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Abstract: In recent years, power systems have undergone major changes called energy transitions
during which synchronous generators have been replaced with power electronics-based generation.
Therefore, the voltage stability of power systems has become a major concern owing to the absence of
synchronous generators. This study proposes multi-objective optimization using the non-dominated
sorting genetic algorithm III to achieve optimal reactive power reserve procurement and improve the
voltage stability of the overall system. These systematic approaches require high computational power
and are unsuitable for the operational frameworks currently used for large-scale power systems.
Previous works have rarely considered the local characteristics of reactive power or generation
de-commitment with sufficient re-dispatch owing to greater renewable energy integration. We
propose a framework for achieving systematic optimization by considering various objective functions
while utilizing the regional aspect of reactive power via spectral clustering-based voltage control
area (VCA) identification. The proposed method comprises systematic and regional approaches to
optimizing systems for voltage stability improvement based on VCAs. The results demonstrate that
the proposed method shows satisfactory performance. These results will be helpful for decision
making for power system operations in harsher environments with more renewable energy.

Keywords: reactive power reserve; voltage stability; multi-objective optimization; voltage control
area; clustering; two-stage operational framework

1. Introduction

Power systems are undergoing major changes, such as electrification and carbon neu-
trality, which are causing continuous increases in electricity demand and in the penetration
rate of renewable energy sources [1,2]. In these unavoidable situations, increased load with
limited investment in transmission facilities and variability in renewable energy generation
cause power systems to operate in more stressful conditions and close to their voltage
stability limits [3]. To deal with these problems, energy storage systems are an attractive
resource; however, they requires additional investment [4].

Reactive power plays an important role in maintaining the voltage stability of a sys-
tem. It is consumed while active power is delivered to the demand region and operating
power facilities. Insufficient supply of the required reactive power may lead to voltage
instability; therefore, the appropriate procurement of reactive power reserves is essential
for stable system operation [5]. Moreover, because renewable energy sources are replacing
the conventional generators that provide most of the reactive power reserves in trans-
mission systems, the shortage of reactive power reserves is a concern. Consequently, the
planning and operation of large-scale transmission systems must involve the assessment
and optimization of the reactive power reserves of the available generators.

Studies have focused on the reactive power reserves of systems. Various definitions of
the generator reactive power reserve (GRPR) were provided according to the maximum
limit of the reactive power in [6]. The authors investigated four types of GRPR defined in
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terms of the constant maximum reactive power, capability curves, the minimum voltage
limit and the voltage collapse limit. In [7], the authors suggested that the last two definitions
cannot be employed practically because of the difficulties in determining the operating
point of the minimum voltage limit and voltage collapse limit in online operations.

To enhance voltage stability, studies focusing on reactive power reserve optimization
have been conducted. Although these studies did not consider the local characteristics of
the reactive power, they formulated the maximization of the reactive power reserve as an
objective function and demonstrated its effectiveness [8–13]. Moreover, this aspect was
considered in [14,15]. Voltage control areas (VCAs) have been considered when assessing
the reactive power reserve; however, the V-Q curve was used to constitute the VCAs and
determine the reactive margin in each area [14]. Therefore, a long computation time would
be required for large-scale systems. Although VCAs were identified, the focus was only
on determining the critical buses in each area [15]. Therefore, this method would not be
appropriate to assess the overall voltage stability or that of each area.

A power system partitioning approach has been utilized to establish an efficient
operating strategy for large-scale power systems [16]. Moreover, spectral clustering has
been used to efficiently partition a system into several areas for operation strategies by
utilizing the electrical distance as a clustering criterion [17–19].

In addition, optimal reactive power dispatch (ORPD) has also been studied [20–23].
Owing to the nonlinear nature of the ORPD problem, various heuristic techniques have
been applied to solve it [24]. For the heuristic techniques, a non-dominated sorting genetic
algorithm (NSGA) called NSGA-III was proposed and its excellent performance was
demonstrated [25,26]. This method is particularly appropriate for multi-objective problems
owing to its ability to quickly select excellent individuals and ensure the diversity of
optimal candidates.

In this study, a framework for clustering combined multi-objective optimal operation is
proposed considering voltage instability and the regional characteristics of reactive power.
Our proposed method significantly improves the voltage stability margin by obtaining an
adequate reactive power reserve while securing the reliability of the system and reducing
the operating cost. The proposed framework consists of two stages, where the first and
second stages are for the operating strategies of the entire system and of each VCA used by
the ORPD, respectively. Each stage uses NSGA-III to determine the optimal solution for
handling nonlinear multi-objective problems. Simulations were conducted to demonstrate
the effectiveness of the proposed method, and the results are presented. The results show
that the proposed method significantly improves the overall voltage stability and the
other objective functions. In addition, the results show that the proposed multi-objective
operating strategy has superior characteristics, regardless of the multi-objective problem’s
inherent trade-offs in relation to each objective function. Also, the proposed framework
with a clustering approach reduces the unnecessary complexity of large-scale transmission
systems and improves efficiency through appropriate VCA identification by considering
the regional characteristics of reactive power.

2. Assessment of the Reactive Power Reserve in Voltage Control Areas

To consider the regional aspect of reactive power, the reactive power reserve was
calculated with respect to the VCA. A VCA is a zone that can be used to effectively control
the voltage in consideration of this point. As reactive power cannot travel long distances,
the voltage is mainly affected by the reactive power from nearby areas; in particular,
where the electrical distance is small. Therefore, the VCAs of transmission systems can be
identified based on the electrical distance between the nodes [27,28]. Managing reactive
power depending on its region by utilizing VCAs may facilitate the efficient maintenance
and enhancement of voltage stability.
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2.1. Identifying Voltage Control Areas

Each VCA consists of electrically coupled buses and is comparatively uncoupled from
the other areas. Therefore, it is strongly affected by events in its region but less affected by
events in other regions [27,28]. Several partitioning methods have been studied to divide a
system into weakly coupled areas based on its voltage sensitivity [29–31]. In this study, the
VCAs of the system were identified using a two-step approach as follows:

1. The electrical distance between nodes was calculated;
2. Hierarchical spectral clustering based on electrical distance was conducted.

2.1.1. Derivation of the Electrical Distance

The electrical distance quantifies the electrical inter-connectivity between nodes. Al-
though there are several methods for computing the electrical distance [32], the V-Q
sensitivity-based method is mostly used to configure VCAs [17–19,27,28,33,34].

Assuming that the active and reactive powers are well decoupled in a highly inductive,
large-scale transmission system, the following equations can be derived from the power
flow equation: [

∆P
∆Q

]
=

[
JPV JPθ

JQV JQθ

][
∆V
∆θ

]
(1)

∆Q = JQV ∆V = [
∂Q
∂V

]∆V (2)

where JQV denotes the submatrix of the Jacobian matrix. The matrix [∂V/∂Q], which is
called the sensitivity matrix, is the inverse of [∂Q/∂V].

[
∂V
∂Q

] = [
∂Q
∂V

]−1 (3)

The element [∂Vi/∂Qj] represents the voltage variation in the node i in response to reactive
power injection in the node j. The degree of voltage coupling between two nodes can be
quantified as the attenuation of their voltage fluctuations. The attenuation between node i
and node j is defined as

αij = [
∂Vi
∂Qj

]/[
∂Vj

∂Qj
] (4)

The resultant sensitivity-based electrical distance can then finally be calculated, as shown
in the following equation, reflecting the concept of distance and symmetry between nodes:

Dij = − log(αij · αji) (5)

As the sensitivity-based electrical distance is calculated by including both the system
topology information as well as the voltage magnitude and phase angle information for
the node, the operating state of the system can be considered.

2.1.2. Determining VCAs Using Clustering Approach

Based on the derived electrical distance, hierarchical spectral clustering was applied
to determine the VCAs. The details of hierarchical spectral clustering are available in [16].
The process of hierarchical spectral clustering is as follows:

1. Represent the power system as a graph: A power system can be represented as a
graph G = (V , E) whose vertex and edge sets are V and E , respectively;

2. Obtain the Laplacian matrix L and normalized Laplacian matrix Ln of the graph G:

L = D−WL = D−W (6)
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Ln = D−1/2LD1/2 (7)

Here, W is a weight matrix whose element wij represents the connectivity between
vertices i and j, while D is a diagonal matrix whose element di = ∑j wij. The weight
wij has the following properties.

wij =
1

Dij
, i, j ∈ V (8)

wij = 0, i f (i, j) /∈ E (9)

3. Perform spectral embedding: Obtain the eigenvalues and eigenvectors of Ln, and
use the first k eigenvectors of Ln to coordinate the vertices in the Euclidean space Rk.
Normalize each coordinate so that all vectors have their own norm of 1;

4. Conduct hierarchical clustering: Calculate the distances between the normalized
coordinates of the vertices and cluster them according to their proximity to each other.

It should be noted that the reciprocal of the electrical distance 1/Dij was used as wij to
partition the system into VCAs.

