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Abstract: With many distribution networks adopting photovoltaic (PV) generation systems in their
networks, there is a significant risk of over-voltages, reverse power flow, line congestion, and
increased harmonics. Therefore, there is a need to estimate the amount of PV that can be injected into
the distribution network without pushing the network towards these threats. The largest amount of
PV a distribution system can accommodate is the PV hosting capacity (PVHC). The paper proposes
an efficient method for estimating the PVHC of distribution networks that combines particle swarm
optimization (PSO) and the gradient descent algorithm (GD). PSO has a powerful exploration of the
solution space but poor exploitation of the local search. On the other hand, GD has great exploitation
of local search to obtain local optima but needs better global search capabilities. The proposed
method aims to harness the advantages of both PSO and GD while alleviating the ills of each. The
numerical case studies show that the proposed method is more efficient, stable, and superior to the
other meta-heuristic approaches.

Keywords: distribution networks; hosting capacity; gradient descent; particle swarm optimization;
photovoltaics; PV integration

1. Introduction

Distributed generation (DG) integration in distribution networks has been on a sharp
rise for the past few decades owing to the enormous benefits of renewable energy resources
(including curbing the effects of climate change) [1]. Among these renewable energy
sources, photovoltaic generation (PV) has particularly been the most explored renewable
power generation resource due to its decreasing construction prices and high scalabil-
ity [2,3]. At the end of 2020, the cumulative worldwide total solar installed capacity stood
at an amazing 627 GW. The International Energy Agency estimates this to increase by more
than 125 GW annually between 2021 and 2025 and could reach 1.25 TW by 2023 [4,5].

However, excessive injection of PV would lead to over-voltages, line congestion, and
power quality problems [6–12]. Therefore, there is an urgent need to develop methods
for estimating the PV hosting capacity (PVHC), which is the maximum amount of PV
the distribution network can accommodate without leading to violations of voltage limits
and thermal capabilities of network cables and equipment [5]. PVHC is now an integral
metric for long-term planning in distribution networks. Therefore, a clear understanding of
the technical requirements placed upon the system operator to ensure reliable and secure
operation must be defined through the appropriate selection of performance limits.

There are two distinct methods used for PVHC estimation: the stochastic or proba-
bilistic approach and the deterministic approach [11,13]. The stochastic approach is widely
used, especially in the case of many small-scale PVs. In this approach, multiple PV out-
put scenarios are developed and evaluated using probabilistic or statistical means [14].
In the probabilistic approach, the uncertainties in PV output and load are modeled as a
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probabilistic density function and applied to the probabilistic load flow analysis. In the
statistical approach, the time series data for the PV output and the load are applied to the
time-sequential power flow analysis. The main setback in stochastic approaches is the
loss of generality in the effects and relationships of variables as the number of scenarios
increases [15] and the calculation burden associated with the consideration of a vast number
of possibilities in the model.

In the deterministic approach, load flow analyses are successively run by increasing the
amount of PV output until any of the considered operational constraints are violated [16].
This approach is practical for large-scale concentrated PV installations [5]. In determin-
istic approaches, the most dominant constraint is the voltage profile [17]. In [18,19], the
deterministic method is used to give the pessimistic PV hosting capacity of DN based on
a worst-case PV output consideration. The downside of the deterministic approach is its
inability to capture uncertainties in the PV hosting capacity estimation process.

To improve the deterministic approach and give a semblance of uncertainty inclusion,
a new method for PVHC estimation is fast emerging. For this purpose, some meta-heuristic
optimization tools have been developed. The authors of [20] propose the use of improved
multi-objective elephant herding optimization (IMOHEA) to calculate the optimal location
of pre-sized DGs in the distribution network. In [21,22], the use of modified Teaching–
Learning-Based Optimization (TLBO) to achieve a similar objective is proposed. In [23], a
combination of genetic algorithms and particle swarm optimization (GA/PSO) is developed
to evaluate optimal DG sizes. An improved differential-based evolutionary algorithm (I-
DBEA) is explored in [24] to estimate the optimal DG sizes for IEEE 33-bus test DN. Methods
used in [20–24] are not sensitive to the nature and structure of the problem and sometimes
may not attain a fully optimal solution because they have poor exploitation around the
local optimum solution [25].

