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Abstract: More and more distributed generation (DG) and energy storage (ES) devices are being con-
nected to the distribution network (DN). They have the potential of maintaining a stable supply load
during failure periods when using islanding operations. Therefore, DG and ES have capacity value,
i.e., improving the power supply capability of the system. However, there are strong fluctuations
in DG outputs, and the operations of ES devices have sequential characteristics. The same capacity
of DG has different load-bearing capabilities compared to conventional thermal or hydroelectric
units. This paper proposes a method for evaluation of power supply capability improvement in
DNs. First, the temporal fluctuation in both power source and load demand during fault periods
is considered. A DN island partition model considering the secondary power outage constraint is
established. Then, a modified genetic algorithm is designed. The complex island partition model is
solved to achieve accurate power supply reliability evaluation. And the incremental power supply
capability associated to DG and ES devices is calculated. Finally, a case study is conducted on the
PG&E 69-bus system to verify the effectiveness of the proposed method. It is found that with a 20%
configuration ratio of ES devices, the power supply capability improvement brought about by 6 MW
DG can reach about 773 kW.

Keywords: power supply capability; distributed generation; power supply reliability criteria;
island partition; genetic algorithm

1. Introduction

To realize the grand goal of “double carbon”, China has been vigorously developing
wind power generation, photovoltaic (PV) energy generation, and other renewable energy
sources, of which distributed generation (DG) is an important part [1]. However, the active
power of wind turbines and PV units is volatile, and their gradual integration will pose
challenges to the normal operation of the power system. Therefore, the National Devel-
opment and Reform Commission and other departments have issued relevant documents
requiring that some ES devices must be configured, when investing in renewable energy in
the future, to suppress fluctuations in renewable power output [2]. The integration of DG
and ES devices into various levels of the DN in the load center can help to achieve on-site
development and consumption of electricity, save construction and maintenance costs
associated with the power grid, increase the power supply capability of the distribution
system, and reduce network losses [3]. The capacity value of DG devices plays an important
role in maintaining reliable DN operations. During system failures, they can continue to
supply locally important loads through “islanding” operations, thus improving power
supply reliability [4].

Therefore, the integration of various DG devices can reduce the dependence of the
DN on the higher-level power grid and improve the power supply capability of the DN.
The installed capacity of DG and ES devices cannot represent the incremental power
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supply capability. If a certain proportional coefficient is set—such as 10% of the installed
capacity—it may lack credibility. There are various methods that can be used for evaluation
of the power supply capability. Early power supply capability evaluation methods often
considered the rated capability of substations separately, using the substation capacity-
to-load ratio index [5] for measurements. In addition, some scholars have proposed
the concept of maximum power supply capability, which is the maximum load demand
that a power system can supply, and they calculated the power supply capability index
based on the repetitive power flow method [6]. However, this method does not solve
the problem of the system capacity range under different load distributions. There are
also studies that have suggested measuring power supply capability through the safe
boundary power supply capability, but this approach does not take the uncertainty of
renewable energy output into consideration [7]. In the specific scenario of evaluating the
power supply capability of DNs with DG devices, conducting a capacity-value evaluation
of the DG devices [8] and quantifying this capacity value provides an effective way to
measure the power supply capability [9]. Researchers have attempted to find alternative
scientific methods to more accurately determine the power supply capability [10]. However,
according to relevant IEEE standards, the power supply capability cannot be described
independently. The power supply capability should be mentioned only along with a clear
description of the power supply reliability. In 1966, L. Garver first proposed the concept of
credible capacity, based on the effective load carrying capacity [11]. Since then, credible
capacity has become an important indicator for measuring the capacity of renewable
power generators.

There is currently no consensus on the methods to be used for evaluation of credible
capacity, which can be divided into two kinds based on whether equal reliability criteria
are followed. The load curve method is a common method for evaluating the credible
capacity that is not based on equal reliability. In [12], the authors compared the load
duration curves of renewable energy units before and after their connection and took
the load decrease as the credible capacity of renewable energy units, quickly providing a
credible capacity indicator from a macro perspective. The Garver approximation method
was proposed in [13], which models the wind turbine as several discrete output values
and derives the credible capacity of the wind turbine. In [14], the Z-statistics method
was proposed, which assumes that the redundant capacity of the system obeys a normal
distribution with the fluctuation of renewable energy units and loads, and an approximate
calculation formula of the credible capacity was derived. In [15], the reliability function
method was proposed, which first established a power supply reliability function taking
the load demand value as the key variable, and an expression for wind power credible
capacity was obtained. This method is suitable for situations where the renewable energy
is relatively low. In [16], neural networks were trained with empirical samples in order to
calculate the credible capacity directly. However, the abovementioned methods generally
require strong assumptions.

In evaluation methods based on equal reliability criteria, the selection of reliability
indicators is an important part of the reliability calculation. When conducting a credible
capacity search based on reliability indicators, most studies select the expected energy
not served (EENS) of the power supply as the comparison standard for power supply
reliability [17]. Other studies have used indicators such as the loss-of-load frequency [18],
well-being framework [19], loss-of-load-expectation standard [20], and Value at Risk. To
complete the power supply improvement search, existing one-dimensional search meth-
ods such as the dichotomy method [21] and the truncation method [22] can meet the
computational accuracy requirements.

Fault consequence analysis is the core link in DN reliability assessments. During sys-
tem failures, the DG power supply capability and the DN topology flexibility can support
the recovery of important loads (i.e., through island partitioning). In the IEEE 1547.4-2011
standard [23], it is encouraged that conscious island operations should be considered, stat-
ing that planning for the island should take into account the action strategy of switches [24].
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Existing methods for solving island partition models can be divided into graph theory-
based methods, intelligent algorithms, and heuristic algorithms. The graph theory-based
methods typically utilize an undirected graph model and transform the complex island
partition model into a minimum spanning tree problem [25]. A micro-phasor measurement
unit could monitor the DN in real time, so as to avoid issues related to grid stability [26].
However, current graph theoretic partition methods often have difficulty in achieving both
good computational speed and accuracy. Intelligent algorithms, represented by genetic
algorithms [27], differential evolution algorithms [28], and particle swarm optimization al-
gorithms [29], possess strong universality and can solve non-linear island partition models
through iterative calculations. Heuristic algorithms [30] and ordinary intelligent algorithms
are both important methods for solving island partition models. However, when con-
sidering ES devices, their sequential characteristics significantly increase the complexity
of solving the island partition problem, and there is relatively little research on island
partitioning that takes into account ES operations.

In summary, in order to evaluate the improvement effect of DG devices on the power
supply capability of DNs, it is necessary to evaluate the united credible capacity of DG
and ES. Existing research still has the following shortcomings: (1) the fault consequence
analysis does not consider the island partition, or the island partition model ignores the
flexible change in the DN topology, and most of them do not consider secondary power
outage constraints; and (2) it only considers the capacity value of DG devices, without
considering the ability to suppress the DG output after the integration of ES devices. As
such, effective scheduling methods for ES devices during failures are lacking.

In response to the shortcomings in the existing literature, this paper proposes a
method for evaluation of the improved effectiveness of the power supply capability in a
DN based on credible capacity. First, combined with the calculation principles of credible
capacity, the concept of incremental power supply capability brought by DG and ES
devices is expressed. Second, in order to take advantage of the diversification of electricity
sources and flexibility of the topological structure of distribution networks, an island
partition model is established to estimate the power supply reliability of the distribution
network. Finally, to account for the secondary power outage constraint and island network
topology connectivity constraint, a genetic algorithm solution strategy is proposed, thus
realizing fast computation. The logical framework of this paper is shown in the following
Figure 1.
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2. The Method for Calculating Increased Power Supply Capability

The traditional distribution network obtains electrical energy from the upper
power grid and uses feeders to distribute electrical energy to each load node. If a feeder
fails, resulting in power outages for some users, the power supply to important loads
can be restored in time through measures such as switching operations. Assuming
that the available upper grid power supply capability of the DN is Ccon and the load
level is L0, the power supply reliability level can be denoted as Re{Ccon, L0}. L0 denotes
the original load demand and is represented by the annual maximum active power.
According to the theory of power supply reliability, an increase in the number of
generators can improve power supply reliability, while an increase in the load demand
can downgrade reliability. For quantification of the value of Re{Ccon, L0}, there are
four basic steps: component modeling, system operation state generation, failure
consequence analysis, and reliability index calculation (for the detailed process, we
refer the reader to [31]).

The integration of distributed renewable energy sources and energy storage batteries
promotes the diversification of energy sources in smart distribution networks. Therefore,
after the integration of renewable energy units and ES devices—whose capacities are
denoted as Cren and CES, respectively—into the DN, the power supply reliability is
improved as Re{Ccon + Cren + CES, L0} from Re{Ccon, L0}. If the load level increases to
L0 + ∆L, the power supply reliability level of the DN recovers to Re {Ccon, L0}. Then,
the increase in load supply capacity ∆L is called the credible capacity of DG and ES.
Credible capacity assessment is a one-dimensional search process that requires repeated
calculations to determine the level of load improvement that meets the equivalent power
supply reliability criteria. A binary method can be used to effectively implement the
one-dimensional search process. The specific steps of searching for the credible capacity
are as follows:

(1) Calculate the EENS index caused by system failures and evaluate the current reliability
level Re{Ccon, L0}.

(2) Integrate DG and ES devices with respective capacities Cren and CES into the
network, while keeping the system load level L0 unchanged. The improved power
supply reliability is denoted as Re{Ccon + Cren + