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Abstract: Rice husks are a feedstock of biogenic silica because of their high silica content. After silica
extraction, a solid residue comprising mostly carbohydrates is present. Solid residue valorization is
important for closed-loop systems using rice husk and has minimal negative environmental impacts.
In this study, we used solid rice husk that was generated by silica extractionto anaerobic digestion
for producing biomethane. The rice husk residue was characterized in terms of total solids, volatile
solids, pH, composition, and particle size. Changing the characteristics increased biogas production
by 2.48-fold compared to that of raw rice husk. The residue produced 166.4 mL-biogas g−1 vs. and
100.4 mL CH 4 g−1 VS, much more than previously reported. Microbial community analysis, which
was conducted to investigate the biological reasons for increased biogas and methane, found increased
Bacteroidetes levels in the rice husk samples. Among archaeal communities, Bathyarchaeota was
more abundant in all rice husk samples than in the inoculum. The rice husk residue contained
more operational taxonomic units than other samples. These changes in the microbial community
significantly influenced the anaerobic digestion of the rice husk residue and improved methane
production. Our findings provide a basis for the cleaner utilization of rice husk residue to produce
renewable energy.

Keywords: rice husk; anaerobic digestion; biochemical methane potential; methane; microbial
community; pyrosequencing

1. Introduction

Globally, 757 million tons of rice and paddy were produced in 2020, as reported by the
Food and Agricultural Organization [1]. Rice byproducts are one of the major crop residues
in Asian countries; approximately 90.5% of rice and paddy are produced in Asia [1]. Rice
husk is a byproduct of the rice milling process and accounts for 20% of the paddy produced.
Since rice husk is already dried and accumulates at rice mills, it is a good candidate for an
industrial crop. Rice husks have a high silica content, with an average of 10–20% silica [2].
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Silica extracted from rice husks can be utilized in potential value-added applications, such
as bio-applications, energy storage, bioremediation, and construction materials [3].

Recently, we developed a two-stage continuous process for the effective extraction
of silica from rice husks [4]. This process was operated stably for 80 h with an 89%
silica extraction yield. During the extraction process, silica leached into the liquid, and
carbohydrates remained in the solid. The liquid part, mainly sodium silicate, has been used
to synthesize mesoporous or microsphere silica particles [5–8]. However, approximately
67% of the rice husk components remained in the solid residue. Anaerobic digestion (AD)
is a useful tool for producing environmentally friendly and economical energy from crop
residues. AD uses the biological processes of many types of bacteria that produce biogas,
which is mostly composed of methane and carbon dioxide [9]. The biogas that is produced
can be used to generate electricity and heat. Through refining, it can also be used as vehicle
fuel (compressed natural gas). Many AD plants have already been built and are in operation,
including 92 AD plants in the Republic of Korea [10], approximately 500,000 in Vietnam [11],
and more than 40 million household biogas digesters and 26,000 medium and large-scale
AD plants in rural areas of China [12]. Anaerobic digesters can be used to produce biofuel
using crop residue as a resource, resulting in reduced facility construction costs. Therefore,
AD is the most feasible and clean method for producing renewable energy using solid
residue. Originally, AD plants using raw rice husks as feedstock often experienced low
methane yields because of their complex nature and chemical composition [13], with one
study reporting 32.26 mL g−1-VS [14]. To improve the AD of rice husks, pretreatment
techniques should be used to overcome the structural obstacles of the substrate and enhance
biodegradability. Several studies have previously reported biogas enhancement in the
AD of rice husks after enzymatic (lignase) [12,15,16], physical (hammer-milled) [17], and
chemical (acidic/alkaline) [14,18] treatments.

The silica extraction process we developed consists of an attrition ball mill and an
alkaline hydrothermal treatment. Attrition ball milling has been reported to reduce the size
and crystallinity of lignocellulosic biomass, which makes it more suitable for chemical or
microbial interactions [19]. Alkaline hydrothermal treatment degrades ester and glycosidic
side chains in lignocellulosic biomass, resulting in structural changes in lignin, as well as the
swelling and decrystallization of cellulose [20]. It also increases the intraparticle porosity
and channel size of lignocellulose, which improves the accessibility to microorganisms and
enzymes [21,22]. Therefore, we expected that the rice husk residue, treated by both attrition
ball milling and alkaline hydrothermal treatment, would have improved biodegradability.