This paper proposes a new algorithm based on the hybridization of Particle Swarm
Optimization (PSO) and Gradient Descent (GD). PSO provides excellent exploration of
the entire search space for the global optimum solution, while GD aids in exploiting the
local solutions [26]. The advantage of this combination is that while PSO searches for
near-optimal global solutions, GD ensures that the solution set is closer to the optimal
solution by invoking a great deal of local solution search. GD also ensures that the solution
is amenable to the structure and nature of the problem by making the particles of PSO move
in line with the differential components of the model problem [27]. The underpinning
concept of the hybrid particle swarm optimization and gradient descent (PSO-GD) method
is given in this paper and then applied to obtain the optimal locations and sizes of PV
installations in distribution networks to ultimately estimate their optimal PVHC.

The rest of this paper is organized as follows: Section 2 introduces the concepts of
generic PSO, generic GD, and hybrid PSO-GD. Section 3 gives a formulation for the PVHC
estimation problem along with the solution approach. The enhancement of PVHC by the
inverter volt-var function can also be considered. The application of the developed PSO-GD
is established in Section 4 and endeavors to discuss the stability of the optimizer. Section 5
summarizes the paper.

2. Hybrid PSO-GD Algorithm
2.1. Generic Particle Swarm Optimization

The basic particle swarm optimization was first developed by Eberhart and Kennedy
in the 1990s [28]. It was based on the natural behavior of swarms of birds or schools of fish.
It mimics the concept of individual learning and the cultural transmission of information
among individuals in a population [29–33]. In its application, the individuals are referred
to as particles and the swarms as populations. PSO is an iterative solution technique in
which the positions of particles (representing the decision variable vector) are updated by
the following equations:

xk+1
i = xk

i + v
k+1
i (1)
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vk+1
i = wvk

i + c1r1 ×
(

pbestk − xk
i

)
+ c2r2 ×

(
gbestk − xk

i

)
(2)

where xk
i and vk

i are the position and the velocity of the i-th particle at the k-th iteration,
respectively; w is the inertia constant to the movement of the particle; c1 and c2 are the
private and the social acceleration, respectively; r1 and r2 are randomly generated numbers;
pbestk is the individual particle’s best position in the past iterations; and gbestk is the overall
(global) best position in the past iterations. The concept of iteration is illustrated in Figure 1.
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Figure 1. Movement of particles in generic PSO to search for global optima. xk
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particle i at iteration k, which is updated by the velocity vk+1
i (red) directed to the pbest (green) and

gbest (orange) with random weighting coefficients and the initial particle velocity vk
i (purple). The

blue lines are contours for optimum positions with their objective evaluations (right).

Due to poor exploitation of the local optima and PSO’s lack of sensitivity to the
nature and structure of the problem (as no information on the problem’s function partial
derivatives is required), PSO may often get trapped in poor local optima [34]. Therefore,
PSO would provide a poor-quality solution.

2.2. Generic Gradient Descent Algorithm

Consider a classical optimization problem with the variables x and u below:

min f (x, u) (3)

s.t : g(x, u) = 0 (4)

h(x, u) ≤ 0 (5)

The optimal solution to this problem is achieved by first obtaining the unconstrained
Lagrange function with auxiliary variables λ and penalty parameters µ using (6):

L(x, u) = f (x, u)− λT g(x, u)− µTh(x, u) (6)

At the optimum point (x′, u′), the partial derivatives of the Lagrange function are
equal to zero, i.e.,[

∂L(x′, u′)
∂x

]
=

[
∂f(x′, u′)

∂x

]
−
[
λT
][∂g(x′, u′)

∂x

]
−
[
µT
][∂h(x′, u′)

∂x

]
= 0 (7)
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and, [
∂L(x′, u′)

∂u

]
=

[
∂f(x′, u′)

∂u

]
−
[
λT
][∂g(x′, u′)

∂u

]
−
[
µT
][∂h(x′, u′)

∂u

]
= 0 (8)

The solution set is then to assume values for the independent variables and obtain the
auxiliary variables using (9).