The clustering approach for identifying VCAs was verified by simulations using the
IEEE 118−bus test system. The electrical distances between the nodes are shown in Figure 1.
Figure 1a shows the unsorted results with bus numbers, while Figure 1b shows the sorted
results with each cluster C1, C2, C3, and C4. These results show the electrical distance
relationship for each bus, while the clustering results for the test system topology are
shown in Figure 2.

In addition, a pilot bus was utilized to verify whether this clustering result accurately
reflected the regional characteristics of the reactive power. The pilot bus for each VCA was
selected based on a previous study [35] where the node with the shortest average electrical
distance was assigned to a pilot bus, as in the following equation

Dj =

√
∑

i∈GVCAk

d2
ij (10)

where Dj denotes the average electrical distance from the controlled node j to the reactive
power source nodes GVCAk of VCA k. The numbers of pilot buses for each area were 94,
75, 56, and 30, respectively, which were selected based on a previous study [35]. The VCA
verification results, which are shown in Figure 3, indicate that the clustered VCAs were
effective regardless of the magnitude of the reactive power injection.

Figure 1. Electrical distance between nodes of IEEE 118−bus test system: (a) before sorting. (b) after
sorting by cluster.
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Figure 2. VCA clustering results for IEEE 118−bus test system.

Figure 3. VCA validation results. Bus voltage changes in relation to (Left) 5 Mvar and (Right)
20 Mvar changes in each area’s pilot bus: (a) VCA one, (b) VCA two, (c) VCA three, (d) VCA four.

2.1.3. Reactive Power Reserve in Voltage Control Areas

The reactive power reserve is additional available reactive power that contributes
to maintaining voltage stability in response to changes in the operating conditions of the
system. Therefore, this must be considered to protect the system from disturbance and
collapse [5,14]. Thus, the reactive power reserve is considered as a measure of voltage
stability that can be utilized to determine the voltage stability margin [1,7]. Furthermore,
experiments have proven that the voltage stability of a system can be determined by
monitoring the reactive power reserve [5,14].

In this study, the reactive power limit was determined based on the generator capabil-
ity curve as follows:

RPRGi = QCap.Curve
Gi −Qcurrent

Gi (11)

QCap.Curve
Gi = f (PGi) (12)

where RPRGi, QCap.Curve
Gi , and Qcurrent

Gi denote the reactive power reserve, the maximum
limit of the reactive power determined by the capability curve, and the current reactive
power output of the ith generator, respectively.
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3. Proposed Method for Clustering Combined Multi-Objective Optimal Operation
3.1. Overall Framework

Figure 4 shows the overall framework of the proposed method, which is formulated
as a two-stage multi-objective optimization problem. In the first stage, the entire systematic
operation is optimized by determining the optimal operating points of the generators,
including their commitment, active power dispatch, and terminal voltage. It ensures not
only economic efficiency and reliability but also the reactive power reserve of the generators.
In the second stage, an additional regional optimization of each VCA is performed based
on the result of the first stage. In this stage, voltage control devices are utilized to achieve
regional efficiency and voltage stabilization, and the system operator can enhance the
voltage stability while maintaining a sufficient reactive power reserve.

Figure 4. Overall framework of proposed method.

3.2. Stage 1

In the first stage of the proposed framework, the optimization problem is formulated
as follows:

Minimize [F1(x), F2(x), F3(x), F4(x)] (13)

subject to gj(x) ≥ 0, j = 1, 2, . . . , J (14)

subject to hk(x) = 0, k = 1, 2, . . . , K (15)

where Fi, gj, hk, and x represent the ith objective function, j-th equality constraints, k-th
inequality constraints, and vector of decision variables, respectively.

3.2.1. Decision Variables

The decision variables for the first stage are as follows:

xT = [UG1, . . . , UGNG , PG1, . . . , PGNG , VG1, . . . , VGNG ] (16)

where UGi, VGi, and PGi are the commitment, terminal voltage, and active power output of
ith generator, respectively. NG indicates the number of generators.

3.2.2. Objective Functions

The first objective function is the minimization of active power loss, which affects the
overall efficiency of the system. It can be expressed as follows:

min F1 = ∑ PLoss (17)
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∑ PLoss =
Nl

∑
k=1

gk[V2
i + V2

j − 2ViVj cos θij] (18)

where Nl and gk denote the number of lines between nodes and the conductance of the
line k connecting buses i and j. Vi and Vj are the voltage magnitudes of buses i and j,
respectively, while θij is the angle difference between bus i and j.

