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Abstract: In recent years, there has been a growing global trend towards transitioning from centralized
energy systems to distributed or decentralized models, with the aim of promoting the widespread
utilization of renewable energy sources. As a result, the concept of direct energy trading among
consumers has garnered considerable attention as a means to effectively harness the potential of
distributed energy systems. However, in this decentralized trading scenario, certain consumers
may encounter challenges in receiving electricity from their preferred suppliers due to limited
supply capacities. As a result of this constraint, there is a reduction in the advantages enjoyed by
consumers. While previous studies have predominantly focused on optimizing resource allocation
efficiency, the issue of equitable consumer benefits has often been overlooked. Therefore, it is crucial
to develop a trading mechanism that considers the preferences of market participants, in addition
to balancing supply and demand. Such a mechanism aims to enhance both fairness and efficiency
in the market. This paper introduces the formulation of a single-objective optimization and multi-
objective optimization problem for an electricity market trading mechanism. To address this challenge,
two single-objective algorithms and six evolutionary algorithms (EAs) are employed to solve the
optimization problem. By analyzing the simulation results, this study demonstrates the efficacy of
the chosen evolutionary algorithms (EAs) and a single-objective optimization approach in effectively
optimizing both the utilization of resources and the equitable distribution of consumer benefits.

Keywords: decentralized energy transactions; multi-objective evolutionary optimization; graph theory

1. Introduction
1.1. Research Background

In recent years, there has been a global push towards decentralization in energy sys-
tems, with many countries actively promoting the transition from centralized to distributed
systems. This transition is driven by the goal of harnessing clean energy sources more
effectively. Traditional energy systems have heavily relied on depletable energy resources
due to their capacity to provide stable electricity to many consumers [1]. However, these
decentralized energy systems still pose a challenge in terms of greenhouse gas emissions,
which contribute significantly to the issue of global warming. As a result, numerous
countries have implemented various policies and measures to promote the widespread
adoption of renewable energy sources. As outlined in the “Zero Emissions” document,
the Japanese government has set a clear target of reducing greenhouse gas emissions by
26% below the 2013 levels by the year 2030 [2]. Furthermore, Japan aspires to achieve
a state of “Beyond Zero” by 2050, making a significant contribution to the worldwide
reduction in accumulated atmospheric CO2. To promote the widespread use of renewable
energy among households, one of the measures implemented by governments globally is
the established Feed-In Tariff (FIT) programs. Individuals who generate their own elec-
tricity are referred to as prosumers [3], since they both consume and produce electricity.
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Under FIT, public utilities are obligated to purchase surplus electricity from prosumers
at a predetermined rate over a specified period. This mechanism enables prosumers to
calculate the return on their investment in renewable energy systems. Moreover, in Japan,
the Feed-In Premium (FIP) system was introduced in April 2022 [4]. Unlike the fixed-rate
purchasing approach of FIT, the FIP system incentivizes the adoption of renewable energy
by offering a premium or subsidy to prosumers when they sell their electricity on the
wholesale market. Consequently, these programs have generated considerable interest
among the general public. Governments in numerous countries have also implemented
energy market frameworks to ensure efficient electricity utilization. As an example, Japan
has introduced the concept of a virtual power plant (VPP), which aims to consolidate the ca-
pacities of various distributed energy resources into a unified system. Another illustration
is the implementation of demand response (DR), which involves modifying consumers’
electricity consumption patterns to better match supply and demand conditions. In VPP
and DR systems, third-party aggregators participate in local energy markets, acting as
intermediaries for managing prosumers’ energy resources. However, these methods suffer
from issues such as limited transparency and commissions incurred by aggregators for
trading [5]. This study presents a novel energy trading model that aims to achieve two
objectives: ensuring equitable distribution of benefits among prosumers and optimizing the
efficient allocation of resources. The objective is to ensure fair benefits within the market,
preventing monopolization by any particular prosumer and eliminating wasteful power
trading to maximize overall market benefits. The evaluation metric for fairness, described
in detail in Section 4.4 later, aims to minimize the standard deviation, to maximize the
minimum benefit, and to suppress variability.

1.2. Peer-to-Peer Energy Trading

P2P energy trading, also known as direct energy trading among prosumers, has gained
considerable attention as a way to address current issues. Instead of relying solely on a
single public utility, prosumers now have the opportunity to engage in direct electricity
trading with both utility and other prosumers, as depicted in Figure 1. This shift from
the traditional energy trading system portrayed in Figure 2, where prosumers can only
trade electricity with a central utility, brings several advantages. By eliminating the need
for intermediaries, P2P energy trading enhances transparency and has the potential to
reduce electricity rates [6]. This increased transparency and lower cost can incentivize
prosumers to actively participate in energy exchange, fostering efficient electricity usage
within local energy markets. The feasibility of P2P energy trading has been significantly
bolstered by the emergence of blockchain technology [6]. This technology provides a secure
and decentralized platform for recording transactions, ensuring trust and reliability in the
P2P energy trading process.

Figure 1. Peer-to-peer trading.
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Figure 2. Current trading.

Nevertheless, the practical implementation of P2P energy trading encounters vari-
ous challenges due to the inherent constraints of the market. One significant challenge
arises from the increased diversity of potential trading partners for prosumers, each with
their own specific preferences regarding other participants in the market. Prosumers
will make informed decisions regarding their trading partners by considering a range of
factors, such as pricing structures, trading terms, reliability, and specific requirements.
However, ensuring equilibrium between the availability and consumption of electricity is a
critical constraint in energy markets. If every participant in the market solely prioritizes
maximizing their individual benefits when selecting trading partners, it can disrupt the
delicate equilibrium between supply and demand, thereby violating market constraints.
Managing this supply–demand balance becomes challenging in P2P energy trading [7].
If a prosumer strives to maximize their personal gain without considering the impact on
others in the market, it can easily disrupt the balance and lead to market instability. Fur-
thermore, if participants strictly adhere to market constraints when choosing their trading
partners, certain prosumers may face challenges in engaging in electricity trading with their
desired counterparts, particularly when their electricity generation capacity is constrained.
Consequently, this situation can diminish the overall benefits for prosumers. Hence, it
is crucial to develop a strategy that not only harmonizes the availability and demand of
energy resources but also accommodates the varying preferences and needs of market
participants. Such a mechanism should ensure that prosumers can trade electricity with
their preferred partners while simultaneously upholding market stability and the overall
supply–demand equilibrium.

1.3. Related Work

The P2P market has become a hot market, and various studies are currently being con-
ducted. N. Argyris et al. focused on workload allocation problems and healthcare delivery
issues, conducting research using the P2P model, particularly the multi-level optimization
model, to achieve fairness and efficiency [8]. The use of ordered weighted averaging was
employed as a constraint for resource allocation decisions. This demonstrates that the P2P
model can be applied beyond the realm of the electricity sector. M.Tan et al. proposed a
cooperative trading model in their research, with the objective of maximizing the collective
and individual gains of microgrids involved in energy trading [9]. Instead of a single micro-
grid market, multiple microgrids were established, and profit optimization was pursued
within that framework. As in the aforementioned literature, there are many approaches
that utilize game theory to understand the behavior of prosumers and incorporate it into
the objective function. R. Jing et al. conducted research on a method to achieve fairness in
the profits of residential and commercial prosumers using the Nash-type non-cooperative
game model [10]. V. Regener et al. conducted a study on a method to optimize fairness and
efficiency in the energy trading market [11]. They developed an agent-based framework
and evaluated user acceptance, economic performance, practicability, and the ability to
relieve grid congestion as criteria. That study also considered community revenue and wel-
fare distribution as key performance indicators (KPIs). C. Liu et al. set up a three-layered
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optimal model [12]. The first layer involves capacity allocation and scheduling for build-
ings. The second layer focuses on cost-sharing, and the third layer incorporates a dynamic
pricing mechanism. This model configuration contributes to carbon reduction and cost sav-
ings. K. G. H. Kong et al. utilized two single-objective optimization methods and a Fuzzy
method to optimize market trading [13]. The two single-objective optimization methods
aimed to minimize electricity costs and carbon emissions. In practice, the single-objective
optimization methods achieved a reduction of USD 20,185.99/month in electricity costs
and an 82.55% reduction in carbon emissions. Additionally, the Fuzzy inference method
also achieved a reduction of USD 20,185.99/month in electricity costs and a 61% reduction
in carbon emissions.

As mentioned in the previous related studies, research on P2P energy markets is being
conducted through various methods and approaches. However, in this study, our objective
is to optimize fairness and efficiency from both perspectives while considering both single-
objective and multi-objective approaches. We aim to select the most suitable method for
achieving fairness and efficiency within the microgrid, with a particular focus on individual
prosumers. Therefore, our study differs from others by placing a greater emphasis on
individual prosumers and aiming to achieve the most optimal market conditions.

Moreover, a market mechanism is formulated as a multi-objective optimization prob-
lem to evaluate the benefits of individual prosumers. Given that P2P energy trading is still
in the experimental phase and has not been widely implemented in real-world markets, it
necessitates thorough investigation and analysis.

1.4. Contribution

This paper designs a system that optimizes the efficiency of resource allocation and
the fairness of prosumer benefits using a P2P energy trading model within a distributed
system. This system has the following features:

1. It envisions a decline in the economic strain exerted upon standard households that ne-
cessitate electricity. FIT and FIP, which are invariably shouldered by these households,
are encompassed within the realm of renewable energy surcharges. The number of
prosumers is undeniably escalating. Consequently, it is indisputable that the quantity
of surplus electricity, which public utilities are obliged to procure, is consistently on
the rise. However, if this surplus electricity is judiciously employed within a localized
energy network, the need for public utilities to purchase it diminishes, thereby stimu-
lating transactions amongst prosumers. As a result, this precipitates a decline in the
renewable energy surcharges that typical households are burdened with.

2. Secondly, the proposed method lends assistance to typical households in their pursuit
of identifying suitable trading partners. Each prosumer is confronted with the decision
to elect a supplier or purchaser during every transaction within the peer-to-peer
energy trading domain. Given the overwhelming myriad of options, this process is
often complex for individuals. However, the proposed method, when implemented
in distributed power apparatuses such as smart meters, facilitates the automatic
determination of trading partners.

This study thereby aims to actualize efficacious electricity utilization and to augment
the benefits of each prosumer.

1.5. Paper Structure

This paper is structured as follows. In Section 2, we provide an explanation of the
energy trading model used in this study, including the relevant definitions. Section 3
formulates several optimization problems to analyze prosumers’ benefits within the energy
trading model. Section 4 presents the simulation results and provides a detailed discussion.
Finally, in Section 5, we conclude the paper and outline future directions for research.



Energies 2023, 16, 5501 5 of 17

2. Definitions
2.1. Model Illustration

The electricity market model employed in this study comprises two main categories
of participants: a public utility and prosumers, as illustrated in Figure 1. The collection
of all participants is represented as V. The public utility, such as Tokyo Electric Power
Company (TEPCO), which held a monopoly in previous markets, is represented by vp ∈ V.
To fulfill the electricity demand, our model incorporates the presence of a public utility to
compensate for any deficits or surpluses of electricity. The trading volume of TEPCO is
used as a parameter in this study. Each prosumer, denoted as vi ∈ V (i = 1, 2, . . . , N), can
act as either a seller or a buyer in individual transactions, showcasing diverse behaviors.
Their participation is essential in enabling energy trading among the market participants.

In the P2P trading market, depicted in Figure 3, prosumers have the flexibility to
switch between the roles of sellers and buyers based on their electricity production and
consumption levels. When a prosumer generates excess electricity from their own energy
sources, they can participate as sellers, offering their surplus energy to other participants.
On the other hand, if a prosumer’s electricity generation falls short of their consumption,
they can act as buyers, acquiring additional electricity from available sellers. It is important
to note that not all prosumers possess their own energy generation capabilities. In such
cases, these prosumers exclusively play the role of buyers, relying on other participants for
their electricity needs. Furthermore, prosumers who are temporarily absent or experience a
lack of demand may not actively engage in the market during those periods. We denote
the set of prosumers acting as sellers as VS ⊂ V, and the set of prosumers acting as buyers
as VB ⊂ V. The behavior of a specific prosumer, denoted as vi, is determined by their
electricity production and consumption dynamics within the P2P trading market. The
prosumer’s power production is indicated by pi ∈ R, while their power consumption is
represented by ci ∈ R. When pi > ci, the prosumer vi assumes the role of a seller, capable
of supplying electricity to other participants in the market. Alternatively, when pi < ci,
the prosumer vi assumes the role of a buyer and has the ability to acquire electricity from
other participants. In the case where pi = ci, the prosumer vi does not function as either a
seller or a buyer and remains inactive in the market.

Figure 3. The role of seller and buyer.

2.2. Restrictions on the Volume of Trades

Each prosumer has the ability to both supply and purchase electricity based on their
electricity generation and consumption levels. The volume of electricity traded between vi
and vj is represented by x : (VS ∪ vp)× (VB ∪ vp)→ R, where x denotes the trading volume.
For every connection (vi, vj) ∈ A, there exists a limit that determines the maximum amount
of electricity that can be transmitted from vi to vj. The capacity associated with (vi, vj) ∈ A
is calculated using the function cap : (VS ∪ vp)× (VB ∪ vp)→ R. It is important to ensure
that the trading volume on each arc satisfies certain constraints:

0 ≤ x
(
vi, vj

)
≤ cap

(
vi, vj

)(
vi ∈ VS, vj ∈ VB

)
, (1)
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0 ≤ x
(
vi, vp

)
≤ cap

(
vi, vp

)
(vi ∈ VS), (2)

0 ≤ x
(
vp, vj

)
≤ cap

(
vp, vj

) (
vj ∈ VB

)
. (3)

The capacity, denoted as cap, of the arc (vi, vj) is determined using various formulas
depending on the specific trading pairs involved. In the case of prosumers, the trading
capacity is defined as a percentage of their total electricity production or consumption. This
percentage can be set based on various factors such as market regulations, prosumer prefer-
ences, or system constraints. By specifying a maximum percentage, the trading volume is
limited to a certain portion of the prosumer’s total electricity generation or consumption.

cap
(
vi, vj

)
= min

(
(pi − ci), (cj − pj)

)
. (4)

As the public utility is responsible for supplying electricity to prosumers in order
to cover their deficits, it is assumed to have the capacity to meet their electricity needs.
Therefore, the capacity of the arc (vp, vj) is defined as follows:

cap
(
vp, vj

)
= cj − pj. (5)

Moreover, recognizing that the public utility plays a role in absorbing the surplus
electricity generated by prosumers, it is assumed to have the capability to procure elec-
tricity from them. Hence, the capacity of the connection between vi and vp is determined
as follows:

cap
(
vi, vp

)
= pi − ci. (6)

Sellers are obligated to supply the same quantity of electricity as their own surplus
to other participants. Likewise, buyers are required to acquire electricity equal to their
own electricity shortfall from other participants. These conditions can be formulated in the
following manner:

∑
vj∈VB∪{vp}

x(vi, vj) = pi − ci (vi ∈ VS), (7)

∑
vi∈VS∪{vp}

x(vi, vj) = cj − pj
(
vj ∈ VB

)
. (8)

2.3. Rate

The exchange rate for electricity trading between prosumers and the public utility
is determined based on market conditions and regulatory policies. A seller, denoted as
vi ∈ VS, proposes to sell electricity to buyers, represented by vj ∈ VB, at a specific unit
rate of ri ∈ R. If vi provides electricity x(vi, vj) to vj, then vj is obligated to buy electricity
from vi at a price of x(vi, vj) · ri. The public utility, represented by vp, offers electricity to
buyers at a fixed rate of rs ∈ R per unit, under the condition that rs ≥ ri. If the public
utility, denoted as vp, supplies electricity x(vp, vj) to prosumer vj, prosumer vj is obligated
to procure the electricity from vp at a price of x(vp, vj) · rs. The public utility vp acquires
electrical energy from suppliers at a fixed rate of rb ∈ R, with the requirement that ri ≥ rb.
When vi provides electricity x(vi, vp) to the public utility vp, vp is obligated to procure
electricity from vi at a price of x(vi, vp) · rb. Figure 4 indicates the relationship of electricity
rate between each prosumer and public utility. The transaction rate ri among prosumers
is set lower than the sales rate rs of the public utility and higher than the purchase rate
rb of the public utility so that prosumers can obtain higher benefits when trading among
prosumers than with the public utility. Figure 4 indicates that the benefit margin is highest
in the following order: pink, followed by turquoise, and then yellow-green.
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Figure 4. Electricity rate.

2.4. Reservation Price

In the realm of energy trading, every participant establishes a pricing threshold that
represents the maximum amount buyers are willing to pay and the minimum amount
sellers are willing to accept. The prosumers’ reservation prices are represented by the
function ω : V → R. The calculation of ω differs based on the prosumer’s role. Therefore,
the reservation prices can be expressed using the following formulas:

ω(vi) =

{
(pi − ci) · rb (pi > ci),
(ci − pi) · rs (pi < ci).

(9)

In the context of traditional electricity trading, where prosumers have limited options
and can only engage with the public utility, the reservation price ω(vi) is determined based
on the charge set by the public utility.

2.5. Prosumer’s Benefit

When prosumers participate in electricity trading, they have the potential to gain
advantages by engaging with partners who offer more advantageous conditions than their
current ones. The function π : V → R captures the advantage or benefit obtained by the
prosumer. The calculation of π varies depending on the prosumer’s behavior. For sellers,
their benefit is determined by the difference between their total revenue and the reservation
price. The function ζ : VS → R represents the earnings or income of each seller. The
collective income of all sellers is determined by summing up the individual incomes of
each seller.

ζ(vi) = ∑
vj∈VB

x
(
vi, vj

)
· ri + x

(
vi, vp

)
· rb. (10)

When a prosumer assumes the role of a seller, their benefit is determined as follows:

π(vi) = ζ(vi)−ω(vi). (11)

The diagram in Figure 5 depicts the structure of the buyer’s benefit. The benefit of
a seller is determined by subtracting their reservation price from their total income. The
monetary return of a prosumer is determined by mapping ζ : VS → R. The total revenue
generated by each seller is calculated using the following formula:

η
(
vj
)
= ∑

vi∈VS

x
(
vi, vj

)
· ri + x

(
vp, vj

)
· rs. (12)

When a prosumer assumes the role of a buyer, their benefit is determined as follows:

π
(
vj
)
= ω

(
vj
)
− η

(
vj
)
. (13)

The buyer’s benefit structure is depicted in Figure 5.
To ensure that prosumers do not experience financial losses in electricity trading, we

assume that the benefit of each prosumer, denoted as π(vi) and π(vj), is non-negative.
In the context of a localized energy market, this study specifically examines P2P energy
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trading, emphasizing its implications and outcomes. Therefore, the benefit of the public
utility is not taken into consideration.

Figure 5. Benefit.

3. Problem Formulation

In this section, we discuss the analysis of the prosumer’s benefit in P2P trading markets
through two single-objective optimization problems and a multi-objective optimization
problem.

3.1. Prosumer’s Benefit Maximization

In order to optimize the overall benefit of prosumers in a distributed energy system, we
introduce the prosumer’s benefit maximization problem (PBMP). PBMP aims to maximize
the total benefit obtained by individual prosumers, thereby enhancing their respective
benefits. This problem can be formulated as follows, aiming to find the optimal solution
that maximizes the advantage or gain for each prosumer involved:

maximize ∑
vi∈VS∪VB

π(vi). (14)

subject to (1)–(3), (7) and (8), (15)

where the objective function is optimized for each time step.
Constraints (1)–(3) enforce the capacity limits of the trading arcs, ensuring that the

traded electricity does not exceed the maximum capacity and remains non-negative. Fur-
thermore, constraint (7) ensures that the total trading volume of sellers is equal to their
excess electricity, while constraint (8) ensures that the total trading volume of buyers
matches their electricity deficit.