[λ] = −
[

∂g
∂x

]T−1

.
[

∂ f
∂x

]
(9)

The gradient of the objective function is then obtained from (10).

[∇ f ] =
[

∂ f
∂u

]
+

[
∂g
∂u

]T
[λ] (10)

If the gradient is sufficiently small, then the minimum of the problem has been reached;
otherwise, the variables are updated by adjusting them using the gradient component as
given by (11). [

uk+1
]
=
[
uk
]
− c.[∇ f ] (11)

The process proceeds by repeating (9) to (11) until a sufficiently small value of the
gradient is obtained. The authors of [26] have proposed a dual-augmented approach for
dealing with inequality constraint violations.

Figure 2 shows the iterative steepest gradient descent process. The solution search is
in the opposite direction of the gradient, augmented by an appropriate step size c. When
the optimum is reached, the gradient is nearly zero, so the iteration process stops as no
more movement is possible in (11).
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Figure 2. Solution search mechanism in the gradient descent algorithm. The red arrows indicate
the gradient of the objective function. The green arrows are the steepest gradient descent directions
orthogonal to the contours (blue) of the solution search space.

2.3. Proposed Hybrid PSO-GD Algorithm

This paper proposes the use of a combination of the PSO and the GD algorithm. This
approach is motivated by the gradient based PSO algorithm proposed in [35], which was
used for calculating optimal values of known mathematical functions. In its modification
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process, the GD-based PSO algorithm is targeted to enhance the solution search of the
algorithm by applying the steepest gradient descent to the current particle position in the
particle position update process of (2). Equation (12) shows the search procedure for the
local optimum position in the GD-based PSO. PSO is used to get the near-optimal solution,
then GD is used, in appropriate steps defined by parameter c, to move a particular particle
to converge at its local optimum solution.

xk+1
i = xk

i − c∇ f k
[

xk
i

]
(12)

The disadvantage of this method is that, in the event of the gradient being zero
(i.e., at a local optimum position), the particle would be trapped in the local optimum
position as movement is no longer possible going by (12), the same way the GD algorithm
(11) is affected. Furthermore, this method does not account for constraints because it only
uses the derivative of the objective function. The lack of incorporation of constraints in
the algorithm renders it less useful for non-linear, non-convex, constrained problems such
as PVHC estimation, which is constrained by power flow requirements and bounding
limitations on voltage, reactive power, and line flow limits.

Unlike the gradient-based PSO, the proposed approach only applies the GD component
to the particle velocity component given in (2). This modification is shown in Equation (13).

vk+1
i = −c∇ f kvk

i + c1r1 ×
(

pbestk
i − xk

i

)
+ c2r2 ×

(
gbestk − xk

i

)
(13)

where c is a step size that must be carefully selected to avoid many oscillations around the
optimum position. A very small value may lead to slower convergence, while a large value
might lead to oscillations around the optimum.

The improvement in this case is that as the search solution gets closer to the local
optimal solution, the GD component gets smaller to improve the local optimal exploitation.
Furthermore, because the component movements along the personal best position and
the global best position are not affected by the GD component, the particle’s global search
exploration in the solution space is retained.

Figure 3 shows the interaction of the particles in the search space. Through this hy-
bridization, the exploitation of the local minima is improved while the excellent exploration
capabilities of the PSO algorithm are retained.
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2.4. Evaluation of Particles for the Solution Search

Considering the earlier optimization problem in Section 2.3 given by Equations (5)–(7),
the particle #j is evaluated for its fitness by considering its objective value f

(
xk

j , uk
j

)
and

the equality and inequality constraints violations [36], g(x′) and h(x′). That is,

Fitj = f
(

xk
j

)
−

M

∑
j=1

CV,jµjhj

(
xk

j , uk
j

)
(14)

where Fitj is the fitness evaluation of particle j, M is the total number of constraints, and
µj ∈ {0, 1} is a binary variable representing the inequality constraint violation. CV,j is the
penalty factor for violation of constraint j, that is,

µj =

{
0 i f h(x, u) ≤ 0
1 i f h(x, u) > 0

(15)

Once the fitness values of all the particles in a population are obtained, they are then
compared with each other according to the superiority of the feasibility criterion [37,38]. A
candidate solution is deemed feasible if and only if it satisfies the equality and inequality
constraints. Table 1 gives the procedure for selecting the personal best particle at the k-th
iteration.

Table 1. Superiority of the feasibility procedure for selecting personal best.

Selection of the Personal Best Particle in the Population at Iteration k

A particle is superior to another if:

1. It is feasible while the one being compared with is not.
2. Both particles are feasible, but the particle has a better fitness evaluation than the one it is

being compared to.
3. Both particles have the same feasibility and fitness value, but the particle has a lower

absolute objective function gradient than the one it is being compared with.
4. Both particles have the same feasibility, fitness value, and absolute objective function

gradient, but the particle has less constraint violations than the other particle.

After the personal best candidate solution is selected, it is compared to the global best
solution according to similar superiority of feasibility rules as outlined in Table 1. The
procedure for selecting the global best solution is much like Table 1, but differs slightly.
Table 2 highlights the procedure for selecting the global best solution.

Table 2. Superiority of the feasibility procedure for selecting the global best.

Selection of the Global Best Particle

A personal best particle is superior to global best particle if:

1. It is feasible and the global best is not.
2. Both particles are feasible, but the personal best particle has a better fitness evaluation than

the global best.
3. Both particles have the same feasibility and fitness value, but the personal best particle has a

lower absolute objective function gradient.
4. Both particles have the same feasibility, fitness value, and absolute objective function

gradient, but the personal best particle has less constraint violations than the other.
5. The personal best solution becomes the global best solution if it satisfies 1–4. Otherwise, the

global best solution is retained.

The proposed PSO-GD algorithm is summarized in the flow chart shown in Figure 4.
Here, the population is initialized by selecting a population size. The best particle is
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initialized (assigned the worst possible values). At the first iteration, all particles in the
population are evaluated, and the personal best particle in the population at this iteration
is selected according to the rules in Table 1. This personal best particle is then compared to
the global best solution, after which the global best is updated according to Table 2. The
particles are updated using (1) and (13) for subsequent iterations, and the procedure above
is repeated until the maximum number of iterations MaxIt are exhausted.
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3. PVHC Estimation Problem Formulation and the PSO-GD Solution Approach
3.1. Problem Formulation

The PVHC estimation problem is formulated as a maximization problem in the form
of mixed integer, non-linear programming (MINLP), shown in Equations (16)–(22) [13,15,20–
22,24,39].

PVHC = max
Npv

∑
i=1

Ppv,i (16)

Subject to:

Pn =
N

∑
m=1

VnVm{Gnmcos(δn − δm) + Bnmsin(δn − δm)} (17)

Qn =
N

∑
m=1

VnVm{Gnmsin(δn − δm)− Bnmcos(δn − δm)} (18)

Vmin ≤ Vn ≤ Vmax (19)

Qmin,n ≤ Qn ≤ Qmax,n (20)

Smin
nm ≤ Snm ≤ Smax

nm (21)
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Ppv,i ≥ 0 (22)

where Ppv,i: PV capacity; Pn, Qn: nodal active and reactive power injections; Vn: node
voltage; Qmax,n, Qmin,n maximum and minimum PV inverter reactive power; Vmax, Vmin:
allowable nodal voltage range; Snm: line apparent power flow in line n − m; Gnm,Bnm:
conductance and susceptance of line n−m; n: index for node; Npv: total number of nodes
with installed PV; N: total number of nodes in the network.

The objective function is defined as the sum of individual nodal PV installations,
as given in (16). Equations (17) and (18) are the power balance constraints at each bus.
Equations (19) and (22) are the bounding constraints. Please note that the proposed
formulation considers the volt-var function of PV within the operable ranges defined in
equation (20). Details on the var-var function are described in the next section.

3.2. Voltage-Var Control (VVC) by PV Inverter

The volt/var control function of the PV inverter is designed so that the voltage
deviation can be compensated by means of the reactive power compensation technique [39].
Considering the negative sensitivity nature of voltage and reactive power, reactive power
injection by the inverter is typically defined as Equation (23) and the guidelines of IEEE
1547 Standard for Interconnection and Interoperability of Distributed Energy Resources
with Associated Electric Power Systems Interfaces [40].

Qi =


Qmax,i, Vi < Vmin

−αi(Vi −Vd1), Vmin ≤ Vi ≤ Vd1
0, Vd1 ≤ Vi ≤ Vd2

−αi(Vi −Vd2), Vd2 ≤ Vi ≤ Vmax
Qmin,i, Vi > Vmax

(23)

The slope of the PV inverter volt/var characteristic (αi) is given by (24). This character-
istic is determined by the maximum allowable reactive power (as set by IEEE 1547 stated
earlier) and the desired dead-band width.

αi =
Qmax

(Vd1 −Vmin)
(24)

Increasing the dead band reduces the sensitivity to changes in voltage but increases
the response time to the changes. Conversely, reducing the dead band results in reduced
response time to changes but increases sensitivity. Figure 5 shows the inverter volt-var
characteristic curve. When the voltage is below the minimum requirement, reactive power
is injected into the system, while if the voltage overshoots a prescribed limit, reactive power
is absorbed by the inverter.
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The voltage control horizon is between the minimum voltage Vmin,i and the maximum
voltage Vmax,i, with reactive power control being limited between Qmin,i for high voltages
and Qmax,i for low voltage controls.

3.3. Implementation of PSO-GD for Estimating DN’s PVHC

The typical configuration of a DN is shown in Figure 6. It has a distribution substation
through which it is connected to the grid and contains several buses (nodes) to which loads
and/or generators may be connected.
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The implementation of PSO-GD begins with the initialization of a random set of PV
output scenarios, as given in (25).


PV1,(0)

PV2,(0)

...
PVm,(0)

 =


P1,(0)

pv,1 P1,(0)
pv,2 . . . P1,(0)

pv,i

P2,(0)
pv,1 P2,(0)

pv,2 . . . P2,(0)
pv,i

...
... . . .

...
Pm,(0)

pv,1 Pm,(0)
pv,2 . . . Pm,(0)

pv,i

 (25)

where PVm,(0) is the initial particle representing a certain PV installation scenario with
Pm,(0)

pv,i components at i nodes. Except for the slack node, all nodes in the network are
regarded as potential PV locations at the start of the PVHC estimation process.

Since the objective of PVHC is to obtain the maximum amount of PV that a DN can
accommodate without risking violation of constraints, the objective evaluation of each
initial particle Fm,(0)

ob is the sum of its constituent elements of (25), as given in (26).

F1,(0)
ob

F2,(0)
ob

Fm,(0)
ob

 =


f (PV 1,(0)

)
f (PV 2,(0)

)
f (PV m,(0)

)
 =


P1,(0)

pv,1 + P1,(0)
pv,2 + . . . P1,(0)

pv,i

P2,(0)
pv,1 + P2,(0)

pv,2 + . . . P2,(0)
pv,i

...
Pm,(0)

pv,1 + Pm,(0)
pv,2 + . . .

Pm,(0)
pv,i

 (26)

A deterministic load flow (DLF) analysis is run for each particle considering the
worst loading condition (lowest load) [20–24] to determine the state variables, constraint



Energies 2023, 16, 5207 10 of 17

violations, etc. From the state variables, the gradient components for each particle are
determined using (7)–(10).

Using (14), the fitness of each particle is evaluated, and the rules established in
Tables 1 and 2 are then used for determining the population’s best individual particle
and the global best, respectively. After this, the iteration count is incremented, and the
particles are updated using (12) and (13). Because locations with PV penetrations having
lower gradients will have lower constraint violations, the PSO-GD algorithm, using the
superiority of feasibility rules (Tables 1 and 2), favors such nodes and has more lucrative
PV installation areas. High PV sizes are assigned to these locations, while lower sizes will
be given to the converse nodes. Hence, some locations will be eliminated on this pretext.

At the k-th iteration, Equations (25) and (26) are updated to (27) and (28), respectively.


PV1,(k)

PV2,(k)

...
PVm,(k)

 =


P1,(k)

pv,1 P1,(k)
pv,2 . . . P1,(k)

pv,i

P2,(k)
pv,1 P2,(k)

pv,2 . . . P2,(k)
pv,i

...
... . . .

...

Pm,(k)
pv,1 Pm,(k)

pv,2
... Pm,(k)

pv,i

 (27)

F1,(k)
ob

F2,(k)
ob

Fm,(k)
ob

 =


f (PV 1,(k)

)
f (PV 2,(k)

)
f (PV m,(k)

)
 =


P1,(k)

pv,1 + P1,(k)
pv,2 + . . . P1,(k)

pv,i

P2,(k)
pv,1 + P2,(k)

pv,2 + . . . P2,(k)
pv,i

...
Pm,(k)

pv,1 + Pm,(k)
pv,2 + . . .

Pm,(k)
pv,i

 (28)

At the final iteration, objective evaluation from (28) gives the global best solution,
which is the PVHC.

4. Simulation Results and Discussions

The efficacy, validity, and robustness of the PSO-GD algorithm were tested on the IEEE
33-bus [38] and IEEE 69-bus radial distribution networks (RDN) to determine the optimal
PV locations and sizes that can be installed into these networks and to validate the stability
of the algorithm.

The proposed algorithm was implemented in the MATLAB environment, and simu-
lations were conducted on a PC with a 64-bit dual core™ i9-9900K CPU @ 3.6 GHz and
64.00 GB RAM. For comparison, IMOEHO, QOTLBO, PSO-GA, and CTLBO [20–24] were
also applied to the same RDN.

4.1. PVHC of IEEE 33 Bus Test RDN with/without VVC

The IEEE 33-bus RDN has a 5 MVA, 12.66 kV substation with a total active load of
3.715 MW and a lagging reactive power demand of 1.800 MVAr at 33 load points. Figure 7
shows the optimal locations of PV installations estimated using the PSO-GD algorithm.

Table 3 presents the installed PV sizes in the IEEE 33 bus network with and without
the engagement of the inverter VVC.

Table 3. Installed PV sizes in kW estimated using PSO-GD with/without inverter VVC.

Location
(Node #)

Installed PV [kW]

Without VVC With VVC

7 566.31 606.56
15 776.16 832.62
18 645.23 672.14
25 370.11 374.52
26 189.38 209.72
31 726.78 764.63

TOTAL 3273.97 3460.19
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(red dots) as obtained by the PSO-GD algorithm.

The PVHC without inverter volt-var control is estimated at about 3273.97 kW, while
that with inverter volt-var control is about 3460.19 kW. This represents a significant
186.22 kW (or 5.688%) increase in PVHC. The increase is because, with volt-var control, the
inverter actively engages in ensuring that the node voltages are kept within the acceptable
limits by injecting or absorbing reactive power when the voltages fall below or rise above
the set limits, respectively. This, in turn, creates extra space for more PV installations
without abrogating the voltage limit requirements.

