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Abstract: Wakes between neighboring wind turbines are a significant source of energy loss in wind
farm operations. Extensive research has been conducted to analyze and understand wind turbine
wakes, ranging from aerodynamic descriptions to advanced control strategies. However, there is a
relatively overlooked research area focused on characterizing real-world wind farm operations under
wake conditions using Supervisory Control And Data Acquisition (SCADA) parameters. This study
aims to address this gap by presenting a detailed discussion based on SCADA data analysis from
a real-world test case. The analysis focuses on two selected wind turbines within an onshore wind
farm operating under wake conditions. Operation curves and data-driven methods are utilized to
describe the turbines’ performance. Particularly, the analysis of the operation curves reveals that
a wind turbine operating within a wake experiences reduced power production not only due to
the velocity deficit but also due to increased turbulence intensity caused by the wake. This effect
is particularly prominent during partial load operation when the rotational speed saturates. The
turbulence intensity, manifested in the variability of rotational speed and blade pitch, emerges as
the crucial factor determining the extent of wake-induced power loss. The findings indicate that
turbulence intensity is strongly correlated with the proximity of the wind direction to the center of
the wake sector. However, it is important to consider that these two factors may convey slightly
different information, possibly influenced by terrain effects. Therefore, both turbulence intensity and
wind direction should be taken into account to accurately describe the behavior of wind turbines
operating within wakes.

Keywords: wind energy; wind turbines; wakes; data analysis; SCADA; condition monitoring.

1. Introduction

Wake interactions between nearby wind turbines represent the most important cause
of producible energy loss in an operating wind farm. It is well known that the wind intensity
downstream of a rotor gets reduced and that, if nearby wind turbines are not sufficiently
spaced, the velocity deficit does not completely recover, thus affecting power production. In
particular, on the one hand for offshore installations, it is convenient to maintain the layout
of a wind farm as sufficiently compact to reduce Operation and Maintenance (OandM)
costs but, on the other hand, if the layout is too compact the wake losses might reach
10–20% of the Annual Energy Production (AEP) [1,2].

In this regard, the offshore Lillgrund wind farm has become a paradigmatic test case
which has been extensively studied in the literature [3,4]. It is composed of 48 Siemens SWT-
2.3-93 wind turbines, with 2.3 MW of rated power. The layout is approximately square and
the lowest distances between nearby wind turbines are 3.3 and 4.3 rotor diameters. In [5], it
is estimated that the wake effects account for a 28% AEP loss. Another paradigmatic test
case is the Horns Rev wind farm [6–9]. In that wind farm, the turbine spacing is higher (7,

Energies 2023, 16, 5818. https://doi.org/10.3390/en16155818 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16155818
https://doi.org/10.3390/en16155818
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5577-7544
https://orcid.org/0000-0001-7256-2705
https://doi.org/10.3390/en16155818
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16155818?type=check_update&version=1


Energies 2023, 16, 5818 2 of 19

9.3, and 10.4 rotor diameters) and the particular interest of the test case is in the fact that
the wind farm is very large (80 Vestas V80 wind turbines).

The behavior of wind turbines under wake is also a factor to be accounted for by
Transmission System Operators (TSOs) because the increasing wind energy penetration
requires wind power plants to provide ancillary services [10–12]. For example, in [13], a
control algorithm is formulated to distribute the power contribution of each turbine to
minimize the wake effects and thus maximize the power reserve. On the other way round,
if a wind turbine is requested to provide frequency support services, its wake behavior is
affected [14]. Taking into account the wake effects is also an improvement for short-term
wind power forecasts [15,16], which have crucial importance in electrical grid management.

Given this premise, it is evident that the analysis of wind turbine wakes is a topic that
has attracted an extremely vast amount of literature, dealing with several aspects. Some of
the most important are wind tunnel analysis [17–19], wind farm control [20,21], numerical
simulations [22–26], and so on.

Nevertheless, some aspects are overlooked in the literature, namely those dealing
with the exploitation of wind turbine Supervisory Control And Data Acquisition (SCADA)
data [27,28] for the characterization of wind turbine operation under wake. To the best of
the authors’ knowledge, there are only a few papers on the topic. In [29], the authors relate
meteorological data from a long-range lidar measurement campaign to the key SCADA
parameters of offshore wind turbines. The main result of the work is that there is a good
correlation between the standard deviation of the active power in the units of the average
power, and in the ambient turbulence intensity (TI). Similar considerations are formulated
in [30]. In [31], data-driven power curve models are formulated for a cluster of wind
turbines extracted from a larger wind farm. It is shown that a graph model, accounting for
wake interactions between wind turbines, largely diminishes the mismatch between model
estimates and measurements.

