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Abstract: Dynamic reconfiguration, the monitoring of power production, and the fault diagnosis of
photovoltaic arrays, among other applications, require fast and accurate models of photovoltaic arrays.
In the literature, some models use the Lambert-W function to represent each module of the array,
which increases the calculation time. Other models that use implicit equations to avoid the Lambert-W
function do not use the inflection voltages to simplify the system of nonlinear equations that represent
the array, increasing the computational burden. Therefore, this paper proposes mathematical models
for series-parallel (SP) and total-cross-tied (TCT) photovoltaic arrays based on the implicit equations
of the single-diode model and the inflection points of the current–voltage curves. These models
decrease the calculation time by reducing the complexity of the nonlinear equation systems that
represent each string of SP arrays and the whole TCT. Consequently, the calculation process that
solves the model speeds up in comparison with processes that solve traditional explicit models based
on the Lambert-W function. The results of several simulation scenarios using the proposed SP model
with different array sizes show a reduction in the computation time by 82.97% in contrast with the
traditional solution. Additionally, when the proposed TCT model for arrays larger than 2× 2 is used,
the reduction in the computation time is between 47.71% and 92.28%. In dynamic reconfiguration,
the results demonstrate that the proposed SP model provides the same optimal configuration but
7 times faster than traditional solutions, and the TCT model is solved at least 4 times faster than
classical solutions.

Keywords: mathematical model; PV arrays; series-parallel; total-cross tied; implicit equations;
inflection points

1. Introduction

Photovoltaic (PV) generators have been established as one of the main renewable
energy sources adopted to contribute to the decarbonization of electric energy generation
around the world. That is why the International Energy Agency estimates that 240 GW of
PV systems were installed in 2022 to reach a global capacity of 1185 GW. Although such
an installed capacity is saving around 1399 million tons of CO2eq, it is expected that PV
generators continue growing to reach the goals proposed in COP21 [1].

Because of the increase in PV generators used in electrical systems, the number of
applications that use this source is continually increasing. Water pumping systems [2],
hybrid generator systems composed of PV arrays, wind generators, batteries [3,4], and
PV generators connected to electric grids [5] are very popular. Each application has
requirements in control, management, and modeling to operate safely and efficiently. To
improve the efficiency of PV generators, maximum power point trackers are developed
and applied to the PV arrays [6], and their safe operation is guaranteed using optimized
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control systems [7]. To analyze the high number of applications of PV generators, several
models with several levels of representation are required. The next step is to analyze the
multiple connections of PV arrays and the strategies to model them.

PV arrays can be connected in series-parallel (SP), total-cross tied (TCT), or other con-
figurations. SP is the typical connection used in commercial arrays, and TCT may mitigate
the power reduction produced by mismatching conditions (e.g., partial shading) [8,9]. In SP
arrays, the number of modules in each string (n) depends on the input voltage required
by the PV inverter (or dc/dc converter), while the number of strings connected in parallel
(m) is defined according to the power required from the array and considering the power
limitations of the inverter (or load). In addition, in SP arrays each string has a diode
connected in series, named the blocking diode, to avoid the reverse current through the
modules in the string [10]. On the other hand, an n×m TCT array corresponds to n rows
connected in series, where each row is formed by m modules connected in parallel. This
configuration does not require blocking diodes and, in some cases, mitigates the power re-
duction produced by non-uniform conditions, which means that not all of the PV modules
operate at the same irradiance and temperature and that not all of the PV modules have
the same electrical characteristics. However, one disadvantage of TCT arrays is that they
require additional wiring [11].

SP and TCT arrays can be modeled as an equivalent circuit generated by the intercon-
nection of the equivalent circuits that represent each module. When an array is operating
under non-uniform conditions, it is necessary to solve the equivalent circuit that represents
the array’s electrical behavior, which depends on the model adopted to represent each
module [10].

The single-diode model (SDM) is the most widely used model of PV modules and
provides a satisfactory compromise between accuracy and complexity [10]. In this model,
the relation between the module’s voltage (V) and current (I) is given by an implicit
equation. Therefore, some models proposed in the literature use the Lambert-W function
to obtain I as an explicit function of V [12], while others use the implicit equation [13].
Therefore, the mathematical models of SP and TCT arrays are divided into two main groups:
explicit and implicit. Nonetheless, several published works do not use mathematical
models of the PV arrays; instead, they solve the PV array equivalent circuit in a circuit
simulator [14]. Although the use of circuit simulators to model PV arrays facilitates the
modeling of arrays in different configurations, it is not practical when it is required to
continuously modify the model parameters, the partial shading conditions, or the array
dimensions, which are needed to perform energy production analysis or implement the
reconfiguration of controllers.

The objective of the mathematical model of an n × m SP array is to determine the
voltages of all of the modules, the string currents, and the array current (Iarr), which
correspond to the sum of all of the strings currents. To reach that objective, each string
can be analyzed independently for a given array voltage (Varr) that is defined by the PV
inverter. The explicit models proposed in [12,15,16] use the SDM to represent each module
and define a system of nonlinear equations Fe for each string, where the n + 1 unknowns
correspond to the voltages of the n modules and the blocking diode. In [12], the authors
introduce the Jacobian matrix (J) related to the system of nonlinear equations and use Fe
and J to calculate the unknowns by applying an iterative solution method in Matlab. Later,
the authors of [15] proposed a method to calculate the inverse of J symbolically, which
speeds up the solution of Fe using the Newton–Rapson method. Moreover, that paper also
proposes a procedure to determine the guess solution to facilitate the convergence of the
Newton–Rapson algorithm. Additionally, the authors of [17] evaluated both deterministic
and metaheuristic optimization algorithms to solve Fe, concluding that the deterministic
ones provided the best results for this problem.

In [16], the authors propose a different explicit approach to model each string of an
SP array. The unknown variable is the string current, and the voltage of each module is
expressed in terms of the module current by using the Lambert-W function, while the
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bypass diodes are modeled with the piecewise linear model. Moreover, that paper proposes
a method to calculate the inflection voltages in the current vs. voltage (I-V) curve to identify
when a module is active or inactive due to the action of the bypass diode, thus simplifying
the model of inactive modules to reduce the complexity of the nonlinear equation of
the string.

The other mathematical models of the n× m SP arrays consider the SDM without
series and parallel resistors (i.e., ideal SDM) to reduce the complexity of the system of
nonlinear equations, and, as consequence, the computational burden and calculation time
are reduced. An interesting model of this type is the one introduced in [18], where the
authors represent each bypass diode as an ideal diode, using the inflection voltages of the
I-V curve to reduce the complexity of the system of nonlinear equations that represent
each string.

The implicit mathematical model of an n×m SP array, introduced in [13], uses the
implicit equation that describes the I-V relationship in the SDM. Then, the model defines a
system of n + 2 nonlinear equations (Fi) and the same number of unknowns for each string,
which correspond to the string current and the voltages of the n modules and blocking
diode. This model avoids the evaluation of the Lambert-W function, which reduces
the computational burden of the iterative solution method of Fi and, as consequence,
reduces the calculation time required to solve Fi regarding the explicit models with SDM.
Furthermore, in [19] the authors evaluated deterministic and metaheuristic optimization
algorithms to solve Fi and found that deterministic options show better performance in
different cases.

Regarding the models of an n×m TCT array, the objective is to determine the currents
of all of the modules; the voltages of the rows; and the array current, which corresponds to
the sum of the modules’ current in one row. In the literature, there are some mathematical
models for n×m TCT arrays [20,21] and others for arrays with particular dimensions such as
2× 2 [22,23] or 4× 4 [24]. In addition, some of those models use the SDM [20,24], the SDM
without the parallel resistance [23], or the SDM without series and parallel resistors (i.e., ideal
SDM) [20,22]. Moreover, some models focus on particular shading patterns [22–24], while
others can be applied to any shading condition [20,21].

The models proposed in [20,21] define a system of nonlinear equations that represent
the TCT, and their main difference is that one model uses the ideal SDM [20], while the
other one uses the SDM. Additionally, in [20] the authors propose a method to calculate
the inflection points in the I-V curve when a row is active or inactive, which enables one
to neglect such a row in the analysis, thus simplifying the system of nonlinear equations.
Instead, in [21] the authors propose a procedure to explicitly determine the inverse of the
Jacobian matrix associated with the system of nonlinear equations that describe the array;
hence, the solution of the system of nonlinear equations can be sped-up with iterative
methods such as the Newton-Raphson.