This study investigated the applicability of rice husk residue generated by silica
extraction in AD to produce clean biofuels. The effects of the silica extraction process on
the chemical composition, methane production, and microbial community changes were
compared with those of raw rice husks. The ideal goal of a circular bioeconomy is to obtain
a closed-loop system by minimizing negative impacts on the environment [23]. This study
suggests a method for efficiently using rice husk residue generated from silica extraction
for clean energy production. We believe that this study will enhance the valorization of rice
husk residue, maximize value-added utilization of rice husks, and, ultimately, be a step
toward a circular bioeconomy.

2. Materials and Methods
2.1. Substrates and Inoculum

Rice husks were collected from a rice-processing facility in Jinju, Republic of Korea.
The rice used in this study was Oryza sativa. The sewage sludge used as the inoculum was
collected from the Jungnang Sewage Treatment Center in Seoul, Republic of Korea. Sewage
sludge was collected directly from sampling values of the sewage treatment plant. The
substrates and inoculum were stored at room temperature and at 4 ◦C, respectively.
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2.2. Rice Husk Sample Preparations

Rice husk residue was prepared using a previously reported silica extraction method [4]
as illustrated in Figure 1. The silica extraction process consisted of ball milling and an
alkaline hydrothermal treatment. First, the rice husks were treated in a ball mill using
attrition pulverizer mill equipment (Hankookmc Co., Incheon, Republic of Korea) with
a 2.4 L working volume inner jar, where steel balls of 10 mm in diameter crushed the
rice husks. An alkaline solvent, sodium hydroxide (NaOH) (98%, Daejung Chemical &
Metals Co., Ltd., Siheung, Republic of Korea), was added to the grinding jar to obtain a
concentration of 0.2 M. The steel balls were moved randomly inside the jar by rotating the
impeller. The rotation speed and milling time were set at 300 rpm and 30 min, respectively.
Following ball milling, the samples were incubated at 80 ◦C for 3 h without stirring for al-
kaline leaching. After the alkaline reaction, the liquid was discharged by vacuum filtration.
The solid residue was resuspended in water, and its pH was adjusted to neutral using 1 M
HCl (Sigma-Aldrich, St. Louis, MO, USA).
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Figure 1. Illustrative scheme of the preparation of rice husk residue samples.

To prepare the ball mill treated sample, fine particles produced by ball milling of
the rice husk were transferred to a vertical sieving machine (Analysette3, Fritsch GmbH,
Idar-Oberstein, Germany) and shaken for 1 min with a 3 mm amplitude to separate the
solid from the liquid, which was used as the substrate. Alkaline treated samples were
prepared in the same manner without ball milling using the silica extraction method.

2.3. Biochemical Methane Potential (BMP) Testing

The methane production potential of the samples was assessed using an automatic
methane potential test system (AMPTS II) (Bioprocess Control AB, Lund, Sweden) under
mesophilic (37 ◦C) and stirring conditions. The biogas produced during the BMP test was
automatically measured using a gas volume meter that was integrated into the test system.
For all experimental setups, the initial volatile solids (VS) ratio of the substrate to inoculum
was maintained at 1:2. The rice husk substrate (2.5 g) was mixed with 313 mL of inoculum
and placed in a 500 mL bottle. The pH values of the bottles were not adjusted. All reactors
were purged with N2 gas (99.999% (v:v)) for 10 min before sealing. The average results
of biogas production from the three tests are shown as values at 0 ◦C and 1 atm. The
blank contained only sewage sludge and no rice husks. The quantity of biogas produced
by the samples was subtracted with that produced by the blank to determine the actual
biogas production of the samples. The experiment was conducted in triplicate. ANOVA
was performed to determine the significance of differences between raw rice husk and rice
husk residues.