Figure 8 shows the voltage profiles obtained for three principal cases: case (a) is the
base case scenario of the IEEE 33-bus test DN with no PV installation; case (b) represents
a scenario with PV installations but no VVC; and case (c) gives a scenario with PV and
VVC engaged. As can be observed, in the base-case scenario, some node voltages are
below the set voltage minimum boundary. In the two cases with PV installation, there is an
improvement in the voltage profile such that in both cases, all the node voltages lie within
the set boundaries.
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Figure 9 shows the variation of reactive power injections/absorptions at the nodes
with PV injections. It also shows how the node voltages from the principal or base case
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influence the inverter with VVC functionality. On nodes with lower voltage from the base
case scenario, reactive power is injected to support the voltage. The converse is done on
nodes with higher voltages.
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Figure 9. Variation of node reactive power for (1) the base case (green) without PV installation,
(2) case 1 (orange)—with PV installation but no VVC, and (3) case 2 (purple)—with PV installation
and VVC.

In case 1, the reactive power demand is 0.3711 pu compared to 0.3819 pu for the base
case and 0.4375 pu in case 2. Thus, case 2 requires more reactive power from the slack
node. This is because of increased reactive power absorption at nodes 26 and 31 to keep
the voltages within acceptable limits. In all cases, the reactive power is kept within the
acceptable limits of 0.5 ≤ Qn ≤ 0.5 pu.

4.2. Comparison of PSO-GD with Other Meta-Heuristic Methods

To ascertain the efficiency and depth of calculation of the proposed method, PVHC
estimated using PSO-GD was compared against values obtained using IMOHEA [20],
QOTLBO [21], CTLBO [22], and PSOGA [23], and Figure 8 shows the convergence plots of
estimated PVHC values obtained using different meta-heuristic approaches. Table 4 shows
the comparison of optimal PV installation locations and estimated PVHC values.

Table 4. Optimal locations for PV installation and estimated PVHC.

Method PV Locations Hosting Capacity [MW]

CTLBO 13, 25, 30 2.9511
PSO-GA 11, 16, 32 2.9910
QOTLBO 12, 24, 29 3.0142
IMOEHO 7, 14, 25, 31 3.1760
PSO-GD 7, 18, 22, 25, 26, 31 3.4619

Because of its superior optima exploitation ability and diverse global search explo-
ration, PSO-GD finds more PV locations suitable for installation and, therefore, results in
more locations for PV installation being sought and a much higher PVHC estimate than the
other approaches. The PVHC estimated by PSO-GD is 8.26%, 12.93%, 13.60%, and 14.75%
better than IMOEHO, QOTLBO, PSO-GA, and CTLBO, respectively.

Figure 10 shows the convergence plots of estimated PVHC values obtained using
different meta-heuristic approaches.
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It is observed that QOTLBO, PSOGA, and CTLBO converge quickly, but they have
lower PVHV values compared with PSO-GD and IMOEHO. This premature convergence
is due to their inferior exploration of the solution search space. This is also manifested in
the voltage profiles associated with each approach.

Figure 11 shows the voltage profiles obtained with the PVHC installation. For PSO-GD,
IMOEHO, and QOTLBO, it can be observed that voltages at some buses reach the boundary
values to ensure that maximum PV is injected into the network. However, PSO-GA and
CTLBO converge prematurely, and their voltages do not reach the boundary values. This is
the reason why their PVHC is so low compared to the other methods.
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4.3. Stability Analysis of PSO-GD

One of the most important aspects of an optimizer is its computational stability.
Stability refers to the optimizer’s ability to generate the same solution for the same problem,
starting from different initial values [41]. The proposed PSO-GD algorithm was tested for
stability on the IEEE 33 and 69 test RDN. Several simulations were run on the network to
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ascertain the algorithm’s robustness in retaining the same output starting from different
initial values.