3.2. Minimum Prosumer’s Benefit Maximization

To address the variability in prosumers’ benefits and to enhance fairness, we formu-
lated the minimum prosumer’s benefit maximization problem (MPMP). The MPMP aims to
maximize the minimum benefit among all prosumers, thereby ensuring that no prosumer
receives a disproportionately low benefit. An alternative approach could be to minimize the
variance in benefits, but this may result in scenarios where the variance reaches zero. While
such an outcome satisfies the fairness objective, it may not effectively optimize resource
allocation. In this study, the decision is made to prioritize the maximization of the minimum
benefit, as it helps elevate the overall level of profit for prosumers. The objective of the
MPMP is achieved by formulating and addressing the following optimization problem:

maximize min
vi∈VS∪VB

π(vi). (16)
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subject to (1)–(3), (7) and (8).

The primary goal of the MPMP is to optimize the objective function while ensuring
the maximization of the minimum prosumer’s benefit, in accordance with the constraints
outlined in the previous Section 3.1.

3.3. Multi-Objective Optimization

To accomplish both the goals of maximizing the total prosumer’s benefit and mini-
mizing the standard deviation of the prosumer’s benefit, a multi-objective optimization
problem (MOP) is introduced. The MOP seeks to identify solutions that optimize resource
allocation efficiency while ensuring fairness for the prosumer’s benefit. The formulation of
the MOP is as follows:

maximize ∑
vi∈VS∪VB

π(vi).

minimize

√
∑vi∈VS∪VB

(π(vi)− π)2

N
. (17)

subject to (1)–(3), (7) and (8),

The given problem formulation focuses on optimizing the objective functions. The
constraints remain consistent with those described in Section 3.1.

4. Simulation Results

To examine the solutions derived from the proposed problems, simulations are exe-
cuted utilizing specially designed simulators.

4.1. Conditions

In this particular simulation, the parameters were meticulously chosen, considering the
specific characteristics of the Japanese electricity market. However, certain modifications
were made to align them with the specific context of the study. The simulation utilized the
parameter settings shown in Table 1.

Table 1. Parameters set in simulations.

Parameter Value

# of prosumers 10
pi [Wh] Randomly decided between 349 Wh and 749 Wh
ci [Wh] Randomly decided between 302 Wh and 702 Wh

rs [yen/kWh] 29.05
rb [yen/kWh] 8.05
ri [yen/kWh] 18.55

T 1000

The production level of sellers, represented by pi, is randomly generated within
the range of 349 Wh to 749 Wh, taking into account the average household production
of 549 Wh in Japan [14]. Likewise, the consumption level of buyers, denoted by ci, is
randomly determined between 302 Wh and 702 Wh, considering the average household
consumption of 502 Wh in Japan [14]. By introducing this random variation in the values of
pi and ci, the total tradable energy volume within the market fluctuates across simulations,
contributing to the dynamics of the system Therefore, maximizing benefits will be changed
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since the constraints of trading volume and reservation price are changed. Simulations
are also performed using fixed values within a similar supply and demand range, and the
gap between the fixed and random values is compared. Additionally, since the objective
function, i.e., benefit, changes, the actual trading volume, which is the variable of the
objective function, also i.e., In this study, pi and ci are set randomly because this approach
brings the trading closer to actual trading with a wide variety of prosumers. The rates rs
and rb are determined by considering the prevailing market rates and pricing models used
by major electricity providers, such as TEPCO (Tokyo Electric Power Company), to ensure
consistency and relevance in the simulation. Rate ri is set to 18.55, and it comes from the
average between rs and rb. In a true market, the transaction price changes dynamically
within the range of the transaction price of the market. However, in this study, ri is treated
as a fixed rate to confirm how transactions are structured in the market using the problem
formulated in this study. Even if the transaction rate is a fixed rate, we do not believe
that the impact of the demand and capacity balance is significant. This transaction is only
available at one point in time, and the volume of transactions is limited. Since it is a fixed
value, it does not belong to either the multi-price or single-price types, but the single-price
form is used as the format. The single-price system is set so that the trading rate is the
intersection of the buy order starting from a high price and the sell order starting from
a low price [15]. Following this system, this study used the average value as the role of
intersection. Therefore, the average is used as a fixed rate.

T represents the total number of iterations conducted.

4.2. Simulators

Two kinds of simulators were developed to acquire solutions by solving the formulated
single-objective optimization problems and the MOP. A machine with CPU Intel Core
i7-7700K and a memory of 16GB were used.

4.2.1. For Single-Objective Optimization

A simulation tool was developed in Java using the JUNG library [16] and the lp_solve
solver [17] for solving mixed integer linear programming problems. The tool employs a
combination of the branch-and-bound algorithm and the cutting plane algorithm to find
optimized solutions for the single-objective optimization problem.