In the models previously described, there are two strategies to reduce the calculation
time of the models that use the SDM to represent each module. The first one is the use of
the inflection voltages of the I-V curves to identify the active bypass diodes (i.e., inactive
modules in SP arrays and inactive rows in TCT arrays); then, the inactive modules or
rows can be represented with simplified models that reduce the complexity of the system
of nonlinear equations describing the arrays. The other strategy is to use the implicit
equation of the SDM to avoid the evaluation of the Lambert-W function, which reduces
the computational burden required to solve the system of nonlinear equations. However,
the models that use the inflection voltages use the Lambert-W function to represent each
module of the array, which increases the calculation time, while the models that use implicit
equations to avoid using Lambert-W function do not use the inflection voltages to simplify
the system of nonlinear and implicit equations that represent the array, which augments the
computational burden. Those increments in the calculation times restrict the application of
those models in applications where this indicator is critical, such as reconfiguration systems.
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The objective of this paper is to propose mathematical models for SP and TCT PV
arrays based on the implicit equations of the SDM and the inflection points of the current–
voltage curves. These models reduce the calculation time by reducing the complexity of the
nonlinear equation systems that represent each string of SP arrays and the whole TCT array.
Specifically, two approaches are used to reduce the complexity of the implicit models of SP
and TCT PV arrays; the first approach is the simplification of the system of nonlinear and
implicit equations, which is based on the fact that the modules or rows, for TCT, with active
bypass diodes can be represented by a current source in parallel with the bypass diode,
which can be represented by explicit equations. The second strategy is the definition of
restricted search spaces for the solution of the simplified system of nonlinear and implicit
equations. This is achieved by using the voltages and currents for each IP, which define a
specific search range for each unknown voltage or current, thus reducing the solution time
of the numerical method that solves the system of equations. Consequently, the calculation
process that solves the model significantly speeds up in comparison with processes that
solve traditional explicit models based on the Lambert-W function. For example, in several
simulation scenarios with multiple array sizes, the proposed SP model is faster than the
traditional solution, reducing the computation time by 82.97%. On the other hand, the pro-
posed TCT model provides a reduction time between 47.71% and 92.28% for arrays larger
than 2× 2. For dynamic reconfiguration purposes, where both SP and TCT arrays were
partially reconfigured to improve power production under two partial-shading conditions,
the results demonstrate that the proposed solution provides the same optimal configuration
but more than 7 times faster for SP reconfigurations, and between 4 and 6 times faster for
TCT reconfigurations.

The rest of the paper is organized as follows: Section 2 explains the structure of SP;
the TCT arrays; the SDM equations; and the parameters, as well as their dependence on
the irradiance and temperature. Then, Section 3 introduces the proposed procedure to
determine the inflection voltages and currents by using the implicit equations for both the
SP and TCT arrays. Later, Section 4 introduces the proposed implicit models of SP and TCT
arrays and describes the use of inflection voltages and currents to reduce the complexity
of the system of nonlinear equations that represents the arrays; also, the section presents
a comprehensive flowchart describing the complete model processing. Subsequently,
Section 5 demonstrates the validity and accuracy of the proposed models for arrays with
different dimensions through simulation and experimental results. This section includes
two practical applications for dynamic reconfiguration purposes, which illustrate the
practical advantage of the reduction in the calculation time obtained with the proposed
model. Finally, the conclusions close the paper.

2. SP and TCT Arrays

The general structure of n×m PV arrays in SP and TCT configurations is illustrated
in Figure 1. On the one hand, SP arrays are formed by m strings (or columns) connected
in parallel, where each string is formed by n PV modules (black rectangles) and one
blocking diode (Dblk) connected in series. On the other hand, TCT arrays are formed
by n rows connected in series, and each row has m PV modules connected in parallel.
In both configurations, n depends on the minimum and maximum input voltage of the
power converter, while m is defined according to the maximum power required by the
load and supported by the power converter. In a PV system, the power converter modifies
the array voltage (Varr), and, as consequence, the PV array delivers a particular current
(Iarr), which depends on the irradiance and temperature of the modules as well as the
modules’ parameters. Therefore, the main objective of a PV array model is to determine
Iarr for a given value of Varr. However, it is necessary to determine other arrays’ variables
(voltages and currents) before calculating Iarr; thus, the following subsections describe the
implicit model used to describe the electrical behavior of a PV module and a blocking diode
(Section 2.1), and the PV array’s parameters and variables (Section 2.2).



Energies 2023, 16, 4875 5 of 29

…

Dbl,k1

+

V1,1

-

+

Vn,1

-

Istr,1

…

…

Dbl,km

+

V1,m

-

+

Vn,m

-

Istr,m

M1,1

Mn,1

M1,m

Mn,m

Power

Converter
Load

+

Varr

-

Iarr

…

…

…

…

M2,2

Mn,2

M2,m

Mn,m

Power

Converter
Load

+

Varr

-

IarrM1,2 M1,m

…
+

V2

-

+

Vn

-

I1,1

M2,1

Mn,1

+

V1

- M1,1

I2,1

Im,1

I1,2

I2,2

Im,2

I1,m

I2,m

In,m

…

…

…

…

Figure 1. n×m PV arrays with SP (top) and TCT (bottom) configurations.

2.1. Models of PV Modules and Blocking Diodes

The single-diode model (see Figure 2) is one of the most widely used representations
to reproduce the electrical behavior of PV modules, which is considered as a set of Ns
series-connected cells with a bypass diode (BD) connected in antiparallel. The single-diode
model is formed by an independent current source (Iph) that describes the photovoltaic
effect, a diode (D) that describes the nonlinear behavior of the Ns PV cells, a resistor in
parallel (Rh) to include the leakage currents, and a resistor in series (Rs) to consider the
ohmic losses. Applying Kirchhoff’s current law (KCL), it is possible to obtain the implicit
expression of the module’s current (I) and voltage (V) shown in Equation (1) [13], where Is,
η, and Vt are the inverse saturation current, ideality factor, and thermal voltage of diode D,
respectively, while Ibd is the bypass diode’s current, which is defined in the explicit equation
Equation (2). In this last expression, Isbd, ηbd, and Vtbd represent the inverse saturation
current, ideality factor, and thermal voltage of the bypass diode BD, respectively. The
thermal voltages of D and BD are defined as Vt = k · T/q and Vtbd = k · Tbd/q, respectively,
where k is the Boltzmann constant, q is the electron charge, T is the cells’ temperature, and
Tbd is the BD temperature. In this paper, it is assumed that Tbd ≈ T [25] since both D and
BD are part of the same mechanical structure since in most of the PV modules, the bypass
diodes are installed in a junction box located at the back of the PV panel. In such a junction



Energies 2023, 16, 4875 6 of 29

box, the connections of the modules are inside the PV panel and the bypass diodes and the
two cables of the PV panel come out from this box.

BD

+

V

-

Iph Rh

I

+

V

-

I

D

Ibd
Rs

I

Ns series-connected cells External 

diode

Figure 2. Single-diode model of a PV module.

f (V, I) = −I + Iph − Is ·
(

exp
(

V + (I − Ibd) · Rs

Ns · η ·Vt

)
− 1
)
− V + (I − Ibd)

Rh
+ Ibd (1)

Ibd(V) = Isbd ·
(

exp
(
−V

ηbd ·Vtbd

)
− 1
)

(2)

In addition, in this paper it is considered that the SDM model parameters depend
on the irradiance (G) and temperature (T), as shown in Equations (3)–(8). The expres-
sions (3), (6), and (8) were taken from [26], while expressions (4) and (5) were obtained
from [27] and [28], respectively. In those expressions, the subindex stc is used to indicate the
parameter or variable under standard test conditions (STC), which are calculated from the
datasheet parameters or experimental measurements by following the procedure proposed
in [29]. Moreover, in Equations (4) and (7), the parameters αIsc and αVoc are the temperature
coefficients of the short-circuit current (Isc) and open-circuit voltage (Voc), respectively.
Finally, the bypass diode’s parameters Isbd and ηbd can be calculated from the datasheet
information, i.e., the reverse current and one operating point at a known temperature.

η(T) = ηstc · (T/Tstc) (3)

Is(T) =
Is,stc + αIsc · (T − Tstc)

exp
(

Voc,stc+αVoc ·(T−Tstc)
Ns ·η·Vt

)
− 1

(4)

Rs(T, G) = Rs,stc +
T

Tstc
·
(

1− 0.217 · ln
(

G
Gstc

))
(5)

Rh(G) = Rh,stc ·
G

Gstc
(6)

Isc =
G

Gstc
· (Isc,stc + αIsc · (T − Tstc)) (7)

Iph(T, G) = Isc + Is ·
(

exp
(

Isc · Rs

Ns · η ·Vt

)
− 1
)
+

Isc · Rs

Rh
(8)

In SP arrays, there are m blocking diodes (one per string), and they are also represented
with the exponential model, as introduced in Equation (9), where Istr and Vbk are the diode’s
current and voltage, respectively (as defined in Figure 1), and Isbk and ηbk correspond to the
inverse saturation current and ideality factor, respectively. Moreover, the thermal voltage is
defined as Vtbk = k · Tbk/q, with Tbk representing the blocking diode’s temperature.

Istr(Vbk) = Isbk ·
(

exp
(
−Vbk

ηbk ·Vtbk

)
− 1
)

(9)
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2.2. Array’s Parameters and Variables

For an n×m SP or TCT array, the SDM parameters of the PV modules can be defined
by adding the subindexes i and j to the parameters defined in Section 2.1, where subindex
i represents the row and subindex j represents the column; hence, i ∈ [1, . . . , n] and
j ∈ [1, . . . , m]. Keeping this in mind, the SDM parameters are: Isc,i,j, Iph,i,j, Is,i,j, ηi,j, Vt,i,j,
Rs,i,j, Rh,i,j, Isbd,i,j, ηbd,i,j, and Vtbd,i,j. Further, the blocking diodes’ parameters can be defined
using only subindex j since there is only one per string in the SP arrays (Isbk,j, ηbk,j, and
Vtbk,j). Therefore, subscripts i and j indicate that the SDM parameters of each PV module
and the parameters of each blocking diode can be different.

Moreover, the model also considers that each PV module can experience different
operating conditions (irradiance and temperature); therefore, subindexes i and j are also
used to define the irradiance and temperature of each module, i.e., Gi,j and Ti,j represent
the irradiance and temperature of a module in row i and column j of the array, respectively.

Additionally, the array’s variables are defined with one scalar for the array current
(Iarr) and a set of voltages and currents of the PV modules. For SP arrays, the string current
is defined as the current of the first module (I1,j ∀j ∈ [1, . . . , m]) and the modules’ voltages
are defined using subindexes i and j (Vi,j) as explained before. In TCT arrays, the row
voltages are defined as the voltage of the first module in the row (Vi,1 ∀i ∈ [1, . . . , n]) and
the module currents are defined using subindexes i and j (Ii,j).

2.3. Characteristic Curves of a PV System

The electrical behavior of PV systems is reported using the current vs. voltage (I-V)
and power vs. voltage (P-V) curves, which depend on both the irradiance and temperature.
The I-V curve of a PV system is obtained from experiments where the PV voltage is changed
from 0 V to Voc while the PV current is measured and registered. This same process (voltage
sweep) can be applied to the SDM model to obtain the predicted I-V curve of a module,
string, or array. The P-V curves are generated by multiplying the PV current and voltage,
and despite its simplicity, this curve is required to evaluate the produced power and the
optimal operating voltage and current of a PV system.

For example, Figure 3 shows an SP array formed by four ERDM-85 [30] PV modules,
where two modules are fully irradiated (M2, 1 and M1, 2), while the other two modules
have a different shaded area (M1, 1 and M2, 2). Those irradiance and shading conditions
produce short-circuit currents ISC2,1 = ISC1,2 = 5.15 A for M2, 1 and M1, 2; ISC1,1 = 4.5 A
(12.6% shading) and ISC2,2 = 1.0 A (80.6% shading). The figure shows the I-V curves of the
four modules, where the different electrical profiles are observed. However, in Section 2.1
it is described that the PV modules have bypass diodes, which are activated when the
current applied to the module is higher than the short-circuit current. The effect of the
bypass diode activation is observed in the I-V curves of the strings, which is also observed
in Figure 3: the activation of the bypass diodes avoids the operation of the modules with
negative voltages (consuming power), but this introduces a discontinuity in the I-V curve,
which is known as inflection points (IP); the figure shows the IP produced in both strings
due to activation of the bypass diodes associated with M1, 1 (String 1) and M2, 2 (String 2).

The I-V curve of the array is also presented in Figure 3, where the array current Iarr
is the sum of the string currents Istr,1 and Istr,2 produced by the same string voltage Varr,
which is the same array voltage. Such an I-V curve of the array shows two IPs, which are
produced by the IP of each string. In addition, the P-V curve of the array is also presented,
where the two IPs are also observed. Finally, the P-V curve shows the existence of two
maximum power points (MPP); the one with the highest power is commonly named the
global maximum power point (GMPP), and any other MPP is known as a local maximum
power point (LMPP). Therefore, the PV array (or string) must always be operated at the
GMPP to maximize the power production of the PV system, and the optimal array voltage
(and current) can be easily predicted by using the P-V curve of the array.
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Figure 3. I-V and P-V curve generation.

3. Calculation of Inflection Points (IPs) Using Implicit Equations

The inflection points (IPs) in the current vs. voltage (I-V) curve of an array, indepen-
dently of its configuration [31], are produced by the activation/deactivation of the bypass
diodes in the PV modules. In general, a bypass diode is active while the current flowing
through a given module (Ii,j) is higher than its short-circuit current (Isc,i,j), i.e., Ii,j > Isc,i,j;
otherwise, when Ii,j < Isc,i,j the bypass diode is inactive because it is reverse-biased.

The solution of the system of nonlinear equations that represents the array may be
complicated close to the IPs; this is due to the large variations in the current derivatives
with respect to the voltage. However, points can be used to reduce the complexity of the
system of nonlinear and implicit equations that describe the arrays and, as consequence, to
reduce the model solution time. Therefore, the following subsections describe the proposed
procedures to calculate the inflection voltages in implicit models of SP and TCT arrays.
Those points are used in Section 4 to reduce the complexity of the models and improve
their calculation speed.
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3.1. IPs Calculation in SP Arrays

In an SP array, each string can be analyzed independently due to its parallel connection
to the input of the power converter; hence, this section shows the calculation procedure of
the IPs in a single string (j-th string) and how to organize the information obtained. Then,
the same procedure can be repeated for each string to obtain the IPs of the entire array.

The first step to calculate the IPs of string j is to sort the modules in descending order
according to their short-circuit currents, i.e., Isc,k,j > Isc,k+1,j with k ∈ [1 . . . n]. Then, the
number of IPs in a string is n since there is one IP when the current of string j (I1,j) is equal
to the short-circuit current of a module, i.e., I1,j = Isc,k,j with k ∈ [1 . . . n].

To calculate the k-th IP, it is important to mention that the string current (I1,j = Isc,k,j)
and the k-th module voltage (Vk,j = 0 V) are known; hence, there are n unknowns that
correspond to the array voltage (Varr) and the voltages of the n− 1 PV modules (Vk,j with
k ∈ [1, . . . , k− 1, k + 1, . . . , n]). The voltage of the blocking diode (Vn+1,j) can be expressed
as a function of the string current as shown in Equation (10); therefore, it is not considered
an unknown.

Vn+1,j(I1,j) = −ηbk,j ·Vtbk,j · ln
(

I1,j

Isbk,j
+ 1

)
(10)

The system of nonlinear and implicit equations that describes the electrical behavior of
string j at k-th IP is introduced in Equation (11), where the first n− 1 equations correspond
to the implicit equations of the PV modules in the string (except module k), while the last
equation is obtained by applying the Kirchhoff voltage law (KVL) to the string considering
the definition of Vn+1,j given in Equation (10). In expression (11), Vm,k,j is an (n− 1)× 1
vector with the modules voltages (except Vk,j), and Va,k,j is the array voltage for the k-th IP.

FSP1(Vm,k,j, Va,k,j) =



f (V1,j, I1,j) = 0
...

f (Vk−1,j, I1,j) = 0
...

f (Vk+1,j, I1,j) = 0
...

f (Vn,j, I1,j) = 0
Σk−1

i=1 Vi,j + Σn
i=k+1Vi,j + Vn+1,j(I1,j)−Va,k,j = 0


(11)

The previous system of nonlinear equations can be solved as an optimization problem
or with the solvers provided by different software (e.g., fsolve in Matlab) to obtain the n
modules voltages for k-th IP of the string j, which are organized in an n× 1 vector named
VmIP,k,j as shown in Equation (12).

VmIP,k,j =
[
Vm,k,j(1), . . . , Vm,k,j(k− 1), 0, Vm,k,j(k + 1), . . . , Vm,k,j(n− 1)

]T
(12)

Then, solving expression (11) for the n modules of the string j enables one to construct
an n× 1 vector (VaIP,j) with the array voltages as shown in Equation (13). Such a VaIP,j
vector is used in Section 4.1 for the proposed modeling procedure of SP arrays.

VaIP,j =
[
Va,1,j, . . . , Va,n,j

]T (13)

Figure 4 illustrates the generation of VmIP,k,j and VaIP,j for an SP array with one string
(j = 1) and three modules (n = 3), where Isc,1,1 ≥ Isc,2,1 ≥ Isc,3,1. Considering the string
current is equal to the short-circuit current of the first module (I1,1 = Isc,1,1), Vm,1,1 and Va,1,1
are obtained by solving expression (11). Then, VmIP,1,1 is generated from Vm,1,1, and Va,1,1 is
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the first element of VaIP,1. Finally, VmIP,2, VmIP,2, and VaIP,1 can be completed by repeating
this process for I1,1 = Isc,2,1 and I1,1 = Isc,3,1. In this example, if Tbk ≈ T = 45 ◦C = 318.15 K,
the model parameters are Iph = 5.1544 A, η = 1.1324, Is = 0.7497 ηA, Rs = 0.1989 Ω,
Rh = 261.0999 Ω, Is,bd = Is,bk = 1 µA, and ηbd = ηbk = 0.2694, and the short-circuit currents
are Isc,1,1 = 5.15 A, Isc,2,1 = 3.60 A, and Isc,3,1 = 2.06 A; then, Vm1,1 = [−0.098 − 0.1034] V,
VmIP1,1 = [0 − 0.098 − 0.1034] V, and Va1,1 = −0.309 V.

+

V1,1

-

+

V3,1

-

I1,1

M1,1

+

V2,1

-

Isc1,1

Isc2,1

Isc3,1

+

Va1,1

-

Considering j = 1 and k = 1:

I1,1 = Isc1,1

Solving F(Vm1,1 , Va1,1) = 0

VmIP1,1 = [0 Vm1,1(1) Vm1,1(2)]
T

VaIP,1 = 

Va1,1

Va2,1

Va3,1

Figure 4. Example of generation of VmIP,j and VaIP,j for a 3× 1 SP array.

3.2. IPs Calculation in TCT Arrays

An n×m TCT array can be analyzed as n rows connected in series, where each row is
formed by m PV modules connected in parallel. Keeping this in mind, the calculation of IPs
for TCT arrays is similar to the one of a string in an SP array, i.e., the k-th IP is generated
when the array current (Iarr) is equal to the sum of the short-circuit currents of the row k
(Irsc,k). Therefore, in a TCT array, there will be n IPs, and this section shows the procedure
to calculate them.

The first step is to sort the rows in descending order according to the sum of the
short-circuit currents of each row Irsc,k, which is defined in Equation (14). Hence, after this
step, the condition Irsc,k > Irsc,k+1 with k ∈ [1, . . . , n] is fulfilled.

Irsc,k =
m

∑
j=1

Isc,k,j ∀ k ∈ [1, . . . , n] (14)

For the calculation of the k-th IP, the array current and the k-th row voltage are defined
as Iarr = Irsc,k and Vk,1 = 0 V, respectively. Therefore, there are (n− 1) ·m + n unknowns
to solve, which correspond to the array voltage (Va,k), n− 1 rows voltages (Vr,k) excluding
Vk,1, and (n− 1) ·m module currents excluding the ones of row k (Im,k).

The system of nonlinear and implicit equations that describe the electrical behavior
of a TCT array is introduced in expression (15), where the first (n − 1) · m expressions
correspond to the implicit equations of the modules in all of the rows, except row k;
the next n− 1 equations are obtained by applying the KCL to the n− 1 nodes between two
consecutive rows; and the last equation results from the application of KVL with the array
voltage and rows voltages, excluding row k. In the KCL equations of expression (15), it



Energies 2023, 16, 4875 11 of 29

is important to remark that the sum of the currents in row k corresponds to Irsc,k; hence,

∑
j=1
m Ik,j = Irsc,k.

FTCT1(Vr,k, Va,k, Im,k) =



f (V1,1, I1,1) = 0
...

f (Vk−1,1, Ik−1,m) = 0
...

f (Vk+1,1, I1,1) = 0
...

f (Vn,1, In,m) = 0


(n− 1) ·m implicit equations

Σm
j=1 I1,j − Σm

j=1 I2,j = 0
...

Σm
j=1 In−1,j − Σm

j=1 In,j = 0

 (n− 1) KCL

Σk−1
i=1 Vi,1 + Σn

i=k+1Vi,1 −Va,k = 0
}

1 KVL



(15)

The solution of FTCT1(Vr,k, Va,k, Im,k) can be obtained by using optimization algorithms
or the nonlinear-equations solvers provided in different software, where the results are as
follows: the array voltage (Va,k), an (n− 1)× 1 vector with the rows’ voltages (Vr,k), and
an (n− 1) ·m× 1 vector with the modules’ currents (Im,k). In this last vector, the currents
are organized as shown in Equation (16), i.e., the module currents in column 1 followed
by the ones in column 2, and so on, to complete the module currents of the m columns.
Those results correspond to the k-th IP, or the IP produced by the k-th row, which must be
organized to be used in the model solution as explained in Section 4.2.

Im,k = [Ii,1, Ii,2, . . . , Ii,m]
T ∀ i ∈ [1, . . . k− 1, k + 1, . . . , n] (16)

The array voltages for the n IPs are organized into an n× 1 vector named VaIP, which
is defined in Equation (17). Additionally, the rows’ voltages are organized in an n × 1
vector named VmIP,k, as shown in Equation (18), to include the k-th row voltage (0 V).

VaIP = [Va,1, . . . , Va,n]
T (17)

VmIP,k = [Vr,k(1), . . . , Vr,k(k− 1), 0, Vr,k(k + 1), . . . , Vr,k(n− 1)]T (18)

Moreover, the modules’ currents are organized into an n× m matrix (MimIP,k) that
includes the currents of all of the modules, as shown in Equation (19). In such a matrix,
the currents of the modules in row k are defined by their short-circuit currents, while the
currents of the other rows correspond to the elements of the vector Im,k. It is worth noting
that MimIP,k corresponds to the k-th IP; therefore, there is one matrix for each IP.

MimIP,k = ImIP(i, j), where,

ImIP(k, j) = Isc,k,j ∀ j ∈ [1, . . . , m] and,

ImIP(i, j) = Im,k(i + (j− 1) · (n− 1))

∀ i ∈ [1, . . . k− 1, k + 1, . . . , n] ∧ j ∈ [1, . . . , m] (19)

Figure 5 illustrates the generation of VmIP,k and MimIP,k for a TCT array with two
columns (m = 2) and three rows (n = 3), where Irsc,1 ≥ Irsc,2 ≥ Irsc,3. Considering Iarr =
Irsc,1 (i.e., k = 1), then the array voltage (Va,1), the rows voltages (Vr,1 = [V1,1, V2,1, V3,1]

T),
and the currents in the second and third rows (Im,1 = [I2,1, I2,2, I3,1, I3,2]

T) are obtained by
solving expression (15). Va,1 is the first element of VaIP, while VmIP,1 is generated from Vr,1,
and MimIP,1 is constructed from the short-circuit currents of the modules in row 1 and the
elements of Im,1. In this example, the model parameters are the same ones used in Section 3.1
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and the short-circuit currents are Isc,1,1 = 5.1544 A, Isc,2,1 = 3.6081 A, Isc,3,1 = 2.0618 A,
Isc,1,2 = 4.12 A, Isc,2,2 = 2.57 A, and Isc,3,2 = 1.03 A; then, Vr,1 = [−0.0987 − 0.1034] V,
VmIP,1 = [0 − 0.0987 − 0.1034] V, Im,1 = [5.1541 5.1541 4.1239 4.1239] A, Va,1 = −0.2021 V,
and MimIP,1, as shown in Equation (20).

MimIP,1 =

5.1544 4.1236
5.1541 4.1239
5.1541 4.1239

 (20)

+

V1,1

-

+

V3,1

-

Iarr

+

V2,1

-

I1,1

+

Va,k

-

Considering k = 1:

Iarr = Isc,1

Solving F(Va,1 , Vr,1 , Im,1) = 0

VmIP,1 = [0 Vr,1(1) Vr,1(2)]
T

VaIP = 

Va,1

Va,2

Va,3

I1,2

I2,1 I2,2

I3,1 I3,2

MimIP,1 = 

Isc1,1 Isc1,2

 Im,1(1) Im,1(3)

 Im,1(2) Im,1(4)

Figure 5. Example of generation of VmIP,k, MimIP,k, and VaIP for a 3× 2 TCT array.

4. Models of SP and TCT Arrays Using IPs

The IPs calculated in Section 3 are used to improve the calculation speed of the
implicit models of the SP and TCT arrays by means of two strategies. The first one is the
simplification of the system of nonlinear and implicit equations that represent each string
in the SP arrays, and the complete array in TCT configurations. Such a simplification is
based on the fact that the modules or rows (for TCT) with active bypass diodes can be
represented by a current source in parallel with the bypass diode, which can be represented
by explicit equations.

The second strategy to improve the models’ calculation speed is the definition of
restricted search spaces for the solution of the simplified system of nonlinear and implicit
equations. This is achieved by using the voltages and currents for each IP calculated in
Section 3, which define a specific search range for each unknown voltage or current, thus
reducing the solution time of the numerical method that solves the system of equations.
The following subsections describe the procedures to model SP and TCT arrays by using
IPs to reduce the calculation times.

4.1. Model of SP Arrays Using IPs

As descibed before, an SP array can be analyzed string by string; therefore, this
section provides the procedure to model the j-th string by using the IPs calculated in
Section 3.1. In this section, the objective is to calculate the string current (I1,j) and the
modules voltages (V1,j, . . . , Vn,j) for a given array voltage (Varr); hence, at this point, there
are n + 1 unknowns since the blocking diode voltage can be expressed as a function of I1,j,
as shown Equation (10).

The procedure begins by considering that the modules in the string are organized in de-
scending order according to their short-circuit currents (Isc,k,j > Isc,k+1,j with k ∈ [1 . . . n]).
Then, it is necessary to identify the location of Varr regarding the array voltage IPs in vector
VaIP,j, i.e., the value of x such that VaIP,j(x) > Varr > VaIP,j(x + 1); this means that PV
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modules 1 to x are active (or with the bypass diode inactive), and the rest, from x + 1 to n,
are inactive (or with the bypass diode active). Therefore, the number of active modules is
defined as Nam = x.

The Nam active modules can be modeled with Equation (1), while the inactive modules
can be approximated by a current source with the short-circuit current in parallel with the
bypass diode, as shown in Figure 6. Hence, the voltage of the inactive modules can be
expressed in terms of the string current as introduced in Equation (21).

Vna,k,j(I1,j) = −ηbd,k,j ·Vtbd,k,j · ln
(

I1,j − Isc,k,j

Isbd,k,j
+ 1

)
∀ k ∈ [Nam + 1, . . . , n] (21)

+

V1,j

-

I1,j

M1

+

VNam,j

-

+

Varr

-

…

IscNam+1,j

+

VNam+1,j

-

IbdNam+1,j

…

Iscn,j

+

Vn,j

-

Ibdn,j

MNam

+

Vn+1,j

-

Figure 6. Simplified representation of a string with Nam active modules and n− Nam inactive modules.

The system of implicit and nonlinear equations that describes the j-th string for a given
value of Varr, considering the models of both the active and inactive modules, is presented
in expression (22). In this expression, there are Nam + 1 unknowns that correspond to the
string current (I1,j) and the voltages of the active modules, which are organized into a
vector Vstr,j = [V1,j, . . . , VNam ,j]

T . The voltages of the inactive modules and the blocking
diode are included in the last equation of FSP2, which are explicit functions of I1,j as shown
in Equations (21) and (10), respectively. Therefore, FSP2 has Nam + 1 equations instead of n,
where the first Nam corresponds to the implicit current–voltage relationship of each active
module, and the last equation results from applying KVL to the string.

FSP2(Vstr,j, I1,j) =


f (V1,j, I1,j) = 0

...
f (VNam ,j, I1,j) = 0

ΣNam
i=1 Vi,j + Σn

i=Nam+1Vna,i,j(I1,j) + Vn+1,j(I1,j)−Varr = 0

 (22)

The identification of x, such that VaIP,j(x) > Varr > VaIP,j(x + 1), is also used to define
the upper and lower bounds for the solution of FSP2. On the one hand, the solution of
I1,j is restricted between the short-circuit current of IPs x and x + 1 (i.e., Isc,x,j > I1,j >
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Isc,x+1,j) since the string current is monotonically decreasing in the I-V curve of a string (i.e.,
dI1,j/dVarr < 0 A/V). On the other hand, the Nam unknown voltages can be restricted by
using the first Nam elements of the vectors VmIP,x,j and VmIP,x+1,j. Hence, the search range
for Vstr,j and I1,j for a given value of Varr is shown in Equation (23). However, when Varr
is higher than the maximum array IP voltage (Varr > VaIP,j(n)), it is not possible to find
a value of x such that VaIP,j(x + 1) > Varr > VaIP,j(x). In those cases, the limits must be
defined as shown in Equation (24), where the maximum voltage of the modules is given by
their open-circuit voltage in STC and the minimum string current is 0 A.

VmIP,x+1,j(1) > V1,j > VmIP,x,j(1)
...

VmIP,x+1,j(Nam) > VNam ,j > VmIP,x,j(Nam)
Isc,x,j > I1,j > Isc,x+1,j

if x < n (23)


Voc,stc > V1,j > VmIP,n,j(1)

...
Voc,stc > VNam ,j > VmIP,n,j(Nam)

Isc,n,j > I1,j > 0

if Varr > VaIP,j(n) (24)

Once FSP2(Vstr,j, I1,j) is solved, the voltages of the inactive modules can be calculated
from the string current by using Equation (21). At this point, all of the voltages and currents
of the string are known. In conclusion, by applying the proposed procedure it is possible to
simplify the model of each string since the system of nonlinear and implicit equations has
Nam + 1 equations and unknowns instead of n; moreover, the search range for the solution
of FSP2(Vstr,j, I1,j) is defined from the IPs. Those two improvements reduce the calculation
time of Vstr,j and I1,j for a given Varr, as will be quantified in Section 5.

Figure 7 shows an example of an I-V curve for the array introduced in Figure 4, which
shows the location of an arbitrary value of Varr regarding the array IPs voltages. In this case,
x = Nam = 2; therefore, FSP2 and the solution search range are defined in Equations (25)
and (26), respectively. In expression (25), the voltages of the inactive module (V3,1) and the
blocking diode (V4,1) are explicit functions of I1,1 according to Equations (21) and (10), re-
spectively.

V

I

ISC1,1

ISC2,1

ISC3,1

VaIPm,1(2) VaIPm,1(3)Varr

X = Nam = 2

Figure 7. Example of definition of x and Nam for an arbitrary value of Varr for a string with three
modules and one blocking diode.
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FSP2(Vstr,1, I1,1) =

 f (V1,1, I1,1) = 0
f (V2,1, I1,1) = 0

V1,1 + V2,1 + V3,1(I1,1) + V4,1(I1,1)−Varr = 0

 (25)

VmIP,3,1(1) > V1,1 > VmIP,2,1(1)
VmIP,3,1(2) > V2,1 > VmIP,2,1(2)

Isc,2,1 > I1,1 > Isc,3,1

 (26)

4.2. Model of TCT Arrays Using IPs

Considering an n× m TCT array as n rows connected in series, where each row is
formed by m modules connected in parallel, the objective of this section is to propose a
procedure to calculate n ·m + n unknowns, which correspond to the voltages of the n rows
(V1,1, . . . , Vn,1) and the currents of the n ·m modules, for a given value of Varr. Then, the
array current can be calculated as the sum of the currents of any row.

The first step is to sort the arrays in descending order according to the sum of the
short-circuit currents in each row, i.e., Irsc,k > Irsc,k+1 with k ∈ [1, . . . , n], where Irsc,k is
defined in Equation (14). The second step is to determine the location of Varr regarding
the array IPs voltages in VaIP, which is defined in Equation (17), i.e., to determine x such
that VaIP(x) > Varr > VaIP(x + 1). This means that rows from 1 to x are active (no bypass
diodes are active) and rows from x + 1 to n are inactive (at least one bypass diode active in
the row). Hence, the number of active rows is defined as Nar = x.

The modules in the active rows can be modeled with Equation (1), while the inactive
rows can be modeled by an equivalent current source in parallel with an equivalent bypass
diode, as illustrated in Figure 8. Therefore, the current of an inactive row (Iir,k ∀ k ∈ [Nar +
1, . . . , n]) is defined in Equation (27), where Irsc,k is calculated as given in Equation (14), and
the right term is the sum of the bypass diodes currents in row k. It is important to remark
that Irbd,k is an explicit function of the row voltage Vk,1; therefore, the module currents in
inactive rows are not unknown variables to solve.

Iir,k(Vk,1) = Irsc,k +
m

∑
j=1

Isbd,k,j ·
(

exp

(
−Vk,1

ηbd,k,j ·Vtbd,k,j
+ 1

))
∀ k ∈ [Nar + 1, . . . , n] (27)

Iarr

Nar,2
+

Varr

-

IrscNar+1

+

VNar+1,1

-

IbdNar+1

…

Irscn

+

Vn

-

Ibdn

+

VNar,1

-
Nar,mNar,1

…

…

M1,2

…

+

Vrow,1

-
M1,mM1,1

…

…

……

I1,1 I1,1 I1,m

Figure 8. Simplified representation of a TCT array Nam active rows and n− Nam inactive rows.
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The system of nonlinear and implicit equations models the simplified TCT array
presented in Figure 8, where Vra is a vector of the rows voltages (Vra = [V1,1, . . . , Vn,1]

T)
and Ima is an (Nar ·m)× 1 vector with the module currents in the active rows (Iam(i + (j−
1) · n) = Ii,j ∀ i ∈ [1, . . . , Nar] ∧ j ∈ [1, . . . , m]). Hence, FTCT2 has Nar ·m + n unknowns
and the same number of equations, where the first Nar · m equations correspond to the
implicit current–voltage relationship of the modules in the active rows, while the next n− 1
equations are obtained by applying KCL in the n− 1 nodes between the strings. However,
in the application of KCL, it is important to consider that the sum of the modules’ currents
in the inactive rows (from row Nar + 1 to row n) must be calculated by using the simplified
model as shown in Equation (27), i.e., ∑m

j=1 Ik,j = Iir,k ∀ k ∈ [Nar + 1, . . . , n]. Finally, the last
equation of FTCT2 results from applying KVL in the array.

FTCT2(Vra, Ima) =



f (V1,1, I1,1) = 0
...

f (VNar ,1, INar ,m) = 0

 Nar ·m implicit equations

Σm
j=1 I1,j − Σm

j=1 I2,j = 0
...

Σm
j=1 In−1,j − Σm

j=1 In,j = 0

 (n− 1) KCL

Σn
i=1Vi,1 −Varr = 0

}
1 KVL


(28)

The identification of x, such that VaIP(x) > Varr > VaIP(x + 1), is also used to restrict
the search range to solve FTCT2 by applying a procedure similar to the one introduced in
Section 4.1. The upper and lower limits of the row voltages can be defined by using the
vectors VmIP,x+1 and VmIP,x, respectively, while the upper and lower limits of the module
currents can be defined with the first Nar rows of the matrices MimIP,x and MimIP,x+1,
respectively. In summary, the limits for the solution of FTCT2 are presented in expres-
sion (29). If Varr > VaIP(n), then the limits must be defined as shown in expression (30),
where the upper limits of the row voltages are the open-circuit voltage in STC, and the
lower limit of the module currents corresponds to the negative short-circuit current in STC.
A module presents a negative current when the row voltage is greater than the module’s
open-circuit voltage. This condition may occur for high array voltages (i.e., Varr > VaIP(n))
when the module is shaded and the other modules in the row are not, when the module
temperature is greater than the other modules in the row, if the module is of a different
model than the others in the row, or if there are other conditions that reduce the module
open-circuit voltage.

VmIP,x+1(1) > V1,1 > VmIP,x(1)
...

VmIP,x+1(n) > Vn,1 > VmIP,x(n)
MimIP,x(1, 1) > I1,1 > MimIP,x+1(1, 1)

...
MimIP,x(Nar, m) > INar ,m > MimIP,x+1(Nar, m)


if x < n (29)



Voc,stc > V1,1 > VmIP,n(1)
...

Voc,stc > Vn,1 > VmIP,n(n)
MimIP,n(1, 1) > I1,1 > −Isc,stc

...
MimIP,n(Nar, m) > INar ,m > −Isc,stc


if Varr > VaIP(n) (30)

Once FTCT2 is solved, the currents of the modules in the inactive rows can be calculated
by using Equation (31), while the array current can be calculated as the sum of the modules’
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currents in the first row by using Equation (32). At this point, all of the voltages and
currents of the array are known.

Ik,j = Isc,k,j + Isbd,k,j ·
(

exp

(
−Vk,1

ηbd,k,j ·Vtbd,k,j
+ 1

))
∀ k ∈ [Nam + 1, . . . , n] ∧ j ∈ [1, . . . , m] (31)

Iarr =
m

∑
j=1

I1,j (32)

Finally, by applying the proposed procedure, the system of nonlinear and implicit
equations that describes a TCT array is simplified since FTCT2 has Nar ·m + n equations and
unknowns instead of n ·m + m; in addition, the search range for the solution of FTCT2 can
be defined from the information of the IPs. Those two improvements reduce the calculation
time of Vra and Ima for a given Varr, as will be quantified in Section 5.

Figure 9 shows an example of an I-V curve for the array introduced in Figure 5 and
the location of an arbitrary value of Varr regarding the array IPs voltages. In this case,
x = Nar = 1; hence, FTCT2 and the solution search range are defined in expressions (33)
and (34), respectively. In expression Equation (33) the currents of the inactive rows Iir,2 and
Iir,3 are explicit functions of V2,1 and V3,1, respectively, as shown in Equation (27).

V

I

ISC1,1

ISC2,1

ISC3,1

VaIP(2) VaIP(3)Varr

X = Nar = 1

VaIP(1)

Figure 9. Example of definition of x and Nar for an arbitrary value of Varr for an 3× 2 TCT array.

FTCT2(Vstr,1, I1,1) =


f (V1,1, I1,1) = 0
f (V1,1, I1,2) = 0

(I1,1 + I1,2)− Iir,2(V2,1) = 0
Iir,2(V2,1)− Iir,3(V3,1) = 0

V1,1 + V2,1 + V3,1 −Varr = 0

 (33)


VmIP,2(1) > V1,1 > VmIP,1(1)
VmIP,2(2) > V2,1 > VmIP,1(2)
VmIP,2(3) > V3,1 > VmIP,1(3)

MimIP,1(1, 1) > I1,1 > MimIP,2(1, 1)
MimIP,1(1, 2) > I1,2 > MimIP,2(1, 2)

 (34)

4.3. Summary of the Model Processing

To provide an easy-to-follow description of the model processing, Figure 10 presents
a flowchart of the complete array current calculation (Iarr) for any voltage applied to the
array terminals (Varr). This flowchart can be followed to code the mathematical model in
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any programming language, for example, the simulation and experimental results of the
following section were obtained by coding the model in Matlab.

Input data

Calculate modules’ parameters using (3)-(8):

ni,j, Is,i,j, RS,i,j, Rh,i,j, Isc,i,j,Iph,i,j

Set j = 1, i = 1, k = 1

SP or TCT?

For string j do:

Sort modules in 

descending order of Isc,i,j

Solve (11) to find Vm,k,j 

and Va,k,j

Generate VmIP,k,j 

according to (12)

Save Va,k,j in VaIP,i 

according to (13)

k = k+1

k > n?

j = j+1

j > m?

Yes

No

No

set j = 1

For string j do:

Identify x such that:

VaIP,j(x) > Varr > VaIP,j(x+1)

Nam = x

Active modules: 1 to Nam

Inactive modules: Nam+1 to n

Set the limits of the solutions 

using (22) and (23)

Solve (21) to find Nam+1 

unknowns of string j for Varr

Calculate voltages of inactive 

modules using (20)

j = j+1

j > m?

Calculate array current:

Iarr = Σ(I1,j)
j=1

m

Solve other 

Varr?

Varr

Yes

Yes

No

No

Yes

Calculate Irsc for all rows 

using (14)

Sort the rows in descending 

order according to Irsc,k

Solve (15) to find Vr,k, Va,k 

and Im,k 

Save Va,k in VaIP according to 

(17)

Generate VmIP,k according to 

(18)

Generate MimIP,k according to 

(19)

k = k+1

k > n?

Identify x such that:

VaIP,j(x) > Varr > VaIP,j(x+1)

Nar = x

Active rows: 1 to Nar

Inactive rows: Nar+1 to n

Set the limits of the solutions 

using (28) and (29)

Solve (27) to find Nar·m+n 

unknowns for Varr

Calculate currents of inactive 

rows using (30)

Calculate array current:

Iarr = Σ(I1,j)
j=1

m

Solve other 

Varr?

No

Yes

No

Yes

End

Modules’ parameters:

Gij, Tij, !Voc, !Isc,

Isc,stc, Iph,stc, Is,stc, Rs,stc, Rh,stc

Bypass diodes’ parameters:

Tbdij, Isbdij, nbdij, Vtbdij

Blocking diodes’ parameters:

Tbkj, Isbkj, nbkj, Vtbkj

Array size: n, m

SP Arrays TCT Arrays

Figure 10. Flowchart of the model processing.