A 100-iteration simulation was run and repeated 25 times, starting from random
positions for each simulation, to ascertain the stability and robustness of the algorithm.
Figure 12 shows the fitness plots obtained when PSO-GD is applied to obtain the PVHC of
the IEEE 69 bus test DN. It was observed that the final values of the fitness graphs converge
to nearly the same PVHC.
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A similar study was carried out for the IEEE 33-bus test DN. Figure 13 shows the final
values of PVHC at the end of each run of PSO-GD for the two DNs.
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The mean µPVHC and standard deviation σPVHC of the observed final PVHC for each
of the 25 iterations performed on IEEE 33 and 69 DNs are summarized in Table 5.
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Table 5. Mean and standard deviation in PV hosting capacity estimated by PSO-GD over 25 simulations.

Test Case µPVHC [MW] σPVHC [MW]

IEEE-33 bus 3.4310 0.0084
IEEE-69 bus 3.3105 0.0075

With the standard deviations being 0.245% and 0.226% of the mean PVHC estimates
for IEEE-33 and IEEE-69 bus test DN, respectively, the estimated values for each simulation
only vary insignificantly. The larger standard deviation in the estimated PVHC observed
in the IEEE-33 bus test network compared to the IEEE-69 bus test DN could be attributed
to the higher demand coupled with more PV installation locations in the IEEE-33 bus
compared with that of the IEEE-69 bus DN test network.

However, this difference in standard deviation from 0.245% (in the IEEE-33 bus) to
0.226% (in the IEEE-69 bus) of only 0.019% is insignificantly low. This means that the
calculated values lie at a high-end precision level and, consequently, the PSO-GD algorithm
is stable.

5. Conclusions

In this paper, a hybrid particle swarm optimization and gradient descent method (PSO-
GD) for estimating the PV hosting capacity of a distribution network has been proposed.
This algorithm combines the excellent exploration ability in the global search space of PSO
in its generic form with the exceptional local optima exploitation exhibited by the gradient
algorithm. The outcome is an efficient, robust, and stable optimization algorithm.

This algorithm was applied to the IEEE 33 bus test distribution network to estimate
the PV hosting capacity of a distribution network. The numerical results obtained are
compared with those obtained using four other meta-heuristic methods. The results show
that the proposed algorithm gives a PVHC result that is 8.26% superior compared with the
closest competitor, IMOEHO, with the furthest competitor, the CTLBO, having a result that
is 14.75% inferior. Therefore, it was shown that the proposed algorithm is superior to the
others. From the convergence plots for the methods used, it has been demonstrated that the
proposed method not only produces a better result but also shows that it does not converge
prematurely. In turn, this makes it less susceptible to being trapped in local optima.

Further, it was demonstrated that the proposed algorithm is stable by running it
numerous times from different starting positions under different initial conditions. This
was undertaken by engaging the IEEE-33 and IEEE-69 bus RDN, on which, for every run of
100 iterations, the result was approximately the same value. With the mean estimation at
3.4310 MW and a standard deviation of 0.0084 MW for the IEEE-33 bus, and 3.3105 MW
and a standard deviation of around 0.0075 MW for the IEEE-69 bus test DN, the variance
in the estimation is about 0.226–0.245%, which is quite small and could be neglected for
most applications.

It has also been established that using smart inverters as voltage-regulating devices
(through their volt-var control function) alongside their main functionality improves the
network’s PV hosting capacity by a significant margin. As is evident from Table 4, there is a
greater number of nodes opened for PV integration when the PV inverter volt-var facilities
are engaged compared to the scenario when the facilities are not available. This translates
into the PVHC increasing from 3273.97 kW in a case with no VVC to 3460.19 kW in a case
where the VVC was used. This gives a remarkable 188.22 kW increase in PVHC or 5.69%.
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