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Abstract: High-speed railways generate a large amount of regenerative braking energy during opera-
tion but this energy is not utilized efficiently. In order to realize the recycling of regenerative braking
energy of high-speed railways, the hybrid energy storage type railway power conditioner (RPC)
system is proposed. The working principle and the control strategy of the system are studied. The
energy management strategy consisting of a hybrid energy storage system charging and discharging
strategy and variational modal decomposition (VMD) power allocation strategy is proposed. Three
system operation modes are proposed: the power of the hybrid energy storage system is decom-
posed by VMD and an interrelationship number is proposed to determine the lithium battery and
supercapacitor power. The hardware-in-the-loop test experiments are conducted by the StarSim
power electronics small-step real-time simulator from Modeling Tech and the validation analysis
is carried out on MATLAB/Simulink with the actual measurement data of a traction substation
on the Lanzhou–Xinjiang line. The results verify that the proposed strategy can effectively recycle
the regenerative braking energy, realize the peak-shaving effect on the load, and reduce the energy
consumption of the train.

Keywords: high-speed railway; hybrid energy storage system; energy management strategy; railway
power conditioner; regenerative braking energy

1. Introduction

Nowadays, “low-carbon development” has become an important concept in global
economic development and the implementation of low-carbon transportation is one of the
important measures [1,2]. High-speed railways have become an important way of low-
carbon transportation due to their advantages of energy saving, environmental protection,
and convenience [3,4]. As the mileage of high-speed railway operations increases, energy
consumption by railways will continue to rise. The train generates regenerative braking
energy during braking which can amount to 10–30% of the traction energy in some special
sections [5–7]. There is a huge potential for energy recovery in the operation of trains.
Its energy consumption can be regulated by utilizing regenerative braking energy [8–10],
reducing carbon emissions, and contributing to emission peak and carbon neutrality targets.

With the progression of energy storage technology, it is increasingly used in high-
speed railway [11–14]. The authors of [15] investigated the conformity of wayside energy
storage systems in the Italian railway infrastructure to use regenerative braking energy.
The potential impact of energy consumption in the railway infrastructure and energy
savings in wayside units using battery storage systems was assessed [16]. The application
of energy storage technology was then reviewed in Japanese DC and AC railways which
has grown from the first lithium battery installed in a traction power system in 2006 to
more than 20 energy storage systems today. In China, megawatt-scale flywheel energy
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storage technology has also been successfully applied to electrified railways to reduce
electricity consumption.

The main regenerative braking schemes for trains are energy consumption [17], energy
supply [5], and energy storage [18–20]. RPC has the advantage of load shifting and
flexibility [21,22]. For AC railways, energy storage solutions based on the RPC [23,24] can
improve the power quality while utilizing regenerative braking energy. It has therefore
received considerable attention. The authors in [25,26] proposed an RPC system topology
based on supercapacitor energy storage and investigated its control strategy. However,
most of the energy storage type solutions are single storage media; due to the total amount
of regenerative braking energy, via single storage it is difficult to achieve high power and
regenerative braking energy utilization. Hybrid energy storage systems consisting of both
power density and energy density energy storage media [27,28] become a research hotspot
at home and abroad.

The energy management strategy is responsible for coordinating the energy flow
between the hybrid energy storage system and the traction power supply system; the
allocation of power commands is a key issue in the energy management control of the
hybrid energy storage system [29,30]. A proper power allocation strategy not only improves
energy utilization but also extends the life of the energy storage medium. The authors
in [31] reviewed the current energy management strategy for railway energy storage
systems based on thresholds and allocation ratios. Moreover, [32] proposed a two-layer
model of the energy management system of railway traction substations based on HESS
daily dispatch and HESS classification; the system was formulated as a mixed integer linear
programming model which improved the economics of the measure. The authors of [33]
proposed an optimal operation formula for the optimal operation of a hybrid energy storage
system in high-speed trains with renewable energy sources. The railway hybrid energy
storage system and its control strategy were proposed in [34] and the first-order low-pass
filtering algorithm was used for the internal power distribution of the hybrid energy storage
system. The authors of [35] used the discrete Fourier transform for power allocation in a
hybrid energy storage system for high-speed railways. Based on the operating properties
of traction loads, a fixed-cycle control energy management strategy that takes advantage of
the regular operating characteristics of high-speed railways was proposed. In the hybrid
energy storage system for high-speed railways, the flow of energy between the hybrid
energy storage system, the traction power system, and the distribution of power within the
hybrid energy storage system are key issues.