5. Results

This section presents the results of the simulations and experiments performed to
validate the proposed models. For simulation and experimental results, the PV mod-
ule considered is the ERDM-85 [30], which has the following electrical characteristics:
Voc,stc = 21.78 V, VMPP,stc = 17.95 V, Isc,stc = 5.13 A, IMPP,stc = 4.8 A, αIsc = 0.020%/K,
and αVoc = −0.34%/K, where the subindex MPP indicates the maximum power point.
Moreover, the results consider the systems of nonlinear equations proposed in [15] and [20]
for SP and TCT arrays, respectively, as comparison solutions. Those papers propose mathe-
matical models of the arrays based on the explicit function of the module current in terms
of the voltage, which require the evaluation of the Lambert-W function, and any search
range for the solution of the system of nonlinear equations is reported. Those models are
referenced from here on as “Explicit”.
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Section 5.1 reports the simulation results for a residential PV array considering the voltage
and current restrictions of commercial inverters, considering both uniform and non-uniform
operating conditions. Those results were obtained by implementing the proposed and explicit
models in Matlab and comparing the results with the circuital implementation of the arrays in
Matlab/Simulink. Such an equivalent circuit is obtained by implementing the SDM circuit of
each module of the array; then, the I-V and P-V curves are obtained by performing a voltage
sweep from Varr = 0 V to Varr = Voc V with fixed voltage steps (see Figure 11).
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Figure 11. Example of 15× 4 SP array implemented in Simulink to generate I-V and P-V curves.
It shows a zoom for single-diode model, blocking diode, and voltage source used to perform the
voltage sweep.

In addition, Section 5.2 shows the advantages of the proposed model for square
PV arrays from 2× 2 to 20× 20, and Section 5.3 shows an application example where
both the proposed and explicit models are used for the reconfiguration of SP and TCT
arrays. Finally, Section 5.4 reports the experimental validation of the modes using I-V
curves generated from experimental measurements of the modules’ I-V curves at different
operating conditions.
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5.1. Example of PV Arrays for Residential Applications

For a residential PV array, the inverter SMA Sunny Boy 3.0 of 5.5 kWp is considered.
This inverter can track the MPP between 110 V and 500 V; therefore, it is defined n = 15 for
SP and TCT arrays to obtain a nominal MPP voltage of 270 V, approximately. Furthermore,
this inverter would handle four strings in parallel (m = 4) considering its maximum power,
the string voltage, and the IMPP,stc of the ERDM 85 modules.

Applying the procedure proposed in [29], the following SDM parameters in STC are obtained:
Iph,stc = 5.13 A, ηstc = 1.0612, Is,stc = 1.1841 ηA, Rs,stc = 0.1864 Ω, and Rh,stc = 261.0999 Ω.
Then, the SDM parameters for G = 1.0 kW/m2 and T = 45 ◦C = 318.15 K are calculated by
using Equations (3)–(8): Iph = 5.1544 A, η = 1.1324, Is = 0.7497 ηA, Rs = 0.1989 Ω, and
Rh = 261.0999 Ω. Moreover, the bypass and blocking diodes are assumed to be equal,
for the sake of simplicity, and with the following parameters: Is,bd = Is,bk = 1 µA and
ηbd = ηbk = 0.2694; however, it is important to mention that these parameters can be
different, as explained in Section 2.1. Additionally, it is considered that the blocking diode
is installed inside the junction box of a PV panel; hence, Tbk ≈ T = 45 ◦C = 318.15 K.

The 15× 4 array is simulated considering SP and TCT configurations to generate the
characteristic curves under both uniform conditions and non-uniform conditions with
voltage steps of 1 V. Under uniform conditions, the characteristic curves are the same for
both SP and TCT configurations (Figure 12) since the array behaves as a single module
scaled in voltage by a factor n = 15 and scaled in current by a factor m = 4. These operating
conditions are difficult to obtain in real applications due to the shades generated by the
surrounding objects, differences in the aging, and degradations of the modules that form a
PV array. Therefore, the results shown from here on consider that the arrays operate under
non-uniform conditions.

Figure 13 shows a shading pattern applied to the PV array, and Figure 14 reports the
I-V and P-V curves for both the SP and TCT configurations. It is observed that the TCT
array produces 19.66% more power for this particular shading pattern. TCT configura-
tion mitigates the power reduction produced by non-uniform conditions in this example.
However, TCT is not the best configuration for any non-uniform condition since the best
configuration depends on the particular shading pattern as shown in [9,22].
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Figure 12. I-V and P-V curves for SP and TCT arrays operating under uniform conditions.

Figures 12 and 14 also show that all of the proposed and explicit models provide the
same characteristic curves for both the SP and TCT configurations. Then, they are evaluated
five times to determine the average calculation time of each solution, its standard deviation,
and the normalized sum of squared errors (NSSE), and they are also calculated for the
SP and TCT array operating under non-uniform conditions. The results of such a test are
summarized in Table 1 for both the SP and TCT arrays.
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Figure 13. Shading pattern for SP and TCT arrays operating under non-uniform conditions.
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Figure 14. I-V and P-V curves for SP and TCT arrays operating under non-uniform conditions.

The proposed and comparison (explicit) models are solved by using the “fmincon”
function of Matlab, which allows for the definition of upper and lower bounds for the solu-
tion of a nonlinear system of equations by applying the procedure proposed in Section 4.
Table 1 shows that the calculation time of the proposed model is lower than the other solu-
tions. Regarding the proposed model, the simulation time of the circuital implementation
(Simulink) is 3.0 and 1.6 times longer for SP and TCT configurations, respectively, while the
calculation times of the explicit model are 9.5 and 12.7 times longer for the explicit model in
SP and TCT configurations, respectively. Hence, the results reported in this section confirm
that the proposed model, based on the implicit equations and the definition of the solution
bounds for the system of nonlinear equations, significantly reduce the calculation times.

Table 1. Calculation time of 15× 4 SP and TCT arrays operating under non-uniform conditions.

SP TCT
Model Average (s) Std (s) NSSE (%) Average (s) Std (s) NSSE (%)

Simulink 58.124 0.278 N.A. 54.634 0.514 N.A.
Proposed 19.290 0.126 0.96 × 10−5 33.877 0.315 1.01 × 10−5

Explicit 183.696 1.342 0.95 × 10−5 431.639 3.655 0.93 × 10−5

5.2. Time Reduction and Current Errors for Different Array Sizes

This section compares the calculation time and current error of the proposed model
for square SP and TCT arrays with sizes from 2× 2 (4 modules) to 20× 20 (400 modules).
In this case, the simulations generate the characteristic curves of the arrays with voltage
steps of 1.977 V, and each curve is calculated five times to determine the average calculation
time. The average solution time and the standard deviation are illustrated in Figure 15,
where the increment of the calculation time for SP and TCT arrays regarding the dimension
of the square array can be observed. The time reduction in the proposed model is 82.97%
on average for SP arrays. For TCT arrays, the time reduction varies between 46.71% and
92.28% for arrays from 3× 3 onwards; the explicit TCT model is faster only for the smallest
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array (2× 2). Therefore, the speed improvement provided by the proposed solutions for
any SP array is confirmed, and for any TCT array larger than 2× 2.

Additionally, the equivalent circuits of the arrays were implemented in Simulink to
calculate the errors in the array’s current calculation. Such errors are introduced in Figure 16
for SP and TCT arrays and are almost the same for explicit and proposed models. On the
one hand, in SP arrays the largest errors are for 3× 3 and 2× 2, respectively, while for the
other arrays, the current error presents a growth tendency with the array size. On the other
hand, in TCT arrays the largest errors are for 4× 4 to 10× 10 arrays with the maximum
error in 9× 9 array. Moreover, for these arrays, the errors for arrays from 12× 12 to 20× 20
do not change considerably.
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Figure 15. Calculation time of square SP (left) and TCT (right) arrays from 2× 2 to 20× 20.
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Figure 16. Array current NSSE for square SP (left) and TCT (right) arrays from 2× 2 to 20× 20.

5.3. Application Example: A Model-Based Reconfiguration of TCT and SP Arrays

Partial shading conditions change throughout the day; thus, the optimal configura-
tion that produces the highest power also changes continuously. Therefore, a dynamic
reconfiguration of the PV array (or part of the array), searching for the optimal structure
every hour or less, has been used to improve the array power production throughout the
day [32], thus improving the array profitability. Some works have focused on improving
the reconfiguration speed by optimizing the algorithm used to search for the best configu-
ration [33], which enables the optimization of the array more times per day; however, those
works are limited by the calculation speed of the mathematical model used to reproduce
the P-V curve. Therefore, the reduction in the calculation time required by the proposed
model to generate the array’s P-V curves is very useful for reconfiguration systems, which
is illustrated in this example.
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The SP and TCT arrays considered in this section for reconfiguration are illustrated
in Figure 17, where a part of the modules in the array has a fixed connection, while the
connections of another part of the array (eight modules) can be reconfigured (change the
connections). This partial reconfiguration approach has also been used in other studies [34].
On the one hand, the SP array is 15× 2, and the first four rows (4× 2) can be connected
to any string through a reconfiguration matrix, which is implemented with switches (e.g.,
MOSFETs or relays) and controlled by a reconfiguration algorithm [35]. On the other hand,
the TCT array is 15× 4, where the modules in the first two rows (2× 4) can be connected to
any row by using a reconfiguration matrix and a reconfiguration algorithm.
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Figure 17. SP and TCT reconfiguration systems used for the application example.

The reconfiguration algorithm considered for this application example is an exhaustive
search, where all of the possible configurations are evaluated. For each configuration, the
array P-V curve is generated with voltage steps of 2 V to identify the GMPP, which is saved
to identify the configuration that provides the highest GMPP. Then, the reconfiguration
matrix is adjusted to realize the best configuration. This process must be repeated as fast as
possible to improve the energy harvesting from a PV array operating under non-uniform
conditions since those conditions continuously change throughout the day.

This application example considers two shading profiles for each array, which are
illustrated in Figure 18 for the SP and TCT arrays, respectively. Those profiles are defined
by specifying the parameter Iph for the reconfigurable modules, where Tables 2 and 3 report
the shading factors (1 means no shading, 0 means full shading). The photovoltaic current
Iph of the rest of the modules of the SP and TCT arrays is defined as follows:

• SP array: Iph,a,b = 5.154 A ∀ a ∈ [5, . . . , 10] ∧ b ∈ [1, 2] and Iph,c,b = 2.577 A ∀ c ∈
[11, . . . , 15] ∧ b ∈ [1, 2]

• TCT array: Iph,a,b = 5.154 A ∀ a ∈ [3, . . . , 9] ∧ b ∈ [1, . . . , 4] and Iph,c,b = 2.577 A
∀ c ∈ [10, . . . , 15] ∧ b ∈ [1, . . . , 4]
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Table 2. Shading profiles of the reconfigurable modules of the SP array (1 means no shading).

Array Shading Profile Row
Column

1 2

SP

1

1 0.8147 0.6324
2 0.9058 0.0975
3 0.1270 0.2785
4 0.9134 0.5469

2

1 0.9575 0.9572
2 0.9649 0.4854
3 0.1576 0.8003
4 0.9706 0.1419

Table 3. Shading profiles of the reconfigurable modules of the TCT array (1 means no shading).

Array Shading Profile Row
Column

1 2 3 4

TCT
1 1 0.8147 0.1270 0.6324 0.2785

2 0.9058 0.9134 0.0975 0.5469

2 1 0.9575 0.1576 0.9572 0.8003
2 0.9649 0.9706 0.4854 0.1419
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Figure 18. Shading profiles to evaluate the reconfiguration.

For both arrays, there are 35 possible configurations with the eight reconfigurable
modules; therefore, all of the configurations are evaluated, for each array and shading
profile, with both the proposed and explicit models to determine their calculation times.
The results are reported in Table 4, where it is observed that the times required by the
proposed models are around 3.9 and 11.3 minutes for SP and TCT arrays, respectively,
while the times required by the explicit models are around 28.8 and 54.4 min. Hence,
the proposed models provide a reduction between 78% and 86% of the time required
to evaluate the 35 configurations of the SP and TCT arrays. Such time reduction means
that the reconfiguration algorithm using the proposed models can better mitigate the
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power reduction produced by the variable shading profiles throughout the day and, as
consequence, improve the power and energy harvesting.

Table 4. Calculation times, time reduction, and power increment calculated with proposed and
explicit models to evaluate all of the possible configurations (i.e., 35) for the shading profiles of SP
and TCT arrays.

Array Profile
Calculation Times (s)

Time Reduction (%) Power Increment (%)
Proposed Explicit

SP 1 236.7 1728.2 86.3 9.09
2 216.3 1602.5 86.5 7.66

TCT 1 536.0 3264.1 83.5 6.37
2 680.3 3199.7 78.7 5.16

5.4. Experimental Results

The proposed models were experimentally validated with 4× 2 (i.e., eight modules) SP
and TCT arrays operating under two different conditions denominated “Experiment 1” and
“Experiment 2” from here on. The I-V and P-V array curves were generated by interpolating
the experimental I-V curves of eight modules. The I-V curves of the SP arrays were obtained
by interpolating the voltage of each module for a set of given string currents and adding the
modules’ voltages to obtain Varr; then, the array currents were calculated by interpolating
the current of each string for a given array voltage. For TCT, the I-V curves were obtained
by interpolating the current of each module for a set of given row voltages and adding the
modules’ currents to obtain Iarr; then, the array voltages were calculated by interpolating
the voltage of each row for a given array current.

The I-V curve of each module was measured through a BK 8500 electronic load by
using the experimental testbed shown in Figure 19. Each module’s I-V curve is formed by
108 points, and the array’s I-V curve is formed by 400 points, approximately.

PV modules

Connection cables

Connection 

board

Electronic 

load

PC with

Matlab

Figure 19. Test bed used to measure the I-V curves of the PV modules.

The characteristic curves of the SP and TCT arrays for the two experiments are in-
troduced in Figures 20 and 21, respectively, where the dashed lines represent the explicit
and proposed models, and the dots represent the experimental measurements. Both fig-
ures present the I-V and P-V curves for arrays, which are presented at the left and right,
respectively, and it can be observed that the dots are superimposed on the dashed lines,
which means that the proposed models accurately reproduce the electrical behavior of
the SP and TCT arrays for the two experiments. Such accurate reproduction is verified
through the NSSE errors of both models (see Table 5), which are practically the same for the
proposed and explicit models because both models used the same SDM parameters for all
of the modules. However, significant differences are present in the calculation times, where
the proposed model obtains reductions between 65 and 72% regarding the explicit model.
Therefore, this experimental validation confirms the advantage of the proposed model over
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the explicit ones and provides the same accuracy but with a much higher calculation speed
(more than 3 times faster).
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Figure 20. I-V and P-V curves for two experiments of 4× 2 SP arrays operating under different conditions.
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Figure 21. I-V and P-V curves for two experiments of 4× 2 TCT arrays operating under different conditions.

Table 5. Calculation times, time reduction, and power increment calculated with proposed and
explicit models to evaluate all of the possible configurations (i.e., 35) for the shading profiles of SP
and TCT arrays.

Array Experiment
NSSE (%) Calculation Time (s)

Time Reduction (%)
Proposed Explicit Proposed Explicit

SP 1 5.00 × 10−3 5.00 × 10−3 9.296 26.658 65.1
2 8.93 × 10−3 8.92 × 10−3 8.392 30.621 72.5

TCT 1 2.85 × 10−2 2.86 × 10−2 4.900 16.717 67.3
2 4.05 × 10−3 4.06 × 10−3 5.6723 17.385 70.6

6. Conclusions

This paper has presented a mathematical model for both SP and TCT PV arrays based
on the implicit equations of the SDM and the inflection points of the current–voltage curves,
which significantly speeds up the calculation process in comparison with the traditional
explicit models based on the Lambert-W function. This feature was tested in several
simulation scenarios with multiple array sizes, where the results show that the proposed
SP model is always faster than the traditional solution, reducing the computation time
by 82.97%. Concerning the proposed TCT model, it is faster for arrays larger than 2× 2,
providing reduction times between 47.71% and 92.28%. For arrays 2× 2, the classical TCT
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model is slightly faster, but taking into account that 2× 2 arrays only have three possible
configurations, those can be tested very fast with either the proposed or the explicit model.
Therefore, the proposed model can be used to speed up the design of urban PV installations
subjected to partial shading conditions since the yearly power production of large PV
arrays can be estimated in a short time and with high precision.

The proposed solution was also tested for dynamic reconfiguration purposes, where
both SP and TCT arrays were partially reconfigured to improve power production under
two partial-shading conditions. The results demonstrate that the proposed solution pro-
vides the same optimal configuration (hence the same maximum PV power) but more than
7 times faster for SP reconfigurations, and between 4 and 6 times faster for TCT reconfigu-
rations. This is very useful in practical applications since a faster reconfiguration enables
the optimization of more times the array configuration to the changing non-homogenous
conditions, thus improving the energy harvesting throughout the day and reducing the
return-of-the-investment time. The improved speed and high accuracy of the proposed
model were also validated using experimental data. The experimental results demonstrate
that the proposed solution provides the same accuracy as the classical (explicit) solutions,
but it is more than 3 times faster.

The proposed model shares a particular drawback with the explicit model reported in
the literature: requiring a solver for the non-linear equations system, which can be improved
in two ways. The first approach could be to mathematically derive the Jacobian matrix of the
system of equations, thus using it to speed up the solver. This can be further improved by
obtaining an analytical inversion of the Jacobian matrix, which requires deep mathematical
analysis but can significantly improve the performance of the equation solver. However, it
is not certain that the Jacobian matrix could be analytically inverted for any shading profile.
The second approach could be to solve, symbolically, the non-linear equations system; this
will require deep non-linear analyses and maybe some well-guessed approximations, but it
is not certain that the nonlinear equations system has analytical solutions for every shading
condition. However, the success of this process could exponentially improve the solution
time. Therefore, both approaches are interesting topics for further development.
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