Based on the aforementioned considerations, this paper aims to contribute to the
identification of crucial SCADA parameters for characterizing wind turbine behavior in
wake conditions. This work distinguishes itself from state-of-the-art ones in the type of
employed data and in the methodologies. In particular, in [29,30], the fluctuations of
wind turbine operation under wake are put in relation to meteorological data collected
by a LiDAR. Yet, the use of this kind of sensor for wind farm OandM is at present still
discouraged by economic considerations and it is therefore valuable to identify what can
be understood by using solely SCADA data, as in this present work. The work in [31]
moves from a consideration similar to the starting point of this work, which is the mismatch
between nominal and real-world power curves in different environmental conditions [32].
In [33], a meaningful example is reported, which is the power curve of two wind turbines
of the same model placed in different environments (moderately vs. highly turbulent).
Those two curves appear remarkably different and this occurs not only for performance
issues, but also because the measurement of the nacelle wind speed is a critical point. Not
only are the nacelle wind speed measurements taken behind the rotor span and must be
renormalized to estimate the free stream wind speed [34], but these measurements are
also influenced by environmental conditions, including the turbulence generated by wake
interactions. In fact, for example, the works of [35,36] highlight the effects of turbulence
intensity on wind turbine power curves. Therefore, if on the one hand it is reasonable to
construct power curve models taking into account the wake interactions (as done in [31]),
on the other hand, for a deeper comprehension of the behavior of the wind turbines, it is
meaningful to also consider curves based only on operation variables, developing further
the approach used in previous studies such as [37].

Particularly, this work presents a real-world test case discussion using one year of
SCADA data from an onshore wind farm located in Italy. The wind farm consists of nine
turbines, each with a rated power of 3.3 MW. The turbine behavior under wake conditions is
analyzed separately from operation under free stream conditions, based on the computation
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of waked sectors defined by the International Electrotechnical Commission (IEC). Several
meaningful test cases are then examined.

As an anticipation of the specific contributions collected in this study, it can be stated
that, also using solely SCADA data, it is possible to highlight how turbulence intensity
plays a significant role in determining notable differences in operational behavior under
wake conditions. Recent state-of-the-art works confirm this view and analyze in detail
the role of turbulence intensity by employing mainly numerical simulations [38,39]. It is
therefore valuable to investigate what can be concluded in this regard through the analysis
of a real-world industrial case. In this present work, turbulence intensity is shown to have a
strong correlation with wind direction in the wake sector, meaning that the closer the wind
direction aligns with the line connecting the involved turbines, the higher the turbulence
intensity. However, this study demonstrates that these two variables, namely distance from
the wake center and turbulence intensity, provide slightly different information. Therefore,
a non-trivial insight achieved in this work is that both variables are required for accurate
data-driven modeling of wind turbine power output in waked operations.

The structure of this paper is as follows: Section 2 provides a description of the
employed methodology, whereas Section 3 analyzes the test case wind farm and the dataset.
Section 4 discusses the obtained experimental results, and finally, Section 5 summarizes the
main conclusions.

2. Methodology
2.1. The Data-Driven Approach

The methodology formulated in this work consists of several key steps, including the
identification of the wake sector, characterization of wind turbine operation within the
wake, and quantification of wake losses. Figure 1 provides an illustrative example of the
target of the proposed methodology, showcasing a reference wind turbine generator (WTG)
surrounded by two other WTGs. The red and green colored angular sectors represent the
wake sectors of the reference WTG with respect to the neighboring WTGs (j-th and k-th).
Particularly, these colored angular sectors are identified and analyzed to estimate the wake
energy losses.

Figure 1. Visualization of wake sectors, where wind turbine i is affected by the operations of j (red)
and k (blue).

The key steps of the proposed method go in sequence and proceed as follows:

• Identify the wake sectors by employing SCADA data (Section 2.2).
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• Characterize the behavior of the wind turbines under wake through the analysis of
appropriate operation curves (Section 2.3). This step is inspired by the IEC analysis
of the power curve but generalizes it to further curves which are meaningful for the
comprehension of the behavior under wake. Furthermore, this analysis allows for
identifying limitations for the use of the power curve and therefore motivates the
following step. Indeed, the nacelle wind speed measurements are affected by the
amount of turbulence intensity and therefore it is unreliable to employ two average
power curves measured under different conditions (e.g., in free stream vs. wake) to
estimate the amount of power production loss caused by the wake.

• Formulate a reliable data-driven method for estimating the production loss caused
by the wake interactions (Section 2.4.1). This is achieved by training a data-driven
regression for the power of the target wind turbine as a function of the power of a
reference wind turbine by using the free stream data. When simulating through the
model the power of the target wind turbine when it is in wake, the quantification of
the wake loss is substantially different from the model estimate (which is a simulation
of the power that should have been produced if the wind turbine was not in wake)
and the produced power.

• Employ the knowledge matured with the previous steps by formulating a method for
characterizing, in general, the behavior under wake (Section 2.4.2). This step starts by
employing only the measurements which are not biased by the presence of the wake.
Namely, the nacelle wind speed measurements are excluded and only the operation
variables and features elaborated from them are considered. A Sequential Features
Selection is employed for identifying the key factors for describing accurately the
power variability under wake.

2.2. Identification of the Wake Sectors

The center of a waked sector θteo
ij is the direction connecting straightly two wind

turbines i and j and the amplitude in degrees of the sector [40] is defined in Equation (1):

α = 1.3
180 arctan

(
2.5 D

L + 0.15
)

π
+ 10, (1)

where D is the rotor diameter and L is the distance between the wind turbines. For the sake
of clarity, Figure 2 shows an example of α and θteo

ij . Through Equation (1), by elaborating
the nacelle wind direction measurements, it is possible to establish if a wind turbine is
operating in free stream or subjected to a single or multiple wakes. Namely, the procedure
goes as follows:

• Consider a target i-th wind turbine;
• Set a counter to 0;
• For each wind turbine j = 1, . . . , N, where N is the number of wind turbines in the

farm and j 6= i, compute αij using Equation (1);
• For each wind turbine j = 1, . . . , N, where N is the number of wind turbines in the farm

and j 6= i, compute the theoretical angle of the wake sector center as θteo
ij = arctan

yi−yj
xi−xj

;

• If the nacelle wind direction θi of the target i-th wind turbine is comprised in the
interval [θteo

ij −
1
2 αij, θteo

ij + 1
2 αij], increase the counter.

If, upon cycling j from 1 to N, the counter is 0, the measurement corresponds to the
operation in the free stream of the i-th wind turbine. If the counter is 1, the operation is
under a single wake (i.e., only of one wind turbine), and so on. In this study, only sectors
of free stream operation and single wake have been considered, and the corresponding
datasets are indicated in general as D f ree and Dwake.
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G j

Figure 2. Visualization of α and θteo
ij .

2.3. Characterization of Wind Turbine Operation under Wake

The common ground for a general comprehension of the wind turbine behavior under
wake is the generalization of the binning method, which the IEC has codified for the
analysis of the power curve [41].

In the case of the power curve, the point is simply averaging the power measurements
per interval of the nacelle wind speed. The amplitude of the bin is typically selected as 0.5
or 1 m/s. The former is selected in this work. Therefore, given Nj measurements occurring
in the j-th bin of wind intensity, the average Pj is simply given in Equation (2):

Pj =
1
Nj

Nj

∑
i=1

Pi,j (2)

where Pi,j is the i-th measurement occurring in the j-th bin. The average power curve is
therefore given by the points

(
vj, Pj

)
, where vj is the center of the j-th wind speed bin. The

data are pre-filtered from cut-in (vcut−in) to rated wind speed (vrated). In principle, other
pre-processing methods could be necessary in case of power curtailments [42], but this is
not the case for the selected wind farm.

The above method can be generalized by considering whatever couple of quantities
(X, Y) whose relation is considered relevant. The principle is the same, i.e., averaging Y
per interval of X.

In order to characterize the waked sectors, some features can be computed from the
raw SCADA measurements, as, for example, the turbulence intensity, which is defined
in Equation (3):

I =
vσ

v
(3)

as the ratio between the standard deviation (vσ) of the nacelle wind speed on a 10-minute
time basis and the average wind speed (v) on the same time interval.

Another meaningful feature that can be computed from the raw data is the angular
distance between the center of the wake sector and the measured wind direction θ. This
quantity is defined in Equation (4):

θd = θteo − θ. (4)

The curves considered of interest for the purposes of this present work are therefore
summarized in Table 1, where the range of X and the bin amplitudes are reported.
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Table 1. Analyzed operation curves.

