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Abstract: The increasing demand for clean energy and the global shift towards renewable sources
necessitate reliable solar radiation forecasting for the effective integration of solar energy into the
energy system. Reliable solar radiation forecasting has become crucial for the design, planning,
and operational management of energy systems, especially in the context of ambitious greenhouse
gas emission goals. This paper presents a study on the application of auto-regressive integrated
moving average (ARIMA) models for the seasonal forecasting of solar radiation in different climatic
conditions. The performance and prediction capacity of ARIMA models are evaluated using data
from Jordan and Poland. The essence of ARIMA modeling and analysis of the use of ARIMA models
both as a reference model for evaluating other approaches and as a basic forecasting model for
forecasting renewable energy generation are presented. The current state of renewable energy source
utilization in selected countries and the adopted transition strategies to a more sustainable energy
system are investigated. ARIMA models of two time series (for monthly and hourly data) are built
for two locations and a forecast is developed. The research findings demonstrate that ARIMA models
are suitable for solar radiation forecasting and can contribute to the stable long-term integration of
solar energy into countries’ systems. However, it is crucial to develop location-specific models due to
the variability of solar radiation characteristics. This study provides insights into the use of ARIMA
models for solar radiation forecasting and highlights their potential for supporting the planning and
operation of energy systems.

Keywords: ARIMA; GHI; RES; forecasting; solar; energy; irradiance; photovoltaic; climatic conditions;
Poland; Jordan

1. Introduction

Global energy consumption is growing continuously, and even though fossil fuels
(coal, gas, petroleum) are still the basis of production, their depletion and greenhouse effect
have caused renewable energy sources (RES) to become more and more important. Energy
Information Administration (EIA) projects that the share of renewables in US electricity
generation mix will double by 2050 [1]. In Europe, the objective behind the European Green
Deal (COM(2019) 640) is to become the world’s first climate-neutral continent by 2050 [2].

Electricity production in 2021 amounted to a total of 28,466.3 TWh worldwide, including
7931 TWh from RES, with more than 50% from hydroelectric power plants (4273.8 TWh) [3].
However, the wind and the sun are the fastest growing sources of electricity, which, in 2021,
were used to generate a tenth (10.3%) of the world’s electricity [4]. In 2021, a record for the
installation of new photovoltaic (PV) power plants was noted, contributing an additional
167.8 GW, and a total level of 940 GW was achieved [5]. Production of electricity from sunlight
reached the value of 1023.10 TWh [6].
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Solar energy is inexhaustible and theoretically, its potential far exceeds the worldwide
energy demand [7]. However, solar power availability depends largely on geographical
location [8]. More precisely, the production of energy from photovoltaic plants depends
on the amount of solar radiation and environmental conditions (latitude, the presence
of clouds, terrain and shading, aerosol concentration in the atmosphere, air humidity,
temperature) [9]. However, it is believed that PV can strengthen its position in the mix of
energy production of almost all countries.

Photovoltaic power potential is most often expressed in W/m2 in a selected unit of time
using the global horizontal irradiance (GHI), which relates to shortwave solar radiation
and is the sum of direct (after taking into account the Sun’s zenith angle) and diffuse
horizontal irradiance. In addition, the integral of irradiance over a period of time, which is
the sum of the energy falling on the surface in a given period, measured in J/m2 or Wh/m2.
Similarly, it consists of direct, diffused, or reflected solar radiation. Shortwave downward
radiation (SWDR, SDR) can also be analyzed. Sometimes, to assess the photovoltaic power,
the radiation on a surface at a specific inclination angle and azimuth, global irradiation
onto inclined plane (in Wh/m2), is useful. To estimate the irradiance/irradiation, many
models have been developed, taking into account, e.g., the relative distance between the
Sun and the Earth during the year, the declination of the Sun, the rotation of the Earth
around the polar axis, and its motion around the Sun [10]. Moreover, the irradiance under
clear sky or all sky conditions can be considered. Solar radiation data are also provided in
a dimensionless form: the clearness index.

Since photovoltaic panels differ in the materials from which they are manufactured, as
well as in energy production technology and inverter efficiency, which implies an unequal
performance potential, solar radiation analysis allows the comparison of conditions for
different photovoltaic technologies. It does not require taking into account the specific
design of the power plant (the parameters of photovoltaic panels and their orientation,
i.e., tilt angle and azimuth) and operating mode. Solar radiation is believed to be the most
important component for assessing the power potential at each location. It is sometimes
assumed that the relationship between solar radiation and the energy generated by a
photovoltaic panel is proportional [11]. On the other hand, planning the location and
parameters of a specific PV installation, especially in cities, requires analysis and modeling
of not only the GHI but the spatial and temporal distribution of solar radiation taking into
account shading and reflections caused by buildings and other infrastructure and terrain
objects [12].

One of the most important challenges for the efficient operation of power distribution
systems is balancing supply and demand in real time [13]. For this reason, energy generated
by photovoltaic systems requires forecasting solar radiation for the design, planning, and
operational management of power systems in the short, medium, and long term and with
high time resolution to reliably provide clean energy.

Solar power estimation can be performed through several types of forecasting methods.
Recently, the most popular ones are derived from artificial intelligence and include neural
networks (e.g., support vector machines (SVM), long short-term memory (LSTM) [14,15],
back propagation neural networks [16], autoregressive neural networks [17,18], neural
network autoregressive models with exogenous input [19]), swarm intelligence [20,21],
and machine learning, including deep learning. Considering the data that underline
modelling, the methods can be divided into two categories: physical, using numerical
weather predictors and solar irradiation data, and statistical, forecasting solar power
directly from historical data [22,22–24]. To overcome their drawbacks and emphasize
the advantages, these models are often combined and proposed as hybrid models to
increase the fitting and accuracy. The periodicity of solar irradiation also makes it possible
to successfully explore time series auto-regressive integrated moving average (ARIMA)
models [24–29].

ARIMA models, due to their versatility and simplicity, have been widely used in the
field of energy and electrical systems. The main advantages of these models are accessibility
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and low computational complexity, the use of only previous observations of the time series
and, at the same time, the possibility of embedding the model in the theory and/or in the
process structure, and formal translation of the studied phenomenon. This, combined with
the often-obtained sufficient quality and reliability of the forecasts, puts ARIMA models
among the most popular approaches to predicting time series values in the power industry.
However, it is very important to check the adequacy of the model with the available
data. The quality of global solar radiation forecasts using ARIMA models depends on the
characteristics of time series and random perturbations, the source of which is geographical
location [30]. The results for each time refer only to a given climatic area and should not be
directly extrapolated to other sites [31]. In order to compare the performance of ARIMA
models, it is reasonable to test their performance in different climate varieties [32].

The aim of this paper is to test ARIMA models, evaluate their performance, and
validate their prediction capacity for the seasonal forecasting of solar radiation in different
climatic conditions. The need for further development of renewable energy is indisputable,
but to achieve sustainable goals effectively, the strengths and weaknesses of a site must be
taken into account. In this paper, prognostic models were built on the basis of data from
countries with utterly different solar potential and GHI values—Jordan and Poland. Both
countries have a keen interest in increasing the share of renewable energy in their energy
mix and reducing dependence on fossil fuels. To achieve this goal, various initiatives have
been pursued, such as building solar farms and energy windmills, as well as supporting
the development of biomass and biogas. In recent years, Jordan and Poland have made sig-
nificant progress in renewable energy production. Considering the solar energy production,
according to the International Renewable Energy Agency (IRENA), Jordan’s installed PV
capacity has increased from just 6 MW in 2015 to 1521 MW in 2021, and Poland’s in the same
period from 108 MW to 6257 MW [33]. Despite significant differences in climatic conditions,
solar energy production per capita varies little: 0.166 kW in Poland and 0.148 kW in Jordan.

This article is organized as follows. First, it presents the essence of ARIMA models.
Then, it provides a solid review of papers on the use of ARIMA in solar radiation forecast-
ing. Next, a case study is discussed, Polish and Jordanian policies on renewable energy
development are cited, and the results of the numerical analysis are presented. The article
ends with conclusions. The step-by-step research methodology is presented in Figure 1.

Stage one of the research is to investigate the essence of ARIMA modeling and to
analyze the literature on the use of ARIMA models both as a reference model for evaluat-
ing other approaches and as a basic forecasting model for forecasting renewable energy
generation. In stage two, the current state of RES utilization in selected countries and the
adopted transition strategies to a more sustainable energy system are presented as the
background of the study. In stage three, ARIMA models of two time series (for monthly
and hourly data) were built for two locations and a forecast was developed. The final stage
is a discussion of the results and conclusions.
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2. Method

Auto regression integrated moving average (ARIMA) models are a wide class of models
of stochastic processes that are extensions of ARMA models including integration (I) to remove
non-stationarity. ARMA models of time series yt consist of (i) autoregression (AR), which
involves a regression model of lagged time series values, and (ii) moving average (MA), which
involves an error term as the linear combination of the previous error terms:

yt = ∑p
i=1 Φiyt−i + ∑q

j=1 θjet−j· (1)

In the model in (1), yt−i and et−j are the lagged past values and errors, Φi is the
coefficient for the autoregressive component, θj is the coefficient for the moving average
term, and p and q are orders and determine number of coefficient parameters.

ARMA(p,q) models can be applied on at least weakly stationary series, characterized
by the finite and constant mean and variance, and the value of the covariance between
the observations from two periods depending only on the lag. Therefore, adequate data
preprocessing is an important stage when applying the approach to non-stationary series.

The most common method of removing non-stationarity in terms of the mean (e.g.,
trend) can be combined with the model. With B as the backward operator to indicate
differencing, B(yt) = yt − yt−1, the ARIMA(p,d,q) model with an integration (differencing)
d to delete non-stationarity is expressed as follows:

Φp(B)(1− B)dyt = θq(B)et, (2)

where:

Φp(B) = 1−Φ1B− . . .−ΦpBp is the moving average operator, represented as a polynomial
in the backshift operator;
θq(B) = 1− θ1B− . . .− θqBq is the autoregressive operator, represented as a polynomial in
the backshift operator.

The SARIMA(p,d,q)(P,D,Q)s models include seasonality in time series, where s is the
number of seasons in the seasonal cycle:

ΦP(Bs)Φp(B)(1− B)d(1− Bs)Dyt = ΘQ(Bs)θq(B)et, (3)

where:

ΦP(Bs) = 1−Φ1Bs − . . .−ΦPBPs is the seasonal autoregressive operator;
ΘQ(Bs) = 1−Θ1Bs − . . .−ΘQBQs is the seasonal moving average operator.

The ARIMA/SARIMA model describes the yt using the preceding values of the yt and
the forecast error et. An extension of the classic ARIMA models includes a set of exogenous
series xi,t as input variables, and is referred to as an ARIMAX:

yt = µ + ∑i
ωi(B)
δi(B)

Bki xi,t +
θq(B)
Φp(B)

et, (4)

where:

µ is a constant;
ωi(B) is a numerator polynomial of the transfer function for the ith input series;
δi(B) is a denominator polynomial of the transfer function for the ith input series;
ki is the pure delay for the effect of xi,t. at time t.