4.2.2. For Multi-Objective Optimization

To achieve optimized solutions for the multi-objective optimization problem (MOP),
we utilized a dedicated simulator developed using Platypus [18], a Python framework
specifically designed for evolutionary computing. Platypus offers a range of evolutionary
algorithms (EAs) that can be applied to find solutions in the MOP. In our simulation, we
employed six meta-heuristic algorithms as follows:

• Non-dominated sorting genetic algorithms-II (NSGA-II)
• Generalized differential evolution-III (GDE3)
• Optimized multi-objective particle swarm optimization (OMOPSO)
• Speed-constrained multi-objective particle swarm optimization (SMPSO)
• Strength Pareto evolutionary algorithm-II (SPEA2)
• ε-multi-objective evolutionary algorithm (ε-MOEA)

We chose to utilize metaheuristic algorithms because they are well suited for address-
ing the challenges of scaling up markets that involve a substantial number of participants.
For our simulation, we set the sampling size to 10,000 and the population size to 10. For
algorithms such as OMOPSO and ε-MOEA, we set the value of ε to 0.05.

4.3. Evolutionary Algorithms

The EAs used in the experiments are described below.
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4.3.1. NSGA-II

The NSGA-II algorithm, introduced by K. Deb et al. in 2002 [19], employs a specific
type of crossover and mutation operations to generate offspring. The algorithm then
selects the next generation by applying non-dominated sorting and crowding distance
comparison techniques.

4.3.2. GDE3

GDE3, which stands for generalized differential evolution 3, was introduced by
S. Kukkonen et al. in 2005 [20]. This algorithm is an extension of the differential evolution
method and is specifically designed for solving global optimization problems with multiple
objectives and constraints. GDE3 offers the flexibility to handle an arbitrary number of
objectives and constraints, making it well suited for a wide range of optimization tasks.

4.3.3. OMOPSO

OMOPSO, which stands for multi-objective particle swarm optimization, was proposed
by M. R. Sierra et al. in 2005 [21]. This algorithm falls under the category of multi-objective
optimization methods and is based on the principles of Pareto dominance and a crowding
factor. By leveraging these concepts, OMOPSO effectively maintains a diverse set of non-
dominated solutions, facilitating a comprehensive exploration of the solution space. The
integration of particle swarm optimization enhances the algorithm’s search capabilities,
enabling it to converge toward optimal solutions for multi-objective optimization problems.

4.3.4. SMPSO

SMPSO, proposed by A. J. Nebro et al. in 2009, is a popular algorithm for multi-
objective optimization [22]. It incorporates a velocity limitation strategy to strike a balance
between exploration and exploitation. By constraining particle movement within a prede-
termined range, SMPSO efficiently explores the solution space while avoiding premature
convergence. This approach enhances its effectiveness in finding high-quality solutions for
multi-objective optimization problems.

4.3.5. SPEA2

SPEA2, proposed by E. Zitzler et al. in 2001, is a multi-objective optimization al-
gorithm [23]. It employs a sophisticated fitness assignment strategy that considers both
dominance and solution density. By maintaining a diverse archive of non-dominated
solutions, SPEA2 effectively guides the search toward the Pareto front. Furthermore, it
incorporates an advanced archive truncation technique to control the size of the archive
and to maintain a well-distributed set of solutions.

4.3.6. ε-MOEA

ε-MOEA, introduced by K. Deb et al. in 2003 [24], is a steady-state multi-objective
evolutionary algorithm. It incorporates the concept of ε-dominance, which allows for
a more efficient comparison and selection of solutions. Additionally, ε-MOEA utilizes
effective parent and archive update strategies to promote diversity and convergence. The
primary goal of ε-MOEA is to rapidly generate a well-distributed set of solutions that
approximate the Pareto front, providing a comprehensive representation of the trade-offs
between conflicting objectives.

4.4. Evaluation Metrics

To evaluate the solutions obtained from the proposed problems, two metrics are
utilized. The primary metric, labeled as F1, quantifies the cumulative benefit obtained by
prosumers in each transaction. It quantifies the overall efficiency of the system, where
a higher value of F1 indicates a greater total prosumer’s benefit. The second metric,
denoted as F2, assesses the fairness of the prosumer’s benefit distribution by calculating the
standard deviation. A lower value of F2 suggests a more equitable distribution of benefits
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among the prosumers. Mathematically, F1 is calculated as the summation of individual
prosumer benefits across all transactions, whereas F2 represents the standard deviation of
prosumer benefits.

F1 ∑
vi∈VS∪VB

π(vi). (18)

F2

√
∑vi∈VS∪VB

(π(vi)− π)2

N
. (19)

To demonstrate the effectiveness of the PBMP, another evaluation indicator is to show
whether the minimum profit is maximized and the results are based on the supply and
demand volume of each prosumer. By maximizing the minimum value, it is believed that
variability is suppressed.

4.5. Results and Discussion

In Figures 6 and 7, the x-axis represents the total benefit of the prosumers, while the
y-axis represents the standard deviation of the prosumers’ benefits. Tables 2 and 3 express
the minimum benefit for each prosumer and verify whether the objective of maximizing
minimum benefit is achieved. For example, the p1 capacity is 804.8463 and p1 demand is
562.647 in Table 3. In this case, this prosumer is the role of the seller in microgrids. The
table then posts the minimum benefit for each method at p1.