Curve X Y X Range X bin

Power Curve v P [vcut−in, vrated] m/s 0.5 m/s

Turbulence Intensity Curve v I [vcut−in, vrated] m/s 0.5 m/s

Rotor-Power Curve ω P [ωmin, ωmax] rpm 0.5 rpm

Power-Blade Pitch Curve P β [0, Prated] kW 0.1 Prated

Angular Distance-Turbulence Intensity θd I [θc − 0.5θa, θc + 0.5θa] 5◦

Angular Distance-Residuals θd R [θc − 0.5θa, θc + 0.5θa] 5◦

The curves indicated in Table 1 have an intuitive explanation, except for those involv-
ing the use of the angular distance with respect to the center of the wake. The necessary
details about the use of such a curve are reported in Section 4.

2.4. Characterization of the Waked Sectors and of the Wake Losses
2.4.1. Estimation of the Wake Losses

The computation of the wake losses needs an estimate of how much a wind turbine
would have produced if it were not in wake. In this regard, the idea proposed in this work
is learning this from the data by exploiting the fact that the wind turbines are grouped in
clusters. Namely, the procedure goes as follows:

• Filter the data for the selected wind turbine pair where both turbines are operating in
free stream conditions. To achieve this, as discussed in Section 2.2, ensure that for each
turbine pair i and j, the wind directions θi and θj do not fall within any wake sector
created by other turbines in the farm.

• Create a filtered dataset, denoted as D f ree, containing the selected turbine pairs.
• Train a data-driven model with the power of the reference upstream wind turbine

Pupstream as the input and the power of the target downstream wind turbine Pdownstream
as the output.

• Consider the dataset describing the downstream wind turbine affected by a single
wake of an upstream one, referred to as Dwake for brevity.

• Use the trained model to simulate the output, denoted as y f ree, by inputting the power
of the reference wind turbine from the Dwake dataset.

• Compare the model estimates y f ree with the actual measurements y.

The selected type of model is a Support Vector Regression (SVR) with Gaussian
Kernel. It has been selected because it has desirable characteristics for this kind of applica-
tion [43–45]: robustness to outliers, relatively fast convergence, and nonlinearity.

The rationale of this approach to the estimate of the wake losses is that, by training
the model with the D f ree dataset, the model learns the relation between the power of the
reference and target wind turbines when both are in free stream. By feeding as input to
the model the data Dwake, the model simulates how much the target wind turbine would
produce if it were not in wake for a given power of the reference wind turbine (which is in
a free stream in the Dwake dataset). In other words, the estimate of the wake losses can be
retrieved from the difference between measurements and model estimates. In particular,
the loss relative to the Annual Energy Production is estimated in Equation (5):

Eperc.loss. =
∑Dwake

y− y f ree

∑Dtot y
, (5)

where y is the power measurements of the target wind turbine and y f ree are the estimates of
the model, which simulates the free stream data-driven relation. The numerator is the sum
of the residuals in the Dwake dataset, while the sum at the denominator should be intended
on the whole yearly dataset considered in this study (indicated as Dtot).
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2.4.2. Features Classification

This analysis is aimed at identifying the key SCADA parameters which are required
for a thorough characterization of the operation under wake. In general, in the wind power
sector, there are several problems that can be stated as the necessity of determining the most
relevant features for predicting an output which in general has a multivariate dependence
on several factors [46]. In particular, for the present application, due to the critical points
related to the wind speed measurements which are affected by the level of turbulence
intensity, we have decided to employ only operation variables which are not affected by
such kinds of biases. Namely, the starting set of features is listed in Table 2 and constitute
a matrix of P features: X = {x1, . . . , xj, . . . , xP}. The amount of turbulence intensity is
resembled in the variability of the operation variables, such as the rotational speed and
blade pitch. Notice that this selection is quite standard, in that all the modern wind turbines
collect the measurements needed to construct the features in Table 2. Therefore, the selection
can be considered general and not linked to the specific test case.

Table 2. Starting set of features for the characterization of the operation under wake.

Rotor Speed (Average, Minimum, Maximum, Std Dev) ω (rpm)

Blade Pitch (Average, Minimum, Maximum, Std Dev) β (◦)

Direction Distance with respect to the wake center θd (◦)

In order to classify the above features, these preliminary steps are applied:

• Select a portion of a waked dataset; reasonably, the most populated;
• Divide it in a training and testing portion (two-thirds and one-third);
• Feed the input variables of Table 2 in the training dataset to a sequence of SVRs whose

output is the power of the downstream wind turbine in waked operation.

Thereafter, the importance of the features is classified through a Sequential Features Se-
lection (SFS) algorithm, whose objective is determining sequentially what features provide
a decrease in a loss function and by how much. At each round of the algorithm, the most
desirable input variable to the model (and thus the most important feature at that round) is
the one which, if added to the model, leads to the highest decrease in a loss function. The
loss function selected in this work is the Root Mean Square Error (RMSE), which is defined
in Equation (6):

RMSE =

√
∑N

i (R[i]− R̄)2

N
, (6)

where R[i] is the i-th difference between measurement y and model estimates ŷ and R̄ are
the average residual on the considered testing set. Namely, the precise steps of the SFS are
the following:

• Initialize a matrix XM=0 with null dimensions to store the most significant predictors
from the set XM=0 = x1, . . . , xj, . . . , xP, where P represents the number of input
variables. Set a vector of output y, a counter variable M set to 1, and RMSEM=0 to ∞.

• Repeat until RMSEM > RMSEM−1:

1. Iterate for each j-th variable xj, where j ∈ [1, |XM−1|]:
(a) Divide the training set XM−1 using K-fold cross-validation.
(b) For each k ∈ [1,K], build a SVR-based model using the k-th training set,

and merge the variables of XM−1 with the j-th variable xj in the set XM−1.
Test each j-th model on each one of the K− 1 folds.

(c) Compute the average loss function across the K sample-sets for each j-th
model.

(d) Sort the |XM−1| models and select the variable from XM−1 associated
with the lowest loss function.
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2. Remove the selected variable from XM−1 and merge it with the variables in
XM−1 to create XM.

3. Increase the counter M of one unit.

• End the algorithm when the loss function stops decreasing.

The interest in the application of this algorithm is twofold:

• The most meaningful features for modeling the power of the test case wind turbine in
wake are identified using a particular dataset;

• One could employ the above features on other waked sectors and inquire how much
the selected set is appropriate.

The selected accuracy metrics are the RMSE (defined in Equation (6)) and the Mean
Absolute Error (MAE), which is defined in Equation (7):

MAE =
1
N

N

∑
i
|R[i]|, (7)

as simply the average of the absolute differences between model estimates and measurements.

3. Case Study

The test case wind farm features nine wind turbines with D = 117 meters of rotor
diameter. The machines have variable rotational speeds which are controlled through
hydraulic blade pitch actuation. The rated power of each wind turbine is 3.3 MW. The wind
farm is sited onshore on a gentle terrain and the layout is reported in Figure 3, where the
inter-turbine distance is indicated in units of rotor diameters.
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Figure 3. The layout of the selected wind farm. The target wind turbines are indicated, with the
waked sectors with respect to the nearby ones.

The available SCADA-collected data have ten minutes of averaging time and go from
1 January to 31 December 2020. The measurement channels at disposal are listed in Table 3.

Table 3. SCADA-collected measurements at disposal for the study.

Nacelle wind speed v (Average, Minimum, Maximum, Std Dev) (m/s)

Nacelle wind direction θ (Average) ◦

Rotor Speed ω (Average, Minimum, Maximum, Std Dev) (rpm)

Blade Pitch β (Average, Minimum, Maximum, Std Dev) (◦)

Active Power P (Average, Minimum, Maximum, Std Dev) (kW)
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3.1. Selection of the Wake Sectors

The waked sectors have been computed for each wind turbine with each other turbine
in the farm. Based on these methods, the sectors indicated in Table 4 have been selected (and
plotted in Figure 3) for the analyses of this work. In those sectors, the downstream wind
turbine is under the wake of only one wind turbine, namely the upstream one indicated
in Table 4.

Evidently, a wind turbine layout is designed in order to minimize the occurrence of
operation under wake and therefore the waked sectors in general occur rarely. These target
wind turbines (T04 and T08) have been selected because they were more characterized
by the occurrence of measurements describing their operation under a single wake of a
nearby wind turbine. The wind roses measured by the nacelle anemometer of T04 and T08
are indeed reported, respectively, in Figures 4 and 5, and the population of the sectors is
reported in Table 4.

Table 4. Selected single wake sectors.

Sector Name Upstream Downstream Center θc
Amplitude

θa

N. Measure-
ments

T04 North T05 T04 54◦ 64.3◦ 1897

T04 South T03 T04 160◦ 59◦ 5529

T08 North T09 T08 58.7◦ 66.9◦ 1626

T08 West T07 T08 265◦ 59.3◦ 1064

Figure 4. The wind rose measured by the T04 nacelle anemometer.
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Figure 5. The wind rose measured by the T08 nacelle anemometer.

3.2. Operation Curves

In Table 5, the values of the X variables listed in Table 1 are reported for the specific
case study of this work.

Table 5. Range of the variables for the operation curve analysis

Variable Value

vcut−in 4 m/s

vrated 13 m/s

ωmin 6 rpm

ωmax 13 rpm

Prated 2 MW

3.3. Estimation of the Wake Losses

In Table 6, the input and output variables of the model for the wake losses estimation
are reported for the case of interest, in relation to Table 4 and Figure 3.

Table 6. Input and output for the data-driven model for estimating the wake losses.

Sector Name Input Output

T04 North P T05 P T04

T04 South P T03 P T04

T08 North P T09 P T08

T08 West P T07 P T08

3.4. Features Classification

For the selected case study, the features classification for the characterization of the
operation under wake has been run using the T04 South case because it is the most popu-
lated (see Table 4). The crosscheck of the method has been pursued by computing accuracy
metrics on two datasets: the testing part of the T04 South dataset and the T04 North dataset.
This comparison is particularly interesting in this test case, in light of the different character-
istics of these two waked sectors (which are discussed in detail in the following Section 4).
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4. Experimental Results
4.1. Characterization of Wind Turbine Operation under Wake

Given the line of reasoning in [29], which is summarized in Section 1, the first analysis
is inquiring if the selected waked sectors can be distinguished as regards the turbulence
intensity. Therefore, in Figure 6, the average curve of the turbulence intensity as a function
of the wind speed is reported for the four datasets of Table 4. Interestingly, it arises that
for each target wind turbine, there is a sector with higher turbulence (T04 South and T08
North) and a sector with lower turbulence (T04 North and T08 West).
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Figure 6. The average turbulence intensity for the two waked sectors for the two target wind turbines.

Therefore, in Figure 7 we investigate if there are differences related to the waked
sectors in the most important operation curve, which of course is the power curve. For
brevity, the curve for only T04 is reported, but the situation is similar also for T08. The
interpretation of the power curve of Figure 7 is somehow counter-intuitive. From that
curve, one would be led to argue that the power curve measured in wake is slightly
better than in free stream and the effect is slightly higher for the waked sector with higher
turbulence. Likely, as discussed for example in [33], the increased turbulent kinetic energy
is not captured by the nacelle anemometer and this leads to an effect of under-estimation of
the wind intensity. Therefore, the fact that the power curve in the waked sectors in Figure 7
looks slightly higher than in free stream is most likely due to wind speed measurement
issues. This supports the fact that a consistent interpretation of wind turbine performance
in complex conditions requires the analysis of further operation curves [37].

In Figures 8 and 9, two fundamental curves describing wind turbine operation are
reported, which are the rotor speed-power and the power-blade pitch curve (see Table 1).
From Figure 8, it arises that when there is higher turbulence (thus in wake), the extracted
power for a given rotational speed is slightly higher. It looks as if, in the full aerodynamic
load regime, higher turbulence for a given wind speed could even be slightly favorable
for power extraction. From Figure 9, it arises that the average blade pitch does not change
remarkably in wake or in free stream up to more or less 2 MW, which for this wind turbine
model is the point at which the rotational speed saturates. When in partial aerodynamic
load, if the turbulence is higher then the average blade pitch is also higher, which means
that the aerodynamic efficiency is lower, and thus a higher incoming wind kinetic energy
is required to extract a certain power output. In other words, the increased turbulence in
waked operation is remarkably unfavorable in the partial aerodynamic load. An expla-
nation of this behavior is that, when the wind turbine regulates the rotational speed and
the blade pitch (full aerodynamic load), it can follow the rapid fluctuations induced by
the wake in the form of increased turbulence. When the rotational speed is held fixed and
only the blade pitch can vary (partial aerodynamic load), the wind turbine is not capable
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anymore to follow the variability of the highly turbulent wind, and the efficiency of the
power conversion is therefore lower.
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Figure 7. The average power curve for the target T04 wind turbine, for the two waked sectors, and
for the free stream case.