The hybrid energy storage type RPC system is constructed and the system principle
is analyzed. The control strategy of the system is studied, which includes the energy
management strategy, the RPC control strategy, and the DC/DC control strategy. In the
energy management strategy, in order to determine the target power of the hybrid energy
storage system and the target power of the storage medium, the hybrid energy storage
system charging and discharging strategy and VMD power allocation strategy is proposed.
The proposed strategy is tested in hardware-in-the-loop on the StarSim power electronics
small step real-time simulator from Modeling Tech and analyzed on MATLAB/Simulink
with the measured data of a traction substation on the Lanzhou–Xinjiang line.

2. Hybrid Energy Storage Type RPC System
2.1. System Structure

The structure diagram of the hybrid energy storage type RPC system is shown in
Figure 1. Pg is the power of the grid and PtL and PtR are the active power of the left and
right supply arm load from the traction substation, respectively. PcL and PcR are the active
power compensated by the RPC to the left and right supply arms, respectively; Udc is the
intermediate DC-side capacitance voltage; Pbat and Psc are the power of the lithium battery
and the supercapacitor, respectively.
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Figure 1. Structure diagram of the hybrid energy storage type RPC system.

The hybrid energy storage type RPC system in Figure 1 consists of the traction power
supply system, the RPC, and the hybrid energy storage system. A hybrid energy storage
system consists of energy storage media and bi-directional DC/DC converters. Lithium
battery is an energy storage medium which has high energy density and low cost. However,
it is slow to respond and has a low number of cycles. A supercapacitor has high power
density, fast response times, and high cycle times, but at a high cost. A supercapacitor is
a power storage medium that has high power density, fast response times, and high life
cycles, but is expensive. Lithium battery energy storage and supercapacitor energy storage
are more mature and stable compared to flywheel energy storage and superconducting
energy storage. Therefore, a lithium battery and supercapacitor are chosen as the energy
storage media of the hybrid energy storage system, which can take full advantage of both
media to meet the high power and high energy demand of regenerative braking.

In the traction power supply system, the 330 kV three-phase voltage is converted
to a single-phase 27.5 kV voltage by a v/v traction transformer. The RPC consists of
the VSCL converter, the VSCR, and the intermediate DC capacitor and is connected to
the left and right supply arms via two step-down transformers. The lithium battery
and the supercapacitor are connected to the DC link capacitor through their respective
bidirectional DC-DC converters and the energy management strategy is used to control the
charging and discharging of the energy storage medium to achieve regenerative braking
energy utilization.

2.2. System Operating Principle

The energy relationship within the system is shown in Figure 1. Pes is defined as the
total output power of the hybrid energy storage system and PL and PR as the active power
of the load of the left and right supply arms, respectively. PZ is the total active power of the
load, which is equal to the sum of the active power of the load in the left and right supply
arms. If the direction of the arrow in Figure 1 is specified as the positive direction of power
flow, the power relationship between the system components is:

PZ = PL + PR = PtL + PtR + PcL + PcR
Pg = PtL + PtR
Pes = PcL + PcR = Pbat + Psc

(1)
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The active power P′L of the load in the left supply arm and the active power P′R of the
load in the right supply arm after compensation by the hybrid energy storage type RPC
system are:

P′L = P′R =
PL + PR + Pes

2
(2)

Then, the active power PcL and PcR compensated by RPC to the left and right supply
arms are: {

PcL = − PL−PR
2 + Pes

2
PcR = PL−PR

2 + Pes
2

(3)

3. Hybrid Energy Storage Type RPC System Control Strategy

The control strategy of the hybrid energy storage type RPC system consists of an
energy management strategy, RPC control strategy, and DC/DC converter control strategy;
its control scheme is shown in Figure 2.
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3.1. Energy Management Strategy for Hybrid Energy Storage RPC System

The interaction between the energy of the energy storage system and the energy flow
of the traction power system depends on the energy management strategy. The energy
management strategy includes the charging and discharging strategy of the hybrid energy
storage system and the VMD power allocation strategy.