For reliable and high-quality system operation, the bus voltage must be kept within a
specific range. The degree to which the voltage profile deviates from the reference value can
be measured and it can be improved by minimizing this measurement. It can be expressed
as an objective function:

min F2 =
NL

∑
i=1

|VLi −Vre f ,Li|
NL

=
NL

∑
i=1

|VLi − 1.0|
NL

(19)

where VLi and Vre f ,Li represent the measured and reference values of the i-th load bus
voltage, respectively. In this study, 1.0 p.u. was used as the reference value. NL denotes the
number of load buses.

The maximization of the reactive power reserve in each VCA is one of the main features
of this study. Equation (20) represents the corresponding objective function. In addition, it
can be converted into a minimization objective function, as shown in Equation (21).

max F3 = min(RPRVCAi) (20)

min F3 = C1 −min(RPRVCAi) = min(C1 − (RPRVCAi)) (21)

where C1 is a constant whose value is large enough for the calculation result to be a value
greater than or equal to zero.

In the operation of power systems, both the stability and the economic aspects must
be considered. In addition, such systems are strongly dependent on the fuel cost for the
generators. The active power dispatch for the generator was determined to minimize the
cost without violating its constraints.

min F4 = Cost =
NG

∑
i=1

(aiP2
Gi + biPGi + ci) (22)

where ai, bi, and ci are the coefficients and constant in the cost function for the i-th generator.

3.2.3. Constraints

The constraints can be classified as equality and inequality constraints. The equality
constraints are the power flow equations.

Pi = Vi

NB

∑
j=1

Vj(Gij cos θij + Bij sin θij) (23)

Qi = Vi

NB

∑
j=1

Vj(Gij sin θij − Bij cos θij) (24)

where Pi and Qi denote the net active and reactive power injections at the i-th bus, respec-
tively, while Gij and Bij are the conductance and susceptance of the line connecting the
buses i and j.

The inequality constraint represents the allowable value and range of each variable
as follows:

UGi ∈ [0, 1], i = 1, 2, . . . , NG (25)
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Pmin
Gi ≤ PGi ≤ Pmax

Gi , i = 1, 2, . . . , NG (26)

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i = 1, 2, . . . , NG (27)

Vmin
i ≤ Vi ≤ Vmax

i , i = 1, 2, . . . , NB (28)

Sli ≤ Smax
li , i = 1, 2, . . . , Nl (29)

where each equation represents a constraint related to the generator commitment UGi,
generator active power PGi, reactive power QGi, bus voltage Vi, and thermal limit of line Sli.
NB denotes the number of buses.

3.3. Stage 2

In the second stage of the proposed framework, the optimal reactive power dispatch
considering the reactive power reserve was performed for each VCA. The main difference
from stage one was that the dispatch was more concentrated in its area by utilizing its
regional voltage-related devices, such as the transformer tap changer and shunt compen-
sators, as well as the generators. In addition, unnecessary complexity can be avoided
by utilizing this dividing approach to optimize resources. Therefore, it can be utilized
for a shorter operation time-frame compared to the holistic approach. The initial states
of commitment and active power dispatch were set at the optimal operating point of the
first-stage result. The implementation of the second stage further secures the reactive power
reserve and voltage stability of each VCA.

Minimize [FVCA k,1(xVCA,k), FVCA k,2(xVCA,k), FVCA k,3(xVCA,k), FVCA k,4(xVCA,k)] (30)

subject to gj(xVCA,k) ≥ 0, j = 1, 2, . . . , J (31)

subject to hk(xVCA,k) = 0, k = 1, 2, . . . , K (32)

where FVCA k,i, gj, hk, and x represent the i-th objective function, j-th equality constraint,
k-th inequality constraint, and the vector of decision variables, respectively.

3.3.1. Decision Variables

The decision variables of the second stage are as follows.

xT = [VVCA k,G1, . . . , VVCA k,GNVCA k,G
, TVCA k,1, . . . , TVCA k,NVCA k,T

, QVCA k,C1, . . . , QVCA k,CNVCA k,C
] (33)

where VVCA k,G, TVCA k,T , and QVCA k,C are the terminal voltage of the generator, transformer
tap ratio, and quantity of shunt compensators in VCA k, respectively. GNVCA k,G, TNVCA k,T ,
and CNVCA k,C represent the number of generators, tap changing transformers, and shunt
compensators, respectively, in VCA k.

3.3.2. Objective Functions

The first and second objective functions are nearly the same as those in the first stage,
except that we consider only VCA k. The objective functions for the second stage are
expressed as follows:

min FVCA k,1 = min(PVCA k,Loss) (34)

PVCA k,Loss =
NVCA k,l

∑
m=1

gm(V2
i + V2

j − 2ViVj cos θij) (35)
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where NVCA k,l represents the number of lines in VCA k and

min FVCA k,2 =
NVCA k,L

∑
i=1

|VLi −Vre f ,Li|
NVCA k,L

=
NVCA k,L

∑
i=1

|VLi − 1.0|
NVCA k,L

(36)

where NVCA k,L represents the number of controlled buses in VCA k.
From the perspective of the VCA, the reactive power reserve of VCA k can be further

optimized by searching for the optimal operating point of the generators and reactive
power equipment in the area. The objective function of the reactive power reserve in the
VCA can be represented as

max FVCA k,3 = RPRVCA k (37)

min FVCA k,3 = (C2 − RPRVCA k) (38)

where C2 is a constant whose value is large enough for the calculation result to be a value
greater than or equal to zero.

To assess regional stability, the voltage stability index (VSI) was introduced. The VSI
effectively assesses the voltage stability of buses or lines by quantifying their proximity to
instability under low computational loads [36,37]. The L-index [36] was utilized to enhance
voltage stability. This was achieved by minimizing the largest L-index value in the are
of interest.

min FVCA k,4 = max(Li) (39)

Li = |1−
NG

∑
j=1

YijVj| (40)

[
IG
IL

]
=

[
IGG IGL
ILG ILL

][
VG
VL

]
(41)

where IG, IL, VG, and VL represent currents and voltages of the generator and load nodes,
respectively.

3.3.3. Constraints

As in the first stage, Equations (24)–(27) are applied as constraints in the second stage.
In addition, the upper and lower bounds of the transformer tap settings and reactive power
compensators and the L-index constraints are included as constraints.

Tmin
VCA k,i ≤ TVCA k,i ≤ Tmax

VCA k,i, i = 1, 2, . . . , NVCA k,T (42)

Qmin
VCA k,Ci ≤ QVCA k,Ci ≤ Qmax

VCA k,Ci, i = 1, 2, . . . , NVCA k,C (43)

Lj ≤ 1, j = 1, 2, . . . , NB (44)

where NVCA k,T and NVCA k,C denote the number of tap-changing transformers and reactive
power compensators, respectively.

4. Solution for the Proposed Framework

In this study, NSGA-III [25,26] was applied to determine the optimal solution for the
proposed framework.

4.1. Non-Dominated Sorting Genetic Algorithm III

NSGA-III is a genetic algorithm that searches for a Pareto optimal solution based
on non-dominated sorting. It exhibits promising performance in solving multi-objective
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optimization problems because, unlike other algorithms, it does not need either a weight
for each objective function or additional user-defined parameters to be specified.

The overall process of the NSGA-III is as follows, and more details can be found
in [25].

1. Set equality/inequality constraints and generate reference points;
2. Generate the initial population P1, which becomes the parent population Pt when

t = 1;
3. Evaluate the fitness and feasibility of Pt;
4. Create the offspring population Qt by recombination and mutation from Pt;
5. Evaluate the fitness and feasibility of Qt;
6. Combine Pt and Qt (Rt = Pt ∪Qt) and sort Rt according to non-domination levels;
7. Choose the best N individuals from Rt according to the non-domination levels and

reference point-based selection;
8. The N individuals of Pt are transferred to Pt+1.
9. Iterate steps three to eight until t iterations are performed.

The feasibility of the individual affects the creation of the offspring population and
the choice of the non-domination level in NSGA-III with constraint handling [26].

4.2. Application of NSGA-III to the Proposed Framework

The procedure for applying NSGA-III to the proposed framework is illustrated in
Figure 5. When applying NSGA-III to the framework, initial population generation and
final individual selection processes are also performed. In the first stage, a separate process
is performed to generate an initial population before starting the iteration. Populations
are randomly generated repeatedly until a sufficient number of feasible individuals are
obtained. This is done separately because it is difficult to obtain an adequate number of
feasible individuals through random generation. Meanwhile, decision making is required
to select the final optimal solution from the Pareto optimal solutions based on whether
user preferences exist. If user preferences do not exist, the final optimal solution can
be determined by selecting a solution close to the ideal point. This is undertaken by
normalizing the objective function value of each solution and calculating the distance to
the ideal points, all of which are zero. Therefore, in the minimization optimization problem,
smaller values are closer to the ideal point. Each objective function value for an individual
ranges from 0 to 1, and the ideal solution has all the values of the coordinate 0. This process
can be understood better through a case study.