The identification of an adequate ARIMA model relies on the proper identification
of the autocorrelation and partial autocorrelation patterns. A common approach to deter-
mine the appropriate ARIMA structure is to sequentially compare models with different
parameters to find the one that the best fulfils the fit criteria [34].
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3. Background Literature

The importance of the problem of estimating electricity production from renewable
sources has led to an increase in interest in renewable energy generation modeling and
forecasting methods. With regard to solar energy, reviews on the recent applications of
photovoltaic output forecasting have been presented, among others by Mellit et al. [35],
Başaran et al. [36], Massaoudi et al. [37], and Ahmed et al. [11].

ARIMA models, as a result of their flexibility and relatively simple structure, have
found wide application in energy management. The popularity of ARIMA models in
solar forecasting is reflected in the number of articles on this topic: the IEEE, Scopus,
and WoS databases accumulate nearly 840 such papers published between 2012 and 2022
(Figure 2). Numerous studies treat ARIMA models, one of the simplest forecasting models,
as a reference to evaluate other, more complex multivariable models. Selected recent works
from the period 2018–2022 are listed in Table 1.
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Table 1. ARIMA in solar radiation forecasting methods—literature review.

Title of the Article Author (Year) Focus Methods

Very Short-Term Solar Irradiance
Forecasting using Multilayered

Long-Short Term Memory

Thirunavukkarasu et al.
(2022) [38] Solar irradiance at Melbourne airport

Improved multi-layered
LSTM

LSTM, SVM, ARMA,
ARIMA, AR, MA

Dynamic Forecasting of Solar Energy
Microgrid Systems

Using Feature Engineering
Mohamed et al. (2022) [39] PV farms’ power based on the

associated features in NWP
ARIMA MLR,

XGBoost, LSTM

Comparison and Analysis of Solar
Irradiance Forecasting Techniques Mishra et al. (2022) [40] National Renewable Energy

Laboratory in Golden, Colorado ARIMA, FL

Deep Learning and Statistical Methods for
Short- and Long-Term Solar Irradiance

Forecasting for Islamabad
Haider et al. (2022) [41] GHI based on weather data in

Islamabad, Pakistan
SARIMAX, Prophet, LSTM,

CNN, ANN

Deep Attention ConvLSTM-Based Adaptive
Fusion of Clear-Sky Physical Prior

Knowledge and Multivariable Historical
Information for Probabilistic

Prediction of Photovoltaic Power

Bai et al. (2022) [42] Clear-sky global irradiation
ConvLSTM, ARIMAX,

CNN, LSTM, MLP, SVR,
ELM, CART, GBDT

On Comparing Regressive and Artificial
Neural Network Methods
for Power System Forecast

Andreotti et al. (2021) [43]
Yearly PV power generation

in Sicily and data
from Gestore Servizi Energetici

AR, ANN

Solar PV Power Forecasting Using
Traditional Methods

and Machine Learning Techniques
Alam (2021) [44]

Power generation by PV modules at
the University of Queensland campus

in 1-day and 1-week horizons

CNN, multi-headed CNN,
CNN LSTM, ARMA, MLR
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Table 1. Cont.

Title of the Article Author (Year) Focus Methods

A Study of 100kwp PV Plant Output Power
Forecasting: A Case Study

Ananthu and Kashappa
(2021) [45]

A day-ahead time forecast
of a solar power PV plant at

G.N.D.Engg.College, Bidar, India

LSTM, ARIMA, SARIMA,
RNN, fbProphet

Day-Ahead Forecasting
of the Percentage of Renewables Based

on Time-Series Statistical Methods

Basmadjian et al.
(2021) [23]

The percentage of different types of
renewable energy sources in Germany

SARIMAX,
SARIMA, ARIMA

Forecasting of Solar Power Volatility
using GJR-GARCH method

Ghosh and Gupta
(2021) [46]

PV power in a one-hour window at
the University of Central Florida

AR, MA,
ARIMA, GJR-GARCH

Day Ahead Solar Irradiance Forecasting
Using Different Statistical Techniques Garg et al. 2020 [47] Monthly average irradiance

of Bhadla, Jodhpur, India
MARKOV model,

ARIMA, ANN

Day-ahead Energy Sharing Schedule for the
P2P Prosumer Community Using LSTM and

Swarm Intelligence
Zou et al. (2020) [21] Day-ahead energy demand prediction

and battery charge/discharge LSTM PSO, ARIMA

A Derivative-Persistence Method for Real
Time Photovoltaic Power Forecasting Bozorg et al. (2020) [48] Very short-term power production

of a PV system in Switzerland

Derivative-persistence
method, persistence,

ARMA

The Impact of Prediction Errors in the
Domestic Peak Power Demand Management Mahmud et al. (2020) [49] The domestic peak power demand

system of PV, EV, and BESS ARMA, ANN

Daily Electric Forecast for Various Indian
Regions Using ANN Singh et al. (2020) [50]

The day ahead forecasting of wind
and solar generation and peak

demand of various Indian regions

ANN, ANN-GA,
AR, ARIMA

Time Series Forecasting
of Total Daily Solar Energy Generation:

A Comparative Analysis Between ARIMA
and Machine Learning Techniques

Atique et al. (2020) [51]
The daily solar energy generation by

panels at the Reese Technology Center
of Texas Tech University

SARIMA, SVM, ANN

Global Solar Radiation Estimation and
Climatic Variability Analysis Using Extreme
Learning Machine Based Predictive Model

Hai et al. (2020) [52] The daily solar radiation
in the Cheliff Basin, Algeria MLR, ARIMA

Day-Ahead Solar Irradiation Forecasting
Utilizing Gramian Angular Field and

Convolutional Long Short-Term Memory
Hong et al. (2020) [53] A day-ahead forecast of GHI values

in Fuhai, Taiwan
LSTM, ARIMA,

CNN-LSTM

Modified Auto Regressive Technique for
Univariate Time Series Prediction

of Solar Irradiance
Marikkar et al. (2020) [25]

Solar irradiance from 10 min to 1 h
prediction horizons in PV plant at the
University of Peradeniya in Sri Lanka

Modified AR, CNN, LSTM

Short-term Forecasting of Solar Irradiance Paulescu and Paulescu
(2019) [54]

Nowcasting solar irradiance for
evaluation models from perspectives
of forecast accuracy, precision, data
series granularity, and variability

Random walk with drift,
MA, exponential

smoothing, ARIMA, the
two-state model

Global Solar Radiation Prediction by ANN
Integrated with European Centre for

Medium Range Weather Forecast Fields in
Solar Rich Cities of Queensland Australia

Ghimire et al. (2019) [30] Global incident solar radiation in five
metropolitan sites in Australia

ML, ANN, SVR, GPML, GP,
ARIMA, TM, TSFS

A Hybrid Approach for Short-Term PV
Power Forecasting in Predictive Control

Applications

Vrettos and Gehbauer
(2019) [55]

Short-term forecasts with prediction
horizons from 15 min to 1 day

SARIMA, ANN, hybrid
SARIMA with ANN

Forecasting Solar Energy Generation and
Load Consumption—A Method to Select the

Forecasting
Nambiar et al. (2019) [56] Load consumptions and solar energy

generation on a university campus
ARIMA, SES, SVR, ANN,

LSTM, LR

Comparison of Intraday Probabilistic
Forecasting of Solar Irradiance Using Only

Endogenous Data
David et al. (2018) [32] GHI data recorded at six different

locations around the world

ARMA, CARDS, NN,
LMQR, WQR, QRNN,

GARCHrls, SB, QRF, GBDT

Forecasting Solar Irradiance at Short
Horizons: Frequency and Time Domain

Models

Reikard and Hansen
(2018) [29]

Irradiance and clear sky index data at
very short horizons in six sites in the

US

ARIMA, frequency domain,
LR, persistence

Forecasting Solutions for Photovoltaic
Power Plants in Romania Oprea et al. (2018) [57] Output of two PV plants in Romania NN, ARIMA, data mining
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Table 1. Cont.

Title of the Article Author (Year) Focus Methods

Long-term Solar Irradiance Forecasting
Approaches—A Comparative Study Sharika et al. (2018) [58] Solar irradiation in 10 min intervals in

Sri Lanka ARIMA, RFR, NN, LR, SVR

Short Term Forecasting of Solar Radiation
and Power Output of 89.6 kwp Solar PV

Power Plant
Das (2018) [59]

Total insolation received on the tilted
surface for a short time horizon and

PV power output

A model that utilizes
anisotropic Klucher’s,

model, smart persistence
model (SPM), and ARIMA

Abbreviations: ANN—artificial neural network, AR—auto regressive, ARMA—auto regression and moving aver-
age, ARIMA—auto regression integrated moving average, ARMArls—recursive least square ARMA, ARIMAX—
auto regressive integrated moving average exogenous variable, BESS—battery energy storage system, CARDS—
coupled autoregressive and dynamical system, CART—classification and regression tree, CNN—convolutional
neural network, ConvLSTM—convolutional long short-term memory, ELM—extreme learning machine, EV—
electric vehicle, FL—fuzzy logic, GBDT—gradient boosting decision tree, GA—genetic algorithm, GARCH—
generalized autoregressive conditional heteroskedasticity, GARCHrls—recursive GARCH, GP—genetic program-
ming, LMQR—linear model in quantile regression, LR—linear regression, LSTM—long short-term memory,
MA—moving average, MLP—multilayer perceptron, MLR—multiple linear regressions, NAR—non-linear au-
toregressive, NN—neural network, NWP—numerical weather prediction, PSO—particle swarm optimization,
QRF—quantile regression forest, QRNN—quantile regression neural network, RFR—random forest regression,
RNN—recurrent neural network, SARIMA—seasonal auto regression integrated moving average, SB—sieve
bootstrap, SES—simple exponential smoothing, SVR—support vector regression, TM—temperature model, TSFS—
time series and Fourier series, WQR—weighted quantile regression.

The multitude of articles comparing different models and proposing new hybrid
approaches shows that forecasting solar energy production is an ongoing challenge, and
the selection of an appropriate forecasting method is still an unresolved task because the
obtained results depend on many factors. In most cases, methods are compared by the
mean squared error (MSE), root mean square error (RMSE), and mean absolute percentage
error (MAPE), less often by R-values, and sometimes by total training time [53], Willmott’s
index [52], or forecast score [59]. The basic finding is that the errors increase for all models
as the prediction horizon increases. In general, AI-derived forecasting methods achieve
higher quality measured by forecasting errors [49], but in many cases, ARIMA models
have errors only slightly higher and often less than 20% [43,60,61]. The ARIMA approach
implies larger errors in cases of very short time horizons ranging from a few minutes up to
few hours due to the high variability of solar radiation [48], but such a level of prediction
errors in systems can be compensated for using battery energy storage systems [49,62].
Modified AR models can give good short-term solar irradiance forecasting results, as can
NN methods [25]. ARIMA models definitely outperform the other statistical models [63].

Comparing different models does not always unequivocally reveal the best probabilis-
tic model. As has been shown in a number of works, machine learning techniques can
improve forecast accuracy [20,21]. However, this is not a principle [17,64]. There is not
always a clear advantage for ANNs, especially when computational effort and input data
requirement are taken into account. In addition, automatically applied machine learning
methods based on processing large data sets can sometimes lead to over-fitting of the
model and deterioration in the quality of the resulting predictions [27,28]. ARMA and NNs
could present similar results both in terms of error and the distribution of the error [32].
ARIMA could sometimes perform better than machine learning techniques [58]. The choice
between classical statistical methods and machine learning algorithms generally depends
on the area of application and the data held [39]. Moreover, time and space dependencies
of PV power must be considered [65]. The advantage of each approach may be relative and
depends on the variability of a given time series resulting from the geographic location [30].
The value of combining different models is emphasized [58].

This allows us to conclude that ARIMA could be considered as a potential method
for solar radiation forecasting (and indirect solar energy production), although an accurate
model must be tailored to local conditions. The main advantage of ARIMA lies in its
simplicity. AI methods, in the majority, require data related to the physical nature of the
problem such as not only solar irradiance, but also, e.g., air temperature, humidity, wind
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direction and speed [44], rainfall, cloud cover, elevation, and azimuthal angle [66] and
even albedo, vorticity, evaporation, and more [30]. ARIMA uses only previous data and
reveals the series structure. The legitimacy of ARIMA models is confirmed by selected
recent (2019–2022) ARIMA-only works listed in Table 2.

Table 2. A review of recent articles that employ the ARIMA method.

Title Author (Year) Focus Models

Irradiance and Temperature Forecasting for
Energy Harvesting Units in IoT Sensors using

SARIMA-KF
Azzam et al. (2022) [67]

48 daily datapoints
on irradiance of the sun

for Ottawa, Ontario, Canada
ARIMA(0,1,1)(2,1,0)48

Early Experience of the Generation Pattern of Grid
Connected Solar PV System in Bangladesh:

A SARIMA Analysis

Aziz and Chowdhury
(2021) [68]

Electricity generation from a solar
plant in Bangladesh ARIMA(1,1,8)(0,1,0)12

Forecasting and Analysis of Solar Power Output
from Integrated Solar Energy and IoT System Adli et al. (2021) [69] Solar power output at Kampung

Pulau Melaka, Kelantan, Malaysia ARIMA(11,2,4)

Modeling Solar Radiation in Peninsular Malaysia
Using ARIMA Model Ismail et al. (2021) [70] Daily solar radiation data in

Peninsular Malaysia

ARIMA(1,1,2),
ARIMA(2,1,1),
ARIMA(1,1,3)

depending on the state

Spatial Forecasting of Solar Radiation Using
ARIMA Model Shadab (2020) [71] Monthly solar radiation

prediction around Delhi in India

ARIMA(1,0,1)(0,1,1)12,
ARIMA(3,0,3)(0,1,1)12,
ARIMA(2,0,0)(0,1,1)12,
ARIMA(2,0,2)(1,1,1)12,

and many others,
depending on the location

One Month-Ahead Forecasting of Mean Daily
Global Solar Radiation Using Time Series Models Belmahdi et al. (2020) [72] Solar radiation

in Tétouan, Morocco
ARMA(2,1)

and ARIMA(0,2,1)

Solar Radiation Prediction for a Winter Day
Using ARMA Model Sansa et al. (2020) [73] Solar radiation related to an

industrial company in Barcelona ARMA(3,3)

Photovoltaic Power Plant Production
Operational Forecast Based on its Short-Term

Forecasting Model

Khalyasmaa et al.
(2020) [60]

Short-term 1 h forecasts of
photovoltaic power plant

generation in the south of Russia
AR(1), AR(2), ARMA(1,2)

Estimating Solar Power Plant Data Using Time
Series Analysis Methods Idman et al. (2020) [74] Solar energy panels’ production

based on monthly average
AR, ARMA, SARIMA, Holt,

Holt–Winters

A Guide to Solar Power Forecasting Using
ARMA Models

Singh and Pozo
(2019) [22]

One hour-ahead predictions
of power output

from a site in Australia

ARMA(p, q) for each
of 14 hours of the day

Analysis of ARMA Solar Forecasting Models
Using Ground Measurements

and Satellite Images

Marchesoni-Acland et al.
(2019) [31]

GHI 10 min granularity data
recorded in six measuring stations

in the Pampa Húmeda region
in Uruguay

ARMA and ARMAX RLS,
including as cloudiness

and short-term local
variability index

as exogenous variables

Forecasting of Total Daily Solar Energy
Generation Using ARIMA: A Case Study Atique et al. (2019) [75]

The daily total solar energy
generation of a 10kW solar panel
installed in the Reese Research

Center in Lubbock, TX

ARIMA(0,1,2)(1,0,1)30

The works cited in Table 2 indicate that ARIMA can be considered as a potential
method that can be successfully applied to the prediction of insolation data. The variety of
models considered suggests the necessity of selecting a model each time in order to achieve
high accuracy and reach the goal, but taking into account the data available. It was also
proven that in order to obtain a high fit when using an ARIMA-type model, it is worth
testing different models, not only taking into account geographic location, but also seasonal
variation in insolation [61]. Sometimes, it is worth testing various ARIMA models with
different time horizons [55] or exploring potential improvements in accuracy when the
input data are normalized [29]. In the case of the ARIMA approach, the model selection is
often made on the basis of error assessment [69] or AIC [52,68].
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In this article, solar radiation data are used as a prerequisite for the outputs of all solar
energy systems [76] in two locations: Poland and Jordan.

4. Results
4.1. Framework Conditions for the Development of Renewable Energy in Jordan and Poland

Goal 7 of sustainable development is to ‘ensure access to affordable, reliable, sustain-
able, and modern energy for all’. Achieving this is crucial to all aspects of human life as
well as for tackling climate change as increasing the share of renewables in energy mix can
help reduce greenhouse gas emissions.

The targets for renewable energy production vary depending on the priorities of each
country or region, but many governments aim to increase the share of RE in their overall
electricity production. In the EU, Renewable Energy Directive 2018/2001/EU established
a target of 20% RES in 2020 and at least 32% in 2030. However, in 2022, the European
Commission’s new 2030 climate targets include a proposal to increase the target to at least
45% of the energy mix (COM/2022/230).

According to the 2022 report on the achievement of the 2020 renewable energy target
progress in deploying renewable energy, the EU reached a share of 22.1% in gross final
energy consumption. Poland committed (2009/28/EC) to a target of 15% RES by 2020 and
reached 16.1%, mainly thanks to biomass. It follows that Poland should take additional
actions and investments to encourage faster deployment of other RES.

EU member states are required to submit national plans that outline their actions to
achieve the energy and climate goals set at the EU level. In Poland, the development of
renewable energy production is regulated by several acts, including:

• The Renewable Energy Sources Act of 2015;
• The Act on the National Energy and Climate Plan for years 2021–2030.

Examples of Jordan’s laws that regulate the development of renewable energy production are:

• Renewable Energy & Energy Efficiency Law: Law No. (13) of 2012;
• The Updates of Renewable Energy & Energy Efficiency Law: Law No. (33) of 2014;
• Jordan General Electricity Law for the Year 2002;
• The Environmental Protection Law of 2017.

In conjunction with the efforts to develop renewable energy production, Jordan issued
Law No. 13 on renewable energy in 2012 and its amendments in 2014. This law promotes
renewable energy projects by clarifying the procedures related to the funding, implemen-
tation, and operation of renewable energy projects in Jordan. The Jordanian Ministry of
Energy and Mineral Resources (MEMR) has developed the Master Strategy for Energy
Sector 2020–2030 with a target for renewables to reach 31% of the total power generation
and 14% of the total energy mix in Jordan by 2030 [77]. In the General Electricity Law for
the Year 2002, MEMR confirmed that one of its main duties is to promote the generation
and use of renewable energy. The ministry has established the Renewable Energy and
Energy Efficiency Fund to provide partial funding for renewable energy projects, and
exempted all systems and equipment of renewable energy from customs duties. However,
some constraints remain present, such as the cost and the availability of funding for its
implementation, the availability of the necessary infrastructure, especially for the systems
connected to the electricity grid, managing the systems to maintain their efficiency, etc. [78].

Photovoltaic technology can play a key role in the transition to a more sustainable
energy system [79] since it is characterized by a relatively low environmental impact, wide
availability thanks to the possibility of installation in various locations, cost efficiency,
and scalability. Combination with other energy technologies such as storage systems is
especially promising.

4.2. Countries’ Basic Characteristics

Jordan and Poland differ highly in irradiance values: Poland has an average daily GHI
potential of 2.977 kWh/m2 and Jordan receives twice as much irradiance, 6.018 kWh/m2.
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These countries are ranked 198th and 19th, respectively, out of 209 countries analyzed in
the World Bank’s ranking of global photovoltaic potential [9]. However, looking at the
per capita capacity of photovoltaic installations, it is similar in both countries: 0.166 kW
in Poland and 0.148 kW in Jordan. Brief characteristics of these countries are presented in
Table 3.

Table 3. Characteristics of Jordan and Poland related to solar energy.

Variable Jordan Poland

Energy generation (GWh) 21,862 (2021) 166,557 (2021)
Energy generation per capita (MWh 2.129 (2021) 4.423 (2021)

Energy consumption (GWh) 19,689 (2021) 158,194 (2021)
Per capita electricity use (kWh) 1728 (2020) 4674 (2021)

Net electricity imports (imports minus exports) (TWh) 0.14 (2020) 1.45 (2021)
Electricity production from renewables (TWh) 3.17 (2020) 30.27 (2021)
Electricity production from fossil fuels (TWh) 16.41 (2020) 146.39 (2021)

Solar PV cumulative capacity (MW) 1520.57 (2021) 6256.75 (2021)
Solar PV cumulative capacity per capita (kWh) 0.1481 (2021) 0.1662 (2021)

Source: [6].

Jordan, with its high solar radiation intensity, has excellent conditions for the develop-
ment of PV farms. It is estimated that installing 1 kilowatt peak (kWp) of PV systems at an
optimal angle may result in 1750 kWh per year in some places [80]. Although a significant
increase in installed PV capacity was recorded during the period 2011–2021, with a growth
rate per annum of 185.0%, the country’s potential is still underexploited. Figure 3 shows
the cumulative installed photovoltaic capacity in Jordan compared to Poland. The annual
growth rate in Poland in the period 2011–2021 was approximately 137.2% [3].
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Figure 3. Cumulative installed solar capacity in Jordan and Poland. (Source: [6]).

Figure 4 shows the structure of the energy sources of the two countries, which is a
function of geographic location and natural resources. Jordan does not have significant
energy resources, and the country relies heavily on imports of gas to meet domestic
electricity needs. Poland’s electricity production is based on coal, which is supplied to the
power sector by domestic mines and via imports. Both Poland and Jordan have a positive
balance of electricity imports. Both countries are attempting to become independent from
fossil fuels and are investing in and developing numerous projects to increase energy
production from renewable sources.
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Figure 4. Sources of electricity: (a) Jordan; (b) Poland. (Source: [6]).

The results of the cited characteristics are the countries’ places in global rankings.
Statista’s ranking of the renewable energy share of the total final energy consumption by
country 2020 awards Poland with 14 and Jordan with 4 points. In contrast, considering
CO2 emissions in metric tons per capita, in 2021, Poland reached 8.58, while Jordan reached
only 2.3.

This paper develops ARIMA irradiance models for Amman—31.954, 35.9354 (31◦57′14.4′′

N 35◦56′07.4′′ E)—and Warsaw—52.250000, 21.000000 (52◦15′00.0′′ N 21◦00′00.0 ′′ E)—using
monthly and hourly data downloaded from the Joint Research Centre (JRC) solar radiation
database PVGIS-SARAH2 (https://re.jrc.ec.europa.eu/pvg_tools/en/, accessed on 1 January
2023). SAS®® OnDemand for Academics was used in the models’ estimation (https://
welcome.oda.sas.com/home, accessed on 1 January 2023).

4.3. Research Results

First, irradiance models for hourly data were compared. JRC data on GHI from the
period 2005–2020 were studied (140,256 observations). The values of hourly observations
depend on the month, but more so on the time of day. Analyzing ACF and PACF of 16-year
series, no significant values were observed at multiples of 365/366 (see Appendix A).
Preliminary analysis did not reveal significant deviations in series trends or fluctuations
in historical data that would indicate the existence of anomalies in any of the previous
years. Thus, only the year 2020 can be taken as the base for model construction. In the
example presented, the irradiance models were developed for observations recorded in
January and July 2020 (744 observations each). A non-automatic, expert approach was used
to select the ARIMA model. The values of irradiance in January in Amman and Warsaw
are shown in Figure 5. The daily 24 h seasonality is the rationale for differentiating with a
lag of 24. The model that is adequate for both cities due to the residuals, the values of the
parameters that ensure stationarity, reversibility, and the significance of the parameters is
ARIMA(1,0,0)(0,1,1)24. The analogical analysis performed for the July time series showed
that it can be described with the same model. However, radiation is much more stable in
summer, and, thus, forecasting with ARIMA models is more effective and reliable. Models’
parameters for hourly data and their fit are included in Table 4.

When evaluating the models, it is worth highlighting the differences in descriptive
statistics values of irradiance in Amman and Warsaw. In Amman, in July, the average is
344.1557 (std. error: 21.18872; sum 256,051.8), while in January, the average is 115.224 (std.
error: 67.58713; sum: 85,726.69). In Warsaw, the differences are more significant: the July
average is 237.6998 (std. error: 96.43191; sum 176,848.6) and the January average is 29.60884
(std. error: 22.65059; sum 22,028.98).

https://re.jrc.ec.europa.eu/pvg_tools/en/
https://welcome.oda.sas.com/home
https://welcome.oda.sas.com/home
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Figure 5. Hourly irradiance in January: (a) Amman; (b) Warsaw.

Table 4. Hourly data models.

Amman Warsaw

January

(1−ΦB)
(
1− B24)yt =

(
1−ΘB24)et (1−ΦB)

(
1− B24)yt =

(
1−ΘB24)et

Θ = 0.95803
Std. error = 0.03972

Φ = 0.70207
Std. error = 0.02554

Θ = 0.92547
Std. error = 0.02720

Φ = 0.77180
Std. error = 0.02299

Variance = 4568.02
Std. error = 67.58713

AIC = 8171.498
R2 = 86.4%

Variance = 513.0493
Std. error = 22.65059

AIC = 6585.634
R2 = 85.4%

July

(1−ΦB)
(
1− B24)yt =

(
1−ΘB24)et (1−ΦB)

(
1− B24)yt =

(
1−ΘB24)et

Θ = 0.80959
Std. error = 0.02488

Φ = 0.50886
Std. error = 0.03221

Θ = 0.88694
Std. error = 0.02511

Φ = 0.66143
Std. error = 0.02746

Variance = 448.9619
Std. error = 21.18872

AIC = 6468.135
R2 = 99.7%

Variance = 9299.113
Std. error = 96.43191

AIC =8662.033
R2 = 86.8%

The monthly data were considered, and the content of the analysis was the series of GHI
in kWh/m2 from the period 2005–2020 (192 observations). The time series of the monthly GHI
pattern of in Amman and Warsaw are shown in Figure 6. The data, as can be seen, differ in
average values (Amman 176.33; Warsaw 92.89) but have similar standard deviation (Amman
61.09; Warsaw 60.20). In Warsaw, larger random fluctuations can be noticed.

The strong seasonality, which gives excellent repeatability of the series values, is the
rationale for conducting a seasonal differentiation with a lag of 12. The ACF and PACF
patterns (see Appendix A) of the original yt and differenced

(
1− B12)yt time series suggest

seasonal MA models. Although the irradiance patterns are similar, in the case of Warsaw,
the MA parameter exceeds the region ensuring the reversibility of the process. Thus, the
GHI series in Warsaw was described by the seasonal AR model (since the finite-order mov-
ing average process can be represented as an infinite autoregressive process). The following
models meet the assumptions of the ARIMA procedure regarding the parameters and
residuals distribution: Amman, ARIMA(0,0,0)(0,1,1)12 and Warsaw, ARIMA(0,0,0)(1,1,0)12.
The parameters and fit statistics are shown in Table 5.
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Figure 6. Monthly GHI: (a) Amman; (b) Warsaw.

Table 5. Monthly data models.

Amman Warsaw

model
(
1− B12)yt =

(
1−ΘB12)et

(
1−ΦB12)(1− B12)yt = et

parameters Θ = 0.89108
Std. error = 0.07438

Φ = −0.57432
Std. error = 0.06150

fit statistics

Variance = 50.05613
Std. error = 7.075036

AIC = 1234.837
R2 = 98.5%

Variance = 246.9536
Std. error = 15.71476

AIC = 1508.274R2 = 93.0%

Figure 7 illustrates the fit of all the developed models.
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Figure 7. Model fit visualization: (a) monthly time series for Amman and Warsaw (2019–2020);
(b) hourly time series—Amman (31st of January and July); (c) hourly time series—Warsaw (31st of
January and July).
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Analysis of the data presented allows the models to be used for monthly and hourly
data during the summer months. Figure 8 presents forecasts for 2020 February 1st with a
confidence interval based on hourly time series of (a) Amman and (b) Warsaw together
with the observed values. Similarly, Figure 9 shows forecasts for 2020 August 1st with a
confidence interval of 95%. It is worth noting the significant differences in the width of the
confidence intervals.
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Figure 8. Forecasts for 2020 February 1st with confidence interval (95%) based on hourly time series
of (a) Amman; (b) Warsaw.
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Figure 9. Forecasts for 2020 August 1st with confidence interval (95%) based on hourly time series of
(a) Amman; (b) Warsaw.

For a clear assessment of the reliability of the forecasts and their applicability, the
basic statistics obtained for the performed forecasts are presented in Table 6 (due to the
availability of data for 2020 only).
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Table 6. Basic forecast statistics.

Amman Warsaw

February

MSE = 2456.48 MSE = 381.09
RMSE = 49.56 RMSE = 19.52

MAPE = 11.51% MAPE = 16.59%
Std. Error = 51.77 Std. Error = 20.39

R2 = 98.3% R2 = 82.2%

August

MSE = 183.18 MSE = 2508.97
RMSE = 13.53 RMSE = 50.09

MAPE = 2.79% MAPE = 9.08%
Std. Error = 14.14 Std. Error = 52.32

R2 = 99.9% R2 = 97.9%

Figure 10 shows the forecast for 2021 with 95% confidence intervals in Amman and Warsaw.
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Figure 10. Forecasts for 2021 with confidence interval (95%) based on monthly time series of Amman
and Warsaw.

The forecast was made for 2021 using the models described in Table 5. Since insolation
data for 2021 were not available, the expected quality of the ex ante prognosis was illustrated
with a 95% confidence interval, i.e., the true insolation value would be located in that
interval with a probability of 95%. Such a graphical representation is more intuitive than
numerical indicators and allows a visual assessment of the acceptability of the forecast.
Both the forecasts for Amman and Warsaw should be considered acceptable given the
assumed forecasting goal.

5. Discussion and Conclusions

The research reported in this article indicates the usefulness of ARIMA models for
forecasting insolation in different geographical locations characterized by different climatic
conditions. The capitals of Jordan and Poland, for which the level of average daily GHI
differs more than twofold, were selected for analysis. Adequate ARIMA models were
identified for both locations and the parameters for hourly and monthly time intervals
were estimated. In the case of Amman, ARIMA(1,0,0)(0,1,1)24 and ARIMA(0,0,0)(0,1,1)12
models were obtained, respectively, and in the case of Warsaw, ARIMA(1,0,0)(0,1,1)24 and
ARIMA(0,0,0)(1,1,0)12 models were obtained. The identified ARIMA models show the
same structure for hourly data in both locations and a different structure for monthly data.
Such a result indicates the necessity of identifying an adequate ARIMA model every time
for locations with different climatic conditions.

The fit of the models and their predictive capacity were also evaluated. All models
showed a very good fit to the data, as measured by the model’s standard error of judgment
and the R2 coefficient of determination (R2 > 85%). The models show a better fit for hourly
data for the summer months in the case of both Amman and Warsaw.
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All models showed satisfactory robustness in terms of their predictive capacity. Statis-
tical evaluation of the forecast for hourly data confirms their high quality for both Amman
and Warsaw (R2 > 82%). More accurate forecasts were obtained for Amman (R2 > 98%),
which is due to the greater stability of insolation in this location. The least accurate, but
still acceptable, forecast—as measured by the coefficient of determination R2 (R2 = 82.2%)
and the MAPE error (MAPE = 16.59%)—was obtained for Warsaw in February, which is
due to the small insolation values and variable atmospheric conditions at this time of year
in this location. This resulted in small absolute values of forecast errors being translated
into large relative forecast errors.

Year-ahead forecasts made for 2021 on the basis of monthly data show a high accuracy
as determined by their confidence interval. At the same time, the confidence interval is
narrower for the forecast in Amman. The differences in the observed results indicate that
ARIMA models are best suited for forecasting in stable conditions (sunny or cloudy). The
lower accuracy obtained in Warsaw may be an indication that if larger instabilities are
observed, such models fail to provide satisfactory forecasts.

The results of modeling and forecasting insolation with ARIMA models presented in
this article indicate that they are sufficiently accurate, especially for medium- and long-
term forecasts, and may be effectively used for planning the harmonization of photovoltaic
installations with the electric power system in different geographical locations. The method
proposed in this article may also be used to predict the overall potential for reducing
greenhouse gases through the development of photovoltaic systems at the level of power
minigrids (with capacities in the megawatt range). However, this should be the subject of
further detailed research [81].

The importance of solar irradiance forecasting for grid infrastructure exploitation and
management is also worth highlighting. Reliable forecasting ensures that both technical
(e.g., enhancing system dependability, proper power quality, smaller backup of energy
storage) and economic (e.g., better matching of supply and demand, lower investment
and operating costs, lower retribution cost) benefits can be achieved [82]. Despite notable
progress, further research is needed in these directions.

It should be emphasized that for each geographic location, it is necessary to identify
a suitable ARIMA model, estimate its parameters, assess the fit, and verify the model’s
forecasting ability.
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Figure A6. ACF and PACF of 𝑦𝑡 July 2020 (1 − 𝐵24)𝑦𝑡: (a) Jordan; (b) Poland. 
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