3.1.1. The Charging and Discharging Strategy of the Hybrid Energy Storage System

The charging and discharging strategy of the hybrid energy storage system is respon-
sible for the reasonable allocation of energy between the hybrid energy storage system and
the traction power supply system to achieve the function of peak shaving and valley filling.
In Figure 3, according to the total active power of the load PZ and the state of charge of the
energy storage medium, the charging and discharging strategy of hybrid energy storage
system divides the system into three operations. The analysis of each mode is as follows:
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A positive value for the tractive effort of the system and a negative value for the
braking effort of the system are defined. The absorbed power value of the energy storage
medium is positive and the released power value is negative. For ease of presentation,
Ptra and Preg are defined as the system peak-shaving and valley-filling thresholds, respec-
tively. Pes_max is the maximum power of the hybrid energy storage system; Pbat_max is the
maximum power of the lithium battery; and Psc_max is the maximum power of the superca-
pacitor. SOCbat is the state of charge of the lithium battery; SOCbat_min and SOCbat_max are
the minimum and maximum values of the state of charge of the lithium battery, respectively;
SOCsc is the state of charge of the supercapacitor; and SOCsc_min and SOCsc_max are the
minimum and maximum values of the state of charge of the supercapacitor, respectively.

1. Valley-filling mode

When PZ ≤ Preg and SOCbat or SOCsc is less than the respective state of charge
maximum, the hybrid energy storage system absorbs regenerative braking energy, which
can be specifically divided into the following two cases. When PZ < Pes_max, the hybrid
energy storage system is charged with Pes_max and the remaining energy is returned to the
grid. When −Pes_max ≤ PZ ≤ Preg, the charging power of the hybrid energy storage system
is −PZ and no energy is returned to the grid. Therefore, the target power P∗es1 of the hybrid
energy storage system in this mode is:

P∗es1= min(−PZ,−Pes_cmax) (4)

2. Standby mode

If Preg < PZ < Ptra or SOCbat and SOCsc are not in the normal operating range, the
energy storage system is in standby mode and its target power P∗es2 is:

P∗es2= 0 (5)

3. Peak-shaving mode

When PZ ≥ Ptra and SOCbat or SOCsc is greater than the respective state of charge
minimum, the hybrid energy storage system releases energy and reduces the peak load.
This can be subdivided into the following two cases. When Ptra ≤ PZ < Ptra + Pes_max, the
discharge power of the hybrid energy storage system is PZ − Ptra. When PZ ≥ Ptra + Pes_max,
the hybrid energy storage system discharge power is Pes_max. Therefore, the target power
value P∗es3 of the energy storage system in this mode is:

P∗es3= max(Ptra − PZ,−Pes_dmax) (6)

The operating modal determination conditions are shown in Table 1.

Table 1. Operating modal determination conditions.

Operating Modes Judgment Conditions Target Power

valley-filling PZ ≥ Ptra and
(SOCbat > SOCbat_minorSOCsc > SOCsc_min)

P∗es1= min(−PZ,−Pes_cmax)

standby Preg < PZ < PtraorSOCbat, SOCsc
are not in the normal operating range

P∗es2= 0

peak-shaving PZ ≤ Preg and
(SOCbat < SOCbat_max orSOCsc < SOCsc_max)

P∗es3= max(Ptra − PZ,−Pes_dmax)

3.1.2. The VMD Power Allocation Strategy

VMD can effectively avoid modal mixing and achieve the separation of similar fre-
quency components [36]. In order to make the lithium battery and the supercapacitor in
the hybrid energy storage system more responsive to the power demand of the trains, the
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VMD-based hybrid energy storage power allocation strategy is proposed so as to separate
the high and low-frequency power of the hybrid energy storage system.

1. Variational modal decomposition

The optimal solution of the variational model is searched iteratively and its constrained
variational model is shown in (7):

min
{uk},{ωk}

{
K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt‖

2

2

}
s.t.

K
∑

k=1
uk = P∗es(t)

(7)

where {uk} is the set of IMFs obtained by VMD of the target power P∗es(t) of the hybrid
energy storage system; {ωk} is the set of IMF center frequencies; K is the number of IMFs;
and δ(t) is the pulse function.