2.4. Microbial Community Analysis

To analyze the microbial community, deoxyribonucleic acid (DNA) extraction samples
(5 mL each) were collected from the BMP bottle and stored at −20 ◦C until analysis. A
PowerMax ®soil DNA isolation kit (Qiagen, Hilden, Germany) was used to extract DNA
from each sample. The extracted DNA was used as the template, and the primer set
(341F and 805R) [24] was used to amplify the V3–V4 region of the bacterial 16S rRNA
gene. The specific primer set Arch519F (5′-CAGCCGCCGCGGTAA-3′) and Arch934R
(5′-GTGCTCCCCCGCCAATTC-3′) was used to detect methanogen species [24]. A QI-
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Aquick PCR Purification Kit (Qiagen) was used to purify the amplified products. Equal
concentrations of purified products were pooled, and short fragments (non-target products)
were removed using the AMPure bead kit (Agencourt Bioscience Co., Beverly, MA, USA).
The quality and product size were assessed using a Bioanalyzer 2100 (Agilent Technologies
Co., Santa Clara, CA, USA) and a DNA 7500 chip. Emulsion PCR was used to assess the
mixed amplicons, which were then deposited on Picotiter plates (ChunLab Inc., Seoul,
Republic of Korea), using the Illumina MiSeq Sequencing system to perform sequencing
according to the manufacturer’s instructions. The reads obtained from the different samples
were sorted using the unique barcodes of each PCR product. Then, barcodes, linkers, and
primer sequences were removed from the original sequencing reads. Any reads with two or
more ambiguous nucleotides, low quality scores (average score < 25), or reads shorter than
300 bp were discarded. The Bellerophon method, which compares the BLASTN search re-
sults between the forward and reverse half sequences, was used to detect potential chimeric
sequences [25]. After removing these, each reader’s taxonomic classification was assigned
to the EzBioCloud server (www.ezbiocloud.net) to achieve species-level identification (97%
cutoff). Typical taxonomic suffixes are _s (for species), _g (genus), _f (family), _o (order), _c
(class), and _p (phylum). Unclassified taxa are indicated by _uc [26]. The pyrosequencing
reads generated in this study can be found in the European Molecular Biology Laboratory
Sequence Read Archive (EMBL SRA) database under the accession numbers SUB9552054
and PRJNA726362. Samples were collected on the 1st and 7th days. The 7th-day samples
were analyzed in-depth because biogas production showed a stable value and the microbial
community changed significantly compared to the 1st day. The microbial community of
the inoculum was analyzed before rice husks were added.

2.5. Analytical Methods

Total solids (TS) and vs. were measured using standard methods [27]. TS was weighed
by placing the sample in a drying oven (Daihan Scientific Co. Ltd., Seoul, Republic of
Korea) at 105 ◦C for 24 h. vs. was measured by burning the sample at 550 ◦C for 1 h using
a muffle furnace (Intec Systems Inc., Seongnam, Republic of Korea). After burning, the
weights of the samples were measured three times, and the average values were used. The
dry matter of the substrate was then analyzed. The total carbon and nitrogen contents of
the samples were measured using an elemental analyzer (CS744, LECO Co., St. Joseph, MI,
USA) compliant with ISO standards [28]. The biogas composition was determined using
a gas chromatography (GC)-thermal conductivity detector (YL6500 GC system, Young In
Chromass Co., Anyang, Republic of Korea) with a Carbonxen®-1006 PLOT capillary GC
column (Supelco Inc., Bellefonte, PA, USA). The oven temperature of the gas chromatograph
was set to 65 ◦C. The temperatures of the injector and detector of the gas chromatograph
were set to 230 ◦C. The carbohydrate, lignin, and ash contents were measured according
to the standard procedure specified by the National Renewable Energy Laboratory [29].
In this method, two-step acid hydrolysis is performed using concentrated and diluted
sulfuric acid to separate sugars from cellulose and hemicellulose. A high-performance
liquid chromatograph equipped with a refractive index detector (Waters 2414, Waters Co.,
Milford, MA, USA) was used to examine the sugar composition. Sugars were eluted with
degassed distilled water at a flow rate of 0.5 mL min−1 using a Sugar-Pak column (Waters
Co., Milford, MA, USA), which was maintained at 70 ◦C. The acid-soluble lignin content
was measured using ultraviolet spectroscopy (Jasco V-550 UV/VIS spectrophotometer,
Jasco, Hachioji, Japan) at 320 nm. The acid-insoluble lignin content was determined by
burning the samples at 575 ◦C [30]. All measurements were conducted in triplicate for error
analysis. The standard deviations for the results are shown as error bars within the graphs.

www.ezbiocloud.net
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3. Results and Discussion
3.1. Composition and Physical Property Changes after Silica Extraction

The characteristics of rice husks are important factors in AD. The characteristics of the
samples are listed in Table 1.

Table 1. Characteristics of raw rice husk, solid residue, and inoculum used in this study.

TS
(wt %)

VS a

(wt %) pH C
(wt %)

N
(wt %) C/N Carbohydrate

(wt %)
Lignin
(wt %)

Ash
(wt %)

Raw rice husk 94.3 ± 0.13 86.8 ± 0.20 6.51 44.2 0.87 50.8 51.8 28.9 13.7
Solid residue 96.3 ± 0.14 97.2 ± 0.27 7.22 50.9 1.22 41.7 62.4 30.8 3.0

Inoculum 22.6 ± 0.02 70.7 ± 1.04 8.23 34.2 4.13 8.28 6.2 12.8 42.7
a Dry basis.

The carbohydrates in rice husks are the main energy source for anaerobic microbes. The
raw rice husk used in this study was composed of 51.8 wt % carbohydrates, 28.9 wt % lignin,
and 13.7 wt % ash. The high ash content of rice husk is a notable characteristic. After silica
extraction, the rice husk residue was composed of 62.4 wt % carbohydrate, 30.84 wt % lignin,
and 3.02 wt % ash (Table 1). The silica extraction process removed mainly ash. Rice husk ash
contains mainly amorphous silica and other metallic compounds. Ash content interferes
with the accessibility of carbohydrates to anaerobic microbes. Removing ash content would
improve the accessibility of carbohydrates to microbes. Alkaline hydrothermal treatment
has been reported to cause redeposition/relocalization of lignin [31], resulting in a reduced
recalcitrance of lignocellulosic biomass. Therefore, the alkaline treatment used in this study
is expected to improve accessibility to microbes.

The rice husks had a diameter of approximately 6–7 mm before silica extraction.
Because ball milling was applied during silica extraction, the solid residue was reduced in
size. Specifically, 25.4 wt % of the residue particles were collected by a sieve of <300 µm
and 62.1 wt % by 300–1000 µm. This indicates that the silica extraction method used in this
study is also effective in reducing biomass particle sizes.

The silica extraction process did not significantly change the TS, but the vs. increased
because of the significant loss of ash (Table 1). The pH of the rice husk residue increased
slightly, which could be due to NaOH remaining after washing. The carbon-to-nitrogen
(C/N) ratio in the raw rice husk was 50.8. Ideally, the C/N ratio should be between 10 and
30 [32]. After silica extraction, the C/N ratio of the solid residue was 41.7. Therefore, the
solid residue had a C/N ratio closer to the optimum range.

3.2. Improved Biogas and Methane Production

The biogas yield from the solid residue was approximately 2.48-times higher than
that from the raw rice husk sample (Figure 2). The methane production in the solid
residue was 2.18-times higher than that in the raw rice husk (Table 2). The solid residue
sample showed a biogas production of 166.4 mL g−1 vs. and methane yield of 100.4 mL
CH4 g−1 vs. (Table 2). These values are significantly higher than the previously reported
values of 18–75 mL g−1 TS even though the previous studies pretreated the rice husk with
enzymatic (lignase), physical (hammer-milled), and chemical (acidic/alkaline) treatments,
respectively [14,16–18,33]. To investigate the effects of a single factor, two samples were
prepared separately either by ball milling or alkaline hydrothermal treatment. The final
biogas yield from ball milling and alkaline hydrothermal treatment was 1.86- and 1.80-times
higher, respectively, than that of the raw rice husks (Figure 2 and Table 2). The increase in
biogas from the single treatments was lower than that from the combinational treatment
of the solid residue sample. This indicates that the combinational treatment for extracting
silica has a synergistic effect from both single treatments. The single treated samples
showed different patterns in biogas production. The ball mill treated sample showed a
much higher increase in biogas on the first day compared to the alkaline hydrothermal
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treated sample (Figure 2). Ball milling reduced the size of the rice husk particles, which
increased the surface area and improved the accessibility of microbes to the rice husk
particles. In contrast, the alkaline hydrothermal treated sample showed a constant increase
in biogas during the initial three days. Alkaline hydrothermal treatment removed most of
the inorganics from rice husks and broke down the lignin, allowing unrestricted access to
carbohydrates. Through the synergistic effect of these single treatments, a large increase in
final biogas yield was obtained in the solid residue.
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Table 2. Biogas and methane yields.

Raw Solid Residue Ball Mill Alkaline
Hydrothermal

Biogas (mL g−1 VS) 67.1 166.4 124.5 120.7
Methane (mL CH4 g−1 VS) 46.1 100.4 83.9 80.3

Although the pH of the mixed liquid in the BMP bottles was not adjusted in this
study, it was maintained at 7.3–7.7 during AD. Considering that the optimal pH range for
methanogenesis is between 6.2 and 8.0 [34], we assumed that the pH should not be an issue
in our AD tests.