Figure 5. Flowchart of overall solution algorithm.
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5. Case Studies and Results

This section describes case studies conducted using the proposed framework and
presents their results. The simulation environment was the IEEE 118-bus test system shown
in Figure 2. Simulations were performed not only to verify the effectiveness of the proposed
framework but also to verify its effectiveness in a system with a high level of penetration
of renewable energy. A scenario with a 40% increase in renewable energy was utilized to
demonstrate that the validity depends on the penetration level [38].

5.1. Base Case
5.1.1. Results of Stage One in the Base Case

The strategy of the first stage was applied to the system, and its results for each
objective function are shown in Figure 6. The results demonstrate the effectiveness of
the proposed multi-objective optimal operation in the first stage. All objective functions
improved as the generations progressed, which indicated that the operating efficiency also
improved while obtaining the appropriate reactive power dispatch and reserves to improve
the voltage stability. However, as previously mentioned, many optimal solution candidates
exist for each generation. Therefore, the appropriate optimal solution must be selected
from the Pareto optimal solutions. The results are shown in Figure 7. In this figure, the lines
denote the optimal solution candidates, and the blue line represents the optimal solution
selected by the optimal candidate-selecting strategy. The values of the resulting objective
function are listed in Table 1. The comparison of objective function values before and after
optimization reconfirmed that our proposed method was validated. Also, as explained
earlier, there was a difference in results of each objective function in Table 1 with best value
of each objective function in Figure 6.

Figure 6. Results for each objective function for the optimal candidate for each generation.

Figure 7. Result from selecting the optimal candidate from the Pareto optimal candidates.
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Table 1. Evaluation results for each objective function with and without the application of the
proposed framework.

Case ΣPLoss Avg(|VL− 1|) min(RPRVCA) Cost

Be f ore 1.3660 p.u. 0.03223 p.u. 158.51 Mvar 491.38
A f ter 0.7814 p.u. 0.01538 p.u. 441.31 Mvar 484.26

In addition, the bus numbers 39, 40, 41, 42, 43, 44, 45, 46, and 72 changed from VCA
four to VCA two. The resultant reactive power reserve changes in each area were as follows
Table 2.

Table 2. Changes in reactive power reserves of each area.

Area VCA 1 VCA 2 VCA 3 VCA 4

Be f ore 957.17 158.51 1356.96 988.50
A f ter 1556.65 441.31 1000.08 1302.01

From these results, it can be confirmed that the overall reactive reserves were well
redistributed to obtain an overall improved voltage stability margin for each area.

5.1.2. Results of Stage Two in the Base Case

After the first stage, the reactive devices of each area, such as the reactive power
compensator and tap-changed transformer, were utilized with the synchronous generator’s
voltage control capability to stabilize each VCA. The optimized results for each area are
shown in Figure 8 for VCAs one and two and Figure 9 for VCAs three and four. In addition,
comparisons of the results for each area with and without the application of the proposed
framework are shown in Tables 3–6.

These results indicate that the overall objective functions for each area improved well.
However, in the case of VCA two, less effective results were obtained owing to the inherent
trade-off relationship between the objective functions. Also, there were fewer degrees
of freedom for control variables such as the reactive power resources and synchronous
generators in this area. Therefore, the performance of the proposed framework strongly
depends on the operating environment. However, it is evident that the proposed framework
is helpful for improving efficiency and the voltage stability margin. In particular, the voltage
profiles of almost all buses were improved, which is shown through a comparison before
and after the application of the strategy in Figure 10.

Figure 8. Results for each objective function for each area: (a) VCA one, (b) VCA two
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Figure 9. Results for each objective function for each area: (a) VCA three, (b) VCA four.

Figure 10. Voltage profile change after the first stage in the base case.

Table 3. Stage two results for VCA one with and without the application of the proposed method.

Case ΣPLoss Avg(|VL− 1|) RPRVCA L-Index

Be f ore 0.2075 p.u. 0.01067 p.u. 1556.65 Mvar 0.1240
A f ter 0.2094 p.u. 0.01133 p.u. 1580.34 Mvar 0.1128

Table 4. Stage two results for VCA two with and without the application of the proposed method.

Case ΣPLoss Avg(|VL− 1|) RPRVCA L-Index

Be f ore 0.06162 p.u. 0.01148 p.u. 441.31 Mvar 0.1259
A f ter 0.06624 p.u. 0.009817 p.u. 525.23 Mvar 0.1247

Table 5. Stage two results for VCA three with and without the application of the proposed method.

Case ΣPLoss Avg(|VL− 1|) RPRVCA L-Index

Be f ore 0.1077 p.u. 0.01454 p.u. 1000.08 Mvar 0.07456
A f ter 0.1040 p.u. 0.01340 p.u. 1093.02 Mvar 0.07494

Table 6. Stage two results for VCA four with and without the application of the proposed method.

Case ΣPLoss Avg(|VL− 1|) RPRVCA L-Index

Be f ore 0.2299 p.u. 0.02090 p.u. 1302.01 Mvar 0.1252
A f ter 0.2152 p.u. 0.02628 p.u. 1419.68 Mvar 0.1108



Energies 2023, 16, 5914 14 of 19

5.2. Consideration of High-Level Penetration of Renewable Energy

To consider a more drastic operating environment with more renewable energy, a
scenario with a 40% increase in the penetration level of the base case was considered. As
mentioned earlier, renewable energy was added to all the PQ buses in proportion to the
short-circuit capacity of each bus. The changes in the operating environment were as follow:
the total increased renewable energy was 1696.8 MW; the generators of bus numbers 89, 80,
and 10 were de-committed; and the real power dispatch of the generator of bus number
66 was reduced from 392 MW to 229.2 MW. The de-commitment and re-dispatch of the
generator was determined based on its cost function. Detailed information on the cost
functions is provided in Appendix A.

5.2.1. Results of Stage One for High-Level Penetration of Renewable Energy Scenario

The proposed framework was applied to the same system as in the base case. The
results of the first stage are shown in Figure 11. As expected, these results demonstrate the
effectiveness of the proposed method. All objective functions improved significantly, which
implies that our proposed method is valid in more challenging environments with more
renewable energy. A comparison of the results obtained with and without the application
of the proposed method is shown in Table 7. The resulting reactive power reserves for each
area are listed in Table 8.

Figure 11. Results for each objective function for the optimal candidate for each generation in the
high-level penetration of renewable energy scenario.

Table 7. Evaluation results for each objective function with and without the application of the
proposed method in the high-level penetration of renewable energy scenario.

Case ΣPLoss Avg(|VL− 1|) min(RPRVCA) Cost

Be f ore 0.9893 p.u. 0.04587 p.u. 0 Mvar 398.03
A f ter 0.6187 p.u. 0.01389 p.u. 789.86 Mvar 354.14

Table 8. Changes in reactive power reserves of each area with the high-level penetration of renewable
energy scenario.

Area VCA One VCA Two VCA Three VCA Four

Be f ore 104.10 0 1436.82 821.47
A f ter 1588.38 989.72 807.13 789.86
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Table 8 shows that there was no available reactive power reserve for VCA two, imply-
ing that VCA two had a voltage stability problem owing to an increase in renewable energy
without appropriate action. These difficulties are shown through the average of the voltage
deviation from its nominal value in Table 7 as well. However, as shown in Table 8, this
can be resolved by applying the proposed method. Also, for the voltage profile, significant
improvements are shown in Figure 12. It shows that the buses that exceeded the stability
limit before were stabilized into the range.

Figure 12. Voltage profile change after the first stage in the high-level penetration of renewable
energy scenario.

5.2.2. Results of Stage Two in the High-Level Penetration of Renewable Energy Scenario

The results of the proposed method for each area are presented in this section. Com-
parisons of the results obtained before and after the application of the proposed method are
shown in Tables 9–12 for each area. In all cases, improved voltage stability was observed
with the use of the VSI. However, as expected, no meaningful results were obtained for
VCA two because there were fewer controllable voltage control devices. This reconfirms the
results from the first stage. The evaluated values for each objective function, depending on
its generation, are shown in Figures 13 and 14. They demonstrate our analysis results well.

Figure 13. High-level penetration of renewable energy scenario results for each objective function for
each area: (a) VCA one, (b) VCA two.
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Figure 14. High-level penetration of renewable energy scenario results for each objective function for
each area: (a) VCA three, (b) VCA four.

Table 9. Stage two results with high-level penetration of renewable energy for VCA one with and
without the application of the proposed method.

Case ΣPLoss Avg(|VL− 1|) RPRVCA L-Index

Be f ore 0.1493 p.u. 0.00922 p.u. 1588.38 Mvar 0.1223
A f ter 0.1398 p.u. 0.01765 p.u. 1610.34 Mvar 0.1180

Table 10. Stage two results with high-level penetration of renewable energy for VCA two with and
without the application of the proposed method.