The optimal solution to the above variational problem is solved by introducing the
Lagrange multiplier function with the expression:

L({uk}, {ωk}, {λ}) = α
K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt‖

2

2
+ ‖P∗es(t)−

K
∑

k=1
uk(t)‖

2

2

+

〈
λ(t), P∗es(t)−

K
∑

k=1
uk(t)

〉 (8)

where λ is the Lagrange multiplicative operator and α is the quadratic penalty factor.
The IMF is obtained by iteratively updating uk, wk, and λ using the alternating multi-

plier algorithm to solve (7). The modal components and their central frequencies are then
obtained by the Fourier transform as follows:

ûn+1
k (ω) =

P̂∗es(ω)− ∑
i 6=k

ûi(ω)+ λ̂(ω)
2

1+2α(ω−ωk)
2

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞
0 |ûk(ω)|2dω

(9)

where ûn+1
k (ω), P̂∗es(ω), λ̂(ω), and ûi(ω) are the sequences of un+1

k (ω), P∗es(ω), λ(ω), and
ui(ω) after Fourier transformation, respectively; ûn+1

k (ω) is the Wiener filter of the current
residual; and ωn+1

k is the current IMF center frequency.
The Lagrange multiplicative operator is updated with:

λ̂n+1(ω) = λ̂n(ω) + τ

[
P̂∗es(ω)−

K

∑
k=1

ûn+1
k (ω)

]
(10)

During the iterative solution process, each IMF and its center frequency are contin-
uously updated until the entire cycle is completed after the iteration stop condition is
satisfied, which is:

K

∑
k=1

‖ûn+1
k − ûn

k ‖
2
2

‖ûn
k ‖

2
2

< e (11)

where e is the specified determination accuracy and e > 0.

2. Energy storage medium target power determination

The VMD decomposition yields IMF components from low to high frequency. The
number of interrelationships is defined and reflects the correlation between IMFs: the larger
the number of interrelationships, the greater the correlation between variables.
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R(IMFk, IMFk+1) is defined as the number of interrelationships between connected
IMFk and IMFk+1:

R(IMFk, IMFk+1) =
1

N − 1

N

∑
i=1

(
IMFk(i)− µIMFk

σIMFk

)(
IMFk+1(i)− µIMFk+1

σIMFk+1

)
(12)

where N is the number of sampling points; σIMFk and µIMFk are the mean and standard de-
viation of IMFk, respectively; and σIMFk+1 and µIMFk+1 are the mean and standard deviation
of IMFk+1, respectively.

The IMFk corresponding to the minimum value of the number of relationships is
chosen as the partition. The IMF1~k is reconstructed as the low-frequency power PesL of the
energy storage system. By comparing it with the maximum power of the lithium battery,
the target power value of the lithium battery is obtained as follows:

P∗bat =

{
max(PesL,−Pes_dmax), PesL ≤ 0
min(PesL,−Pes_cmax), PesL > 0

(13)

Then, the target power of the supercapacitor is the total power minus the target power
of the lithium battery and the expression is as follows:

P∗sc = P∗es − P∗bat (14)

3.2. RPC Control Strategy

The RPC enables the flow of active power in the left and right supply arms while
performing reactive power compensation so that the active power in the left and right arms
is balanced. The RPC control strategy consists of RPC compensation current calculation
and converter control.

1. RPC compensation current calculation

The instantaneous voltages of the grid are [7]:
uA =

√
2U sin(ωt)

uB =
√

2U sin(ωt− 2π
3 )

uC =
√

2U sin(ωt + 2π
3 )

(15)

where U is the rms value of the grid voltage.
The instantaneous voltages uL and uR of the left and right supply arms are [7]:{

uL =
√

2UL sin(ωt− π
6 )

uR =
√

2UR sin(ωt− π
2 )

(16)

where UL and UR are the rms values of the left and right supply arms voltages, respectively.
The instantaneous load currents of the supply arms are made up of fundamental

currents and harmonic currents [37]. The instantaneous load currents iL and iR of the left
and right supply arms are as follows:

iL =
√

2IL sin(ωt− π
6 − ϕL) +

∞
∑

h=2

√
2ILh sin(hωt + ϕLh)

iR =
√

2IR sin(ωt− π
2 − ϕR) +

∞
∑

h=2

√
2IRh sin(hωt + ϕRh)

(17)

where IL and IR are the rms values of the left and right supply arms fundamental currents,
respectively; ILh and IRh are the rms values of the hth harmonic current of the left and right
supply arms, respectively; and ϕLh and ϕRh are the hth harmonic phases of the left and
right supply arms, respectively.
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Multiplying the instantaneous voltage and the instantaneous current of the supply
arms, the instantaneous power PLi and PRi of the supply arms are obtained as follows:

PLi = uL × iL = UL IL cos ϕL −UL IL cos(2ωt− π
3 ) cos ϕL −UL IL sin(2ωt− π

3 ) sin ϕL

+
∞
∑

h=2
2UL ILh sin(hωt + ϕLh) sin(ωt− π

6 )