3.3. Microbial Community Analysis

After AD, microbial communities were analyzed in both the rice husk samples and
inoculum. Regarding the bacterial community, three dominant bacterial phyla were found
in the inoculum: Bacteroidetes, Choloroflexi, and Cloacamonas (Figure 3a). In the rice husk
samples, slight increases in the microbiome levels were found in the three bacterial phyla.
However, Bacteroidetes levels significantly increased to 38% in the solid residue (Figure 3a)
compared to the inoculum. The Bacteroidetes level increase was also significant in the single
treated samples, but not as much as in the solid residue. Bacteroidetes produce short-chain
carboxylic acids, hydrogen, and carbon dioxide as the end products of cellulolytic fermentation
processes [35–38]. The short-chain carboxylic acids generated by Bacteroidetes are composed
of C2-C3 carbon chain carboxylic acids, which can be converted into biological methane via
a collaborative process of degradation and methanogenesis [39]. Therefore, the increase in
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Bacteroidetes levels in the solid residue can explain the increased methane production in the
solid residue sample.

Subsequently, the bacterial community was analyzed at the genus level to determine
the dominant bacterial species (Figure 3b). Significantly, an uncultured genus, BBZD_g_uc,
was the most prevalent genus of Bacteroidetes in the rice husk residue. In the raw rice husk
sample, AJ009469_g, which belongs to Anaerolinaceae (Chloroflexi), was the most prevalent
(12.99%) (Figure 3b). AJ009469_g has rarely been reported in microbiome samples, but it has
been found in biomethanation processes that use a chemically defined medium rather than
a complex carbon source [40–42]. In contrast, BBZD_g_uc was detected in the anaerobic
co-digestion of cassava pulp with pig manure [43], AD sludge [44], and fish intestines [45].
BBZD_g_uc appears to be directly related to the digestion of lignocellulosic biomass. The
species Cloacamonas acidaminovorans was observed as one of the main species, accounting
for 4.1–6.3% of the bacterial communities in all samples (Figure 3a). Recent studies have
demonstrated that C. acidaminovorans is involved in the AD of cellulose [46]. C. acidaminovo-
rans are protein and polysaccharide degraders in dry fermentation processes [47]. Among
archaeal communities, Bathyarchaeota was more abundant in all rice husk samples than in
the inoculum.

Similar to the bacterial communities, the archaeal communities were analyzed using
pyrosequencing. Interestingly, Bathyarchaeota was more abundant in all rice husk samples
than in the inoculum (Figure 3c). Although Bathyarchaeota has yet to be successfully
cultured [48], a microbiome containing this species positively contributes to methanogenesis
of lignocellulosic biomass via AD [49]. Additionally, Bathyarchaeota may be involved in
the fermentation of lignocellulosic biomass and cellulose utilization [50]. The distribution
of Bathyarchaeota was not correlated with methane production, but the solid residue and
alkaline hydrothermal treated samples showed more operational taxonomic units than
other samples in the rarefaction curve using alpha diversity analysis (data not shown). This
means that alkaline treatment increased the overall archaeal diversity and affected methane
production.

The solid residue sample tested in this study induced changes in the microbial community
of anaerobic digesters, which eventually led to increased biogas and methane production.
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Figure 3. Distribution at the level of (a) bacterial phylum, (b) bacterial genus, and (c) archaeal genus
of rice husk samples and inoculum. (a) Green boxes represent uncultured Chloroflexi, orange boxes
represent Cloacamonas, and blue boxes represent uncultured Bacteroidetes. (b) Blue boxes represent
uncultured AJ009469, orange boxes show Cloacamonas_g, and the black line represents uncultured
BBZD_g. (c) Textured boxes represent an uncultured genus belonging to Bathyarchaeota, and colored
boxes show a genus belonging to Euryarchaeota.

4. Conclusions

The effects of solid residue produced from the silica extraction process on AD were
investigated. Because the silica extraction process, consisting of ball milling and alkaline
hydrothermal processes, enhanced accessibility of the solid residue, this led to improved
biogas production. The combinational treatment for silica extraction had the synergistic effects
of both ball milling and alkaline hydrothermal treatments, which outperformed the effects
of the individual treatments on their own. The microbial community differed significantly
depending on the rice husk samples, according to metagenome analysis. The solid residue
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sample with the highest abundance of Bacteroidetes exhibited the highest methane production.
It was concluded that the solid residue generated from silica extraction produced higher
methane in an anaerobic digester than raw rice husk and is applicable in AD.
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