Case ΣPLoss Avg(|VL− 1|) RPRVCA L-Index

Be f ore 0.03763 p.u. 0.01923 p.u. 989.72 Mvar 0.05798
A f ter 0.03688 p.u. 0.02067 p.u. 1001.47 Mvar 0.05735

Table 11. Stage two results with high-level penetration of renewable energy for VCA three with and
without the application of the proposed method.

Case ΣPLoss Avg(|VL− 1|) RPRVCA L-Index

Be f ore 0.1834 p.u. 0.009658 p.u. 807.13 Mvar 0.1346
A f ter 0.1778 p.u. 0.01295 p.u. 818.13 Mvar 0.1346

Table 12. Stage two results with high-level penetration of renewable energy for VCA four with and
without the application of the proposed method.

Case ΣPLoss Avg(|VL− 1|) RPRVCA L-Index

Be f ore 0.1978 p.u. 0.01716 p.u. 789.86 Mvar 0.2107
A f ter 0.1973 p.u. 0.01908 p.u. 881.46 Mvar 0.2002

6. Conclusions

In this study, a clustering combined multi-objective operation strategy for a large-scale
transmission system was proposed to address the increased concern regarding voltage
stability. The clustering approach considered the regional characteristics of the reactive
power, thereby facilitating more effective reactive power management. Also, its effective-
ness was validated through simulations. The proposed multi-objective problem was solved
using NSGA-III, and the results demonstrated its superior performance. In addition, to
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avoid unnecessary complexity and computational demands and to concentrate more on
the regional aspect, a two-stage framework was developed that yielded appropriate results
for the purpose of each stage. To demonstrate its validity, a normal operating scenario
simulation was performed and the corresponding results were presented in this paper.
Additionally, a scenario with high-level penetration of renewable energy was considered to
demonstrate the approach’s ability to handle more realistic and challenging environments
in the near future. The results of both cases show that our proposed method can effectively
achieve reliable and stable operation while considering voltage stability. Therefore, this
is expected to be helpful for more challenging operating environments for large-scale
transmission systems. Future work will focus on utilizing the controllability of renewable
energy to improve the overall voltage stability.
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Appendix A

The parameters of the generator cost function used in the simulation are presented in
Table A1.

Table A1. Parameters of generator cost function used in the simulation.

Gen. Bus No. ai [$/MW2] bi [$/MW] ci [$]

G1 1 0.117647 20 20,000
G2 4 0.022222 20 20,000
G3 6 0.064516 20 20,000
G4 8 0.039683 20 20,000
G5 10 0.022222 20 20,000
G6 12 0.117647 20 20,000
G7 15 0.064516 20 20,000
G8 18 0.022222 20 20,000
G9 19 0.117647 20 20,000
G10 24 0.039683 20 20,000
G11 25 0.045455 20 20,000
G12 26 0.031847 20 20,000
G13 27 0.022222 20 20,000
G14 31 1.428571 20 20,000
G15 32 0.064516 20 20,000
G16 34 0.117647 20 20,000
G17 36 0.117647 20 20,000
G18 40 0.022222 20 20,000
G19 42 0.022222 20 20,000
G20 46 0.526316 20 20,000
G21 49 0.049020 20 20,000
G22 54 0.208333 20 20,000
G23 55 0.064516 20 20,000
G24 56 0.117647 20 20,000
G25 59 0.064516 20 20,000
G26 61 0.062500 20 20,000
G27 62 0.064516 20 20,000
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Table A1. Cont.

Gen. Bus No. ai [$/MW2] bi [$/MW] ci [$]

G28 65 0.025575 20 20,000
G29 66 0.025510 20 20,000
G30 69 0.019365 20 20000
G31 70 0.117647 20 20,000
G32 72 0.064516 20 20,000
G33 73 0.022222 20 20,000
G34 74 0.022222 20 20,000
G35 76 0.064516 20 20,000
G36 77 0.010000 20 20,000
G37 80 0.020964 20 20,000
G38 85 0.062500 20 20,000
G39 87 2.500000 20 20,000
G40 89 0.016474 20 20,000
G41 90 0.039682 20 20,000
G42 91 0.064516 20 20,000
G43 92 0.022222 20 20,000
G44 99 0.064516 20 20,000
G45 100 0.039682 20 20,000
G46 103 0.250000 20 20,000
G47 104 0.039682 20 20,000
G48 105 0.117647 20 20,000
G49 107 0.039682 20 20,000
G50 110 0.117647 20 20,000
G51 111 0.277777 20 20,000
G52 112 0.022222 20 20,000
G53 113 0.062500 20 20,000
G54 116 0.022222 20 20,000
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