PRi = uR × iR = UR IR cos ϕR −UR IR cos(2ωt− π) cos ϕR −UR IR sin(2ωt− π) sin ϕR

+
∞
∑

h=2
2UR IRh sin(hωt + ϕRh) sin(ωt− π

2 )

(18)

The instantaneous power all contains DC and AC components which are passed
through a low-pass filter (LPF) to filter out the AC components and obtain the active power
PL and PR of the supply arms as: {

PL = UL IL cos ϕL
PR = UR IR cos ϕR

(19)

Combined with (2), the fully compensated currents of the left and right supply arms,
i′L and i′R, are the following:  i′L =

2
√

2P′L√
3UL

sin(ωt)

i′R =
2
√

2P′R√
3UR

sin(ωt− 2
3 π)

(20)

Then, the compensation currents, i∗cL and i∗cR, in the left and right supply arms of the
hybrid energy storage RPC system are: i∗cL = i′L − iL =

2
√

2P′L√
3UL

sin(ωt)− iL

i∗cR = i′R − iR =
2
√

2P′R√
3UR

sin(ωt− 2
3 π)− iR

(21)

The RPC compensation current detection diagram is shown in Figure 4. According
to Equation (18), the left and right supply arm voltages and currents obtained from the
supply arm end are multiplied and passed through LPF to obtain the supply arm active
power. According to Equation (2), the active power of the supply arm after compensation is
obtained by calculating it with the power of the hybrid energy storage system Pes. Then, the
supply arm voltages UL and UR are divided to obtain the compensated supply arm active
current. Subsequently, the compensated supply arm active current is multiplied by 2

√
3/3

according to the instantaneous power theory to obtain the compensated supply total arm
current. After multiplying the synchronization signals, the compensation current setpoints
i∗cL and i∗cR are obtained by subtracting them from the respective supply arm currents.
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The diagram of the converter control strategy is shown in Figure 5. In order to
achieve proper RPC operation and access to the hybrid storage system, the voltage on
the intermediate DC side needs to be stable. Therefore, through the voltage outer loop
control, the difference between the target value of DC voltage U∗dc and the actual value of
voltage Udc is PI adjusted and then multiplied by the synchronous signals sin(ωt-p/6) and
sin(ωt-p/2) of uL and uR, respectively, to obtain the voltage outer loop stabilization current.
The target values of the compensation currents i∗cL and i∗cR are multiplied by the step-down
transformer ratio k to obtain the target values of the compensation currents on the low
voltage side. The target values of the low-side compensation currents and the voltage
outer loop stabilization currents are added to obtain the actual compensation current target
values i∗cL1 and i∗cR1 for each converter. The difference between these values and the actual
compensation values is then used to generate pulse waves via PWM to control the left and
right converters of the RPC.
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3.3. DC/DC Converter Control Strategy

The DC/DC converter uses current loop control and its control strategy diagram is
shown in Figure 6. The target power P∗bat of the lithium battery is divided by the lithium
battery voltage Ubat to obtain the target current value I∗bat. The difference between the actual
value of the current loop feedback inductor current Ibat and I∗bat is PI adjusted to control
the bidirectional DC/DC converter by generating a pulse wave by PWM. Similarly, the
bidirectional DC/DC converter on the supercapacitor side is controlled to enable charging
and discharging of the energy storage medium.
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4. Test Verification and Analysis

To verify the effectiveness of the control strategy and energy management strategy
of the hybrid energy storage RPC system, a hardware-in-the-loop test is conducted by
the StarSim power electronics small-step real-time simulator from Modeling Tech. The
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measured power supply arm of a traction substation on the Lanzhou–Xinjiang line is used
as simulation data in MATLAB/Simulink for verification. The model parameters are shown
in Table 2.

Table 2. Simulation parameters of the hybrid energy storage type RPC model.

Systems Parameters Values

Power system Voltage 330 kV
Traction substation v/v transformer ratio 330 kV/27.5 kV

RPC

Step-down
transformer ratio 27.5 kV/1.5 kV

Filter inductor/H 1.1 × 10−3

Capacitor/F 10 × 10−3

Intermediate DC side
voltage Udc/V 3200

Hybrid energy
storage system

Lithium battery Supercapacitor
Rated capacity/MWh 0.25 0.09

Capacitor/F -- 210
Rated power/MW 3 1

SOC interval/% 20–80 10–90

Modal determination
threshold

Peak-shaving
mode/MW 5

Valley-filling
mode/MW 0

4.1. StarSim Real-Time Verification

The StarSim experimental platform diagram is shown in Figure 7. The built main
circuit model is loaded into the StarSim host computer with a simulation step of 1 µs. The
control circuit is loaded into the FPGA of the emulator by StarSim HIL (hardware-in-the-
loop) through compilation and the model I/O interface is configured with the emulator
I/O interface to realize the input and output connection between the main circuit and the
control circuit; the experimental waveform is observed by an oscilloscope. The operating
conditions are set to PL = 5 MW, PH = 3 MW, P∗bat = 2 MW, and P∗sc = 1 MW. The intermediate
DC side voltage is obtained as shown in Figure 8 and the intermediate DC side voltage is
stabilized in the range of 3175 V–3245 V.
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The waveforms of the left and right converter voltages, usL and usR, and currents, isL
and isR, are obtained as shown in Figure 9 and the left and right converters can operate
normally under the set working conditions to realize the energy flow.
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VMD needs to set the IMF quantity K. K has a large impact on the decomposition 
effect of VMD. The center frequency difference at K = 7 is too large and there is an under-
decomposition problem. The similar frequencies occur at K = 9 and over-decomposition 
occurs. Therefore, K is set equal to 8 and the IMF spectrum is obtained according to the 
decomposition result as shown in Figure 12. 
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4.2. MATLAB Simulation Verification

The simulation is verified in MATLAB/Simulink based on the measured power arm
data (sampling frequency of 0.25 s/time). The PL and PR waveforms of the left and right
power supply arms and the PZ waveform of the total active power of the load are shown
in Figure 10.
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Figure 11 shows the waveform of the hybrid energy storage system target power P∗es
obtained by the charging and discharging strategy of the hybrid energy storage system.
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Figure 11. Target power of the hybrid energy storage system.

VMD needs to set the IMF quantity K. K has a large impact on the decomposition
effect of VMD. The center frequency difference at K = 7 is too large and there is an under-
decomposition problem. The similar frequencies occur at K = 9 and over-decomposition
occurs. Therefore, K is set equal to 8 and the IMF spectrum is obtained according to the
decomposition result as shown in Figure 12.
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Figure 12. IMF spectrogram.

Based on the results of VMD, the number of interrelationships between each connected
IMF is calculated and the results are shown in Table 3. According to Table 3, R(IMF6, IMF7)
is the smallest and IMF6 has the smallest correlation with IMF7, so IMF1–6 is selected for
low-frequency power reconstruction. Thus, the target power values, P∗bat for the lithium
battery and P∗sc for the supercapacitor, are obtained. The power waveforms are shown in
Figure 13a,b. The lithium battery takes up most of the power and the supercapacitor takes
up the frequently fluctuating power, thereby buffering the lithium battery discharge process.
The state of charge of the lithium battery and the supercapacitor are shown in Figure 13c,d.

Table 3. IMF cross-correlation coefficient.

Cross-Correlation Coefficient Values

R(IMF2, IMF3) 0.137
R(IMF3, IMF4) 0.077
R(IMF4, IMF5) 0.109
R(IMF5, IMF6) 0.065
R(IMF6, IMF7) 0.010
R(IMF7, IMF8) 0.044



Energies 2023, 16, 5759 13 of 16

Energies 2023, 16, x FOR PEER REVIEW 13 of 17 
 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
f/Hz

0

2

4

6

8

A
m

pl
itu

de
/1

05

A
m

pl
itu

de
/1

03

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20
1
2
3
4
5

f/Hz

IMF1 IMF2 IMF3 IMF4
IMF5 IMF6 IMF7 IMF8

 
Figure 12. IMF spectrogram. 

Based on the results of VMD, the number of interrelationships between each 
connected IMF is calculated and the results are shown in Table 3. According to Table 3, 
R(IMF6, IMF7) is the smallest and IMF6 has the smallest correlation with IMF7, so IMF1–6 is 
selected for low-frequency power reconstruction. Thus, the target power values, P* 

bat for 
the lithium battery and P* 

sc for the supercapacitor, are obtained. The power waveforms are 
shown in Figure 13a,b. The lithium battery takes up most of the power and the 
supercapacitor takes up the frequently fluctuating power, thereby buffering the lithium 
battery discharge process. The state of charge of the lithium battery and the supercapacitor 
are shown in Figure 13c,d. 

Table 3. IMF cross-correlation coefficient. 

Cross-Correlation Coefficient Values 
R(IMF2, IMF3) 0.137 
R(IMF3, IMF4) 0.077 
R(IMF4, IMF5) 0.109 
R(IMF5, IMF6) 0.065 
R(IMF6, IMF7) 0.010 
R(IMF7, IMF8) 0.044 

The power waveforms of the left and right supply arms before and after compensation 
are shown in Figure 14. The load imbalance of the supply arms is reduced by the energy 
flow of the hybrid energy storage type RPC system. 

−3
−2
−1
0
1
2
3

/M
W

* ba
t

P

0 50 100 150 200 250 300
t/s  

0 50 100 150 200 250 30065
70
75
80

SO
C

ba
t/1

00
%

t/s  
(a) (b) 

−0.1

0

0.1
/M

W
* scP

0 50 100 150 200 250 300
t/s  

0 50 100 150 200 250 30074.9

75

75.1

t/s

SO
C s

c/1
00

%

 
(c) (d) 

Figure 13. Power and state of the charge curve of the lithium battery and supercapacitor. (a) Lithium 
battery power; (b) Lithium battery state of charge; (c) Supercapacitor power; (d) Supercapacitor state 
of charge. 

Figure 13. Power and state of the charge curve of the lithium battery and supercapacitor. (a) Lithium
battery power; (b) Lithium battery state of charge; (c) Supercapacitor power; (d) Supercapacitor state
of charge.

The power waveforms of the left and right supply arms before and after compensation
are shown in Figure 14. The load imbalance of the supply arms is reduced by the energy
flow of the hybrid energy storage type RPC system.
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In Figure 15, PT and P′T are the required power values of the traction substation
before and after compensation, respectively. The maximum value of traction substation
compensation power is reduced from 9.344 MW to 7.289 MW, effectively reducing the
traction substation compensation power.
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According to the analysis of Figures 13–15, it can be obtained that from 0 s to 99 s
most of the working conditions of PZ ≥ 5 MW, the system is in the peak-shaving mode,
and the hybrid energy storage system releases energy. Whereas, from 114 s to ~145 s the
system is in standby mode, the hybrid energy storage system is not working, and the
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RPC is responsible for transferring the power of the left and right supply arms. As for the
period of 215 s~300 s, PZ ≤ 0 MW, the system is in the valley-filling mode, the SOCbat of
lithium battery is in the rising state, and the hybrid energy storage system stores energy
and regulates the railway energy consumption.

The regenerative braking energy savings rate h is defined as:

η =
Est

Esum
(22)

where Est is the stored regenerative braking energy and Esum is the total regenerative
braking energy of the left and right supply arms.

According to the calculation, the total regenerative braking energy in the supply
arms load is 64.348 kW·h, the system stores 46.182/kW·h regenerative braking energy,
and the regenerative braking energy saving rate is 71.77%. Combined with the analysis
in Figures 10–15, the proposed energy management strategy achieves accurate power
allocation of the hybrid energy storage system, makes effective use of regenerative braking
energy, and achieves peak shaving and valley filling.

5. Conclusions

The hybrid energy storage type RPC system is constructed and has wide application
prospects in regenerative braking energy rich lines such as long ramps. It is composed of a
traction power supply system, RPC, and a hybrid energy storage system; the energy flow
relationship of the hybrid energy storage type RPC system is analyzed. A system control
strategy is investigated, including the energy management strategy, RPC control strategy,
and DC/DC converter control strategy.

In the energy management strategy, the charging and discharging strategy of the
hybrid energy storage system divides the system into three modes: the peak-shaving mode,
standby mode, and valley-filling mode, realizing peak-shaving and valley-filling for the
load. The VMD power allocation strategy uses VMD to decompose the hybrid energy
storage system power and determine the high and low-frequency divisions according to the
IMF interrelationship number, effectively realizing the high and low-frequency allocation
of energy storage power.

The RPC control strategy consisting of compensated current calculation and converter
control based on voltage outer and current inner loops is proposed and the DC/DC
converter control strategy using a current-loop control is proposed. The proposed strategy
achieves the absorption and release of regenerative braking energy, reducing the energy
demand of trains and supporting the low-carbon operation of high-speed railways.

In addition, the problem of capacity configuration optimization for hybrid energy
storage systems can be further explored in future work.
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