Figure 6. Result efficiency and fairness (random value).
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Figure 7. Result efficiency and fairness (fixed value).

Table 2. Maximizing the minimum benefit (random value).

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

PBMP 0.0021 0 0 0 0 0 0 0 0 0
MPMP 7.35× 10−4 7.35× 10−4 7.35× 10−4 7.35× 10−4 7.35× 10−4 9.45× 10−4 7.35× 10−4 7.35× 10−4 7.35× 10−4 0.001155
EPsMOEA 3.76× 10−17 5.53× 10−17 2.06× 10−15 8.41× 10−15 3.11× 10−15 2.87× 10−16 2.01× 10194 7.98× 10−17 3.98× 10−17 1.3× 10−17

GDE3 0 0 0 0 0 0 0 0 0 0
NSGAII 3.72× 10−12 2.63× 10−16 1.29× 10−11 2.21× 10−16 6.46× 10−12 1.45× 10−13 1.25× 10−14 2.0× 10−16 2.44× 10−12 1.72× 10−14

OMOPSO 0 0 0 0 0 0 0 0 0 0
SMPSO 0 0 0 0 0 0 0 0 0 0
SPEA2 2.39× 10−8 1.70× 10−6 1.63× 10−6 9.70× 10−8 1.33× 10−7 1.13× 10−7 2.44× 10−7 3.04× 10−7 2.28× 10−7 8.26× 10−7

Table 3. Maximizing the minimum benefit (fixed value).

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

capacity 804.8463 792.5969 527.1893 739.5148 506.7915 694.2612 653.2675 749.6945 635.1398 690.4667
demand 562.647 607.578 696.4479 753.1572 844.3062 665.5017 886.1528 704.568 676.5624 785.0377

PBMP 2.5431 1.94271 1.77723 0.143325 3.340995 0.30198 0 0.47376 0 0
MPMP 2.5431 1.94271 0.143325 0.143325 1.101765 0.30198 2.44524 0.47376 0.43491 0.992985
EPsMOEA 0.445365 0.390073 0.066981 0.011476 0.094538 0.115392 0.080478 0.154343 0.022629 0.042448
GDE3 1.71181 1.154414 0.003779 0 0.579017 0.114801 0.275869 0.155032 0 0.005253
NSGAII 0.456026 0.509109 0.068836 0.016035 0.108889 0.081164 0.055153 0.17269 0.029628 0.053791
OMOPSO 0.008554 0.024892 2.18× 10−4 2.27× 10−5 9.16× 10−5 0.003203 5.46× 10−4 0.007332 1.99×10−5 4.67×10−4

SMPSO 3.03× 10−7 0 0 0 0 0 0 1.39× 10−6 6.88× 10−6 0
SPEA2 0.599343 0.895141 0.137731 0.015724 0.242896 0.107725 0.127837 0.189232 0.053723 0.117297

4.5.1. Prosumer’s Benefit Maximization Results

As shown in Figure 6, the more PBMP focuses on benefit enhancement, the more it
shows that it fails to consider fairness. The value of F1 is JPY 11.3k, and the value of F2 is
approximately 1.09. Figure 7 also shows that, as in Figure 6, the emphasis is on maximizing
benefits, and fairness is not taken into account. The value of F1 is JPY 10.5k, and the value
of F2 is approximately 1.17. Table 2 shows what the minimum benefit at random values
would be for each method. The more PBMP focuses on the benefit maximization, the more
it shows that there are prosumers who do not benefit from minimum benefit. Table 3 shows
that there are prosumers who are able to earn benefits when compared with random values,
but there are also prosumers who are not able to earn benefits in the aggregate.
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4.5.2. Minimum Prosumer’s Benefit Maximization Results

As shown in Figure 6, MPMP should have focused on and been formulated based
on the fairness of benefits; however, the results show that it does not maximize fairness.
However, MPMP is a valid method compared with PBMP. The value of F1 is JPY 10.9k,
and the value of F2 is approximately 0.92. As shown in Figure 7, the F2 of MPMP shows no
effect on fairness of resource allocation compared with MOP. The value of F1 is JPY 10.5k,
and the value of F2 is approximately 0.88. In Tables 2 and 3, it can be seen that the minimum
benefit of each prosumer, though not all, is maximized compared with other methods.

4.5.3. Multi-Objective Optimization Results

As shown in Figure 6, the six evolutionary algorithms and multi-objective optimiza-
tion methods are concentrated at one point. The value of F1 is approximately JPY 7.3k,
and the value of F2 is approximately 0.55. On the other hand, in Figure 7, the F1 of GDE3
characteristically increased, but F2 also increased. Overall, the F1 and F2 values also tend to
increase, but the lower right is more optimal, so there is no optimization. In Tables 2 and 3,
GDE3, OMOPSO, and SMPSO’s minimum benefits are 0. Other MOPs have gained a small
amount of benefit, but it is a small value compared with that of MPMP.