6 7 8 9 10 11 12 13

Rotor speed (rpm)

0

500

1000

1500

2000

2500

P
o
w

e
r 

(k
W

)

North

South

Free

Figure 8. The average rotor speed-power curve for the target T04 wind turbine, for the two waked
sectors and for the free stream case.
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Figure 9. The average power-blade pitch curve for the target T04 wind turbine, for the two waked
sectors, and for the free stream case.
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4.2. Characterization of the Waked Sectors and of the Wake Losses

A meaningful quantity for characterizing the operation under wake is how much
the wind direction deviates with respect to the center of the wake (Equation (4)), i.e., to
the values reported in Table 4. In Figure 10, we report the distribution of such a quantity
for the four considered cases. The four waked sectors have quite different features. The
T04 North case is completely skewed negatively, while T04 South is similar but with a
non-negligible occurrence of measurements along the center of the wake. The T08 North
has a practically uniform distribution from −30◦ to +20◦, while the T08 West is completely
positively skewed.
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Figure 10. The distribution of distances from the center of the waked sectors for the four test cases.

Figure 11 reports the average turbulence intensity as a function of the distance from the
wake center for the four considered waked sectors. The turbulence intensity is measured
through the nacelle anemometer of the turbine downstream (T04 and T08, respectively).
Figure 11 is interesting because for three cases out of four (T04 North, T04 South, and T08
West) the turbulence intensity is observed to increase when the wind direction approaches
the center of the wake, which is a reasonable result. For the T08 North case, the turbulence
intensity is quite constant as a function of the direct distance from the wake center. This
is most probably due to the effect of the terrain. It is interesting to notice that this kind of
effect, which is somehow expected in complex terrain [47], indeed, occurs also in cases such
as the one selected in this work, where the terrain is quite gentle. This result provides a
qualitative indication of the fact that it is very likely that turbulence intensity and direction
distance from the wake center are well-correlated quantities, but this is not assured and in
general, those two quantities might convey slightly different information.

Figure 12 reports the difference between the power measurements of the downstream
wind turbine in waked operation and the corresponding simulation in free stream condi-
tions as a function of the angular distance with respect to the wake center. As described
in general in Section 2 and specified in Section 3 for this test case, the free stream simu-
lation for the target T04 or T08 wind turbines is obtained by generating the output of a
data-driven model taking as input the power of the upstream wind turbine (see Table 4)
when both wind turbines are upstream. In Figure 12, such a set of residuals is averaged per
intervals of θd, thus leading to the Angular Distance–Residual curve indicated in Table 1.
Figure 12 quite fairly agree with Figure 11 because of the higher the turbulence intensity
and the higher the wake losses. The most relevant loss occurs for T04 in the South sector
at the center of the wake (up to 250 kW on average). It is interesting to notice that there
is practically no loss when the absolute value of the direction distance with respect to the
wake center is higher than 20◦, for the T04 North, T04 South, and T08 West cases. Instead,
for the T08 North case there is a relevant loss along all the wake sectors, which is likely
related to the fact that the turbulence intensity does not decrease when the distance from
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the wake center increases. The case of T04 South is further analyzed in Figure 13, where the
residuals between model estimates and measurements are averaged per power intervals of
the upstream wind turbine T03. From Figure 13, it arises that the wake losses are higher for
powers of T03 higher than 2 MW. This can be seen as a different way of characterizing the
behavior reported in Figure 9: in this case, using the relative performance with respect to
the upstream wind turbine.

The wake losses reported in Figure 12 can then be averaged and reported to the
measured AEP (Equation (5)), thus obtaining the estimates of Table 7. Coherently with the
above results, the wake sectors non-negligibly affecting the AEP are T04 South and T08
North, i.e., those characterized by higher average turbulence intensity.

Finally, the analysis of the factors influencing the behavior under wake is pursued by
determining the input variables which are required for modeling the power with the lowest
possible error. As described in Section 2 and specified in Section 3, a Sequential Features
Selection is employed starting from the dataset T04 South, which is selected because it
is the most populated. The selected input variables are reported in Table 8. The level of
turbulence intensity is accounted for by the presence of minimum, maximum, and standard
deviations on the 10-minutes time interval. It is worth noticing that the distance from
the wake center is selected as the input variable. This means that this variable provides
additional information which is not merely already contained in the variability over the
time interval of the rotational speed and the blade pitch.
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Figure 11. The distribution of turbulence intensity as a function of the distance from the center of the
waked sectors for the four test cases.
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Figure 13. The residuals between model estimates and measurements for T04 South case, as a function
of the power of the upstream wind turbine (T03).

