary
Control for Voltage Restoration and Economic Dispatch of Generation for DC Microgrids. In Proceedings of the 2021 IEEE Fourth
International Conference on DC Microgrids (ICDCM), Arlington, VA, USA, 18–21 July 2021; pp. 1–6. [CrossRef]

22. Zheng, X.; Li, H.; Chen, X.; Min, Z. Three-level microgrid inverter optimization algorithm based on model prediction control.
In Proceedings of the IECON 2022—48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium,
18–21 October 2022; pp. 1–6. [CrossRef]

23. Selim, F.; Megahed, T.F.; Aly, M.; Shoyama, M.; Abdelkader, S.M. Model Predictive Control Based Improved Techno-Economic
Control Strategy for Photovoltaic-Battery Microgrids. In Proceedings of the 2022 11th International Conference on Renewable
Energy Research and Application (ICRERA), Istanbul, Turkey, 18–21 September 2022; pp. 230–235. [CrossRef]

24. Yu, J.; Jin, H.; Zhang, Y.; Liu, C.; Xiao, L. A Two-stage Model Predictive Control Strategy for Economical Operation of Microgrid.
In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway,
9–13 November 2020; pp. 882–887. [CrossRef]

25. Guan, Y.; Vasquez, J.C.; Guerrero, J.M. Hierarchical controlled grid-connected microgrid based on a novel autonomous current
sharing controller. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada,
20–24 September 2015; pp. 2333–2340. [CrossRef]

26. Meng, L.; Savaghebi, M.; Andrade, F.; Vasquez, J.C.; Guerrero, J.M.; Graells, M. Microgrid central controller development and
hierarchical control implementation in the intelligent microgrid lab of Aalborg University. In Proceedings of the 2015 IEEE
Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 2585–2592. [CrossRef]

27. Muchande, S.; Thale, S. Design and Implementation of Autonomous Low Voltage DC Microgrid with Hierarchical Control. In
Proceedings of the 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC),
Nagpur, India, 25–26 September 2020; pp. 1–6. [CrossRef]

28. Farooq, U.; Yang, F.; Jun, Y.; Hassan, M.A.S.; Faiz, N.; Riaz, M.T.; Jinxian, L.; Shaikh, J.A. A Reliable Approach to Protect and
Control of Wind Solar Hybrid DC Microgrids. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy
System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 348–353. [CrossRef]

29. Prasanna, U.R.; Rajashekara, K. Fuel cell based hybrid power generation strategies for microgrid applications. In Proceedings of
the 2015 IEEE Industry Applications Society Annual Meeting, Addison, TX, USA, 18–22 October 2015; pp. 1–7. [CrossRef]

30. Liu, H.; Xie, X.; He, J.; Xu, T.; Yu, Z.; Wang, C.; Zhang, C. Subsynchronous Interaction Between Direct-Drive PMSG Based Wind
Farms and Weak AC Networks. IEEE Trans. Power Syst. 2017, 32, 4708–4720. [CrossRef]

31. He, L.; Wei, Z.; Yan, H.; Xv, K.-Y.; Zhao, M.-Y.; Cheng, S. A Day-ahead Scheduling Optimization Model of Multi-Microgrid
Considering Interactive Power Control. In Proceedings of the 2019 4th International Conference on Intelligent Green Building
and Smart Grid (IGBSG), Yichang, China, 6–9 September 2019; pp. 666–669. [CrossRef]

https://doi.org/10.1109/CIEEC54735.2022.9846051
https://doi.org/10.1109/EI2.2017.8245453
https://doi.org/10.1109/ACCESS.2015.2443119
https://doi.org/10.1109/TSG.2011.2160745
https://doi.org/10.1109/ACMI53878.2021.9528096
https://doi.org/10.1109/PESGM41954.2020.9282131
https://doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9368162
https://doi.org/10.1109/SIITME.2018.8599272
https://doi.org/10.1109/ICTAI.2009.91
https://doi.org/10.1109/ISGT.2016.7781248
https://doi.org/10.1109/GlobConPT57482.2022.9938187
https://doi.org/10.1109/ICDCM50975.2021.9504612
https://doi.org/10.1109/IECON49645.2022.9968941
https://doi.org/10.1109/ICRERA55966.2022.9922814
https://doi.org/10.1109/ICIEA48937.2020.9248129
https://doi.org/10.1109/ECCE.2015.7309988
https://doi.org/10.1109/APEC.2015.7104716
https://doi.org/10.1109/STPEC49749.2020.9297748
https://doi.org/10.1109/EI247390.2019.9062101
https://doi.org/10.1109/IAS.2015.7356785
https://doi.org/10.1109/TPWRS.2017.2682197
https://doi.org/10.1109/IGBSG.2019.8886341


Energies 2023, 16, 4658 17 of 17

32. Picioroaga, I.I.; Tudose, A.; Sidea, D.O.; Bulac, C.; Eremia, M. Two-level Scheduling Optimization of Multi-microgrids Operation
in Smart Distribution Networks. In Proceedings of the 2020 International Conference and Exposition on Electrical and Power
Engineering (EPE), Iasi, Romania, 22–23 October 2020; pp. 407–412. [CrossRef]

33. Huo, Z.-H.; Wang, P.; Zhang, S.-J.; Wang, D.; Kong, Z. A Two-Step Multi-objective Optimization Frame-work for Microgrid
Scheduling Problem Based on Cloud-edge Computing. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and
Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 2764–2768. [CrossRef]

34. Li, B.; Wang, J.; Xia, N. Dynamic Optimal Scheduling of Microgrid Based on ε constraint multi-objective Biogeography-based
Optimization Algorithm. In Proceedings of the 2020 5th International Conference on Automation, Control and Robotics
Engineering (CACRE), Dalian, China, 19–20 September 2020; pp. 389–393. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/EPE50722.2020.9305614
https://doi.org/10.1109/EI250167.2020.9347092
https://doi.org/10.1109/CACRE50138.2020.9230079

	Introduction 
	Microgrid System Description 
	Mathematical Model of Wind Turbine Electronic System 
	Mathematical Model of Photovoltaic Power Generation System 
	Mathematical Model of Battery Energy Storage System 

	Optimal Dispatching Model of Microgrid Group 
	Optimization Objectives 
	Constraint Conditions 

	Distributed Economic Model Predictive Controller 
	Controller Design 
	Control Quantity Solving Algorithm 

	Simulation Example 
	Conclusions 
	References