4.5.4. Discussions

Since lp_solve found the solutions in ascending order in the vertex’s number, pro-
sumers with lower numbers can preferentially trade with their preferred partners in the
PBMP. Therefore, the PBMP obtained solutions with a larger variation in prosumer’s bene-
fit than other proposed problems. Furthermore, the MPMP would obtain solutions with
less variation in demand benefit than PBMP by maximizing the minimum prosumer’s
benefit, which is closer to PBMP. As the MPMP selected trading partners for each prosumer
based on the minimum prosumer’s benefit, its focus was more on achieving equity in
prosumers’ benefits rather than optimizing the efficiency of resource allocation. However,
the effectiveness of fairness is more invalid than expected. Multi-objective optimization
results are flat except for GDE3 when simulating with fixed value; however, the original
objective, to find a solution that equally achieves the efficiency of resource allocation and
the equity of the prosumer’s benefit, has been achieved. However, we believe that the
small number of prosumers did not make it more noticeable when using multi-objective
optimization methods. In addition, if we consider running this system in real time, it would
involve using machine learning or similar techniques to make predictions based on certain
past values from a fixed time window. These predictions would then be used to derive
optimal solutions. This study utilizes a multi-objective optimization approach instead of
a bi-level model due to the trade-off relationship between fairness and efficiency. As a
future direction, it is possible to explore how the research would be conducted using a
bi-level approach.

4.5.5. Computational Time

Table 4 shows the results of computational time on the simulation experiments. This
table shows the time for random values, since there is little deviation between the random
and fixed values. As shown from the results, the EAs need more calculation time to solve
the proposed problem than the solver. The results also show that the EAs can determine
trading at each time within one hour. Since it is assumed that trading is decided by solving
the optimization problems every hour in this paper, the EAs can determine trading in a
realistic time in our market models. Each trade for the time required for 1000 trades, and
EAs are completed in 2–3 s on average.
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Table 4. Results of computational time.

Problem (Algorithm) Time [s]

PBMP 5.401
MPMP 4.956

Weighted (average) 4.263
MOP(NSGA-II) 3519

MOP(GDE3) 2972
MOP(OMOPSO) 3036

MOP(SMPSO) 2883
MOP(SPEA2) 4065

MOP(ε-MOEA) 3508

5. Conclusions and Future Works
5.1. Conclusions

This paper presents an optimized approach to enhance both the efficiency of resource
allocation and the fairness of the prosumer’s benefit in P2P energy trading. The method
involves formulating single-objective and multi-objective optimization problems to deter-
mine trading partners for each prosumer. By conducting numerical experiments, we assess
the prosumers’ gains during a designated trading period, with a particular focus on the
impact of electricity prices on partner selection.

In Figures 6 and 7, the results are presented based on the evaluation metrics F1 (total
prosumer’s benefit) and F2 (standard deviation of prosumer’s benefit). The bottom-right
corner of the figures represents the optimized values for fairness and efficiency, with higher
values indicating better optimization. It can be observed that both the single-objective
optimization method, MPMP, and the multi-objective optimization method are effective in
achieving optimized values.

Furthermore, Tables 2 and 3 provide the results on the suppression of variability,
which indicates the presentation of fairness when maximizing the minimum benefit. Some
methods fail to maintain the minimum benefit within the microgrid. However, particularly,
MPMP demonstrates the ability to secure the minimum benefit and to maintain fairness.

Consequently, Figure 6 demonstrates that EAs and MPMP offer optimal solutions.
Notably, the EAs efficiently solve the proposed problem within realistic timeframes in our
market models.

5.2. Future Work

For future work, there are three points to be considered in our models.

• Considering the environmental impact of prosumers
Renewable energy generation is inherently variable due to factors such as seasonal
changes and weather conditions. Moreover, prosumers’ consumption patterns fluc-
tuate based on their individual lifestyles. However, this paper does not consider the
specific dynamics of prosumer’s production and consumption. We believe that one
approach to consider to take lifestyle into account is using a weighted multi-objective
method [25]. This approach allows for considering multiple factors and assigning
different weights based on their importance. Furthermore, forecasting the real-time
production and consumption of prosumers based on predefined measured values can
be a direction to consider.

• Considering the introduction of fluctuating electricity prices
The electricity rate is fixed in this paper; however, prices fluctuate in a realistic trading
system due to different demand levels during peak and off-peak periods. Therefore,
by setting electricity rates that fluctuate based on demand, we can make the trading
system more realistic.

• Considering other factors of prosumer’s benefit in addition to price
The EAs are used as meta-heuristics methods in this paper. Since our definitions of
prosumer’s benefit considered only monetary gain, other factors of prosumer’s benefit
should be considered to explain more real behavior of prosumers.

• Considering the security aspect
Although we have not considered security aspects at this stage, we believe it would



Energies 2023, 16, 5501 16 of 17

be appropriate to incorporate the STRIDE methodology, a vulnerability assessment
method, into the process for conducting a comparison between the conventional
transaction model and the new approach [26].

• Considering the pursuit of speed for optimization
This paper can be led to an optimized solution; however, it is taking too long to
reach a solution. We need to revise these codes and, at this stage, should consider
implementing machine learning.
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