Table 7. Wake losses in percentage of the AEP, as estimated from the data-driven model.

Case Production Loss

T04 North +0.11%

T04 South −1.13%

T08 North −0.59%

T08 West +0.04%

Table 8. Selected input variables for modeling the power under wake operation.

Rotor Speed (Average, Minimum) (rpm)

Blade Pitch (Average, Minimum, Maximum, Std Dev) (◦)

Direction Distance with respect to the wake center (◦)

Finally, the so-obtained model is tested on a portion of the T04 South dataset and on
the T04 North dataset. The accuracy metrics for such testing are reported in Table 9. It
arises that the metrics for the T04 North dataset are only in the order of 10% higher than for
the testing subset of the T04 South dataset. Considering that a part of the T04 South dataset
is the training dataset and that the behavior of the T04 North wake sector is peculiar as
regards the distribution of turbulence intensity (Figure 11), this result is remarkable in the
sense that it tells that the set of input variables indicated in Table 8 captures features of the
wake behavior that can be considered quite general.

Table 9. The accuracy metrics of the model for the power of wind turbine T04. The model is trained
on two-thirds of the data from T04 South and tested on the remaining third and on the T04 North
wake sector.

Metric kW

MAE T04 South 56.3

MAE T04 North 61.1

RMSE T04 South 97.4

RMSE T04 North 107.1
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5. Conclusions

This work has dealt with the characterization of wind turbine operation under wake
through SCADA data analysis and has been organized as a real-world test case discus-
sion. Actually, two wind turbines from an onshore wind farm have been selected and
their behavior in the waked sectors has been analyzed and compared to the free stream
operation. The general motivation of this work is that the identification of the key SCADA
parameters describing the behavior of wind turbines in wake is an overlooked topic, which
otherwise would be important for advanced wind farm control applications and for man-
aging the power variability in case the wind farms are requested to contribute to grid
ancillary services.

The characterization of wind turbine operation in wake has been pursued through the
analysis of appropriate operation curves and through data-driven methods. The turbulence
intensity is individuated as the key factor determining the observed behavior. Actually, the
operation curve analysis highlights that a wind turbine in wake not only loses production
because the wind intensity decreases while passing through the upstream rotor but also
because, for a certain wind intensity, the higher turbulence induced by the wake stresses the
wind turbine control. In particular, in the full aerodynamic load operation (i.e., when the
wind turbine regulates the blade pitch and the rotational speed) the increased turbulence
does not cause appreciable losses, while it does when the aerodynamic load is partial (i.e.,
the rotational speed is rated and the wind turbine regulates the load through the blade
pitch). Indeed, a deviation of approximately 1◦ of blade pitch in the partial aerodynamic
load region is observed for the wake sectors characterized by higher turbulence intensity.

The above interpretation has been confirmed by a data-driven model for the wake
losses estimate, taking as input the power of the nearby wind turbine. The model is trained
to learn the data-driven relation between a couple of nearby wind turbines when both
are in free stream and is employed to simulate the output when the downstream wind
turbine is in the wake of the upstream one. The difference between model estimates and
measurements therefore allows for estimating the losses. It results that the wake losses are
negligible for the two sectors with average turbulence intensity less than 10%, while the
impact is meaningful for the two sectors (T04 South and T08 North) for which the average
turbulence intensity is in the order of 13%.

The waked sectors have been subsequently characterized by analyzing how the turbu-
lence intensity distributes as a function of the wind direction, specifically focusing on the
proximity of wind intensity to the center of the wake. It was observed that, in general, the
closer the direction to the center of the wake, the higher the turbulence intensity. However,
it is important to consider the distance of the wind direction from the wake center and the
turbulence intensity as separate factors when explaining the observed power variability.
Terrain effects can make the relationship between these two quantities non-trivial also
in the absence of evident complexity, as observed in this work in one of the analyzed
waked sectors.

In general, therefore, the recommendation arising from this work is that a robust
comprehension of how the power of wind turbine generators varies in the presence of
wakes requires non-trivial data analysis methods. It should be taken into account that in
an offshore environment there could be further factors to take into account, for example
the influence of waves [48,49], but the approach proposed in this study can be easily
generalized by including further features affecting the extracted power. The results of this
study can be beneficial for further advancements in the general field of wake active control
and for short or ultra-short-term wind power forecasts. Actually, for those applications, it
is important to determine through real-world test cases what are the factors determining
the behavior of wind farms in highly variable and highly uncertain operation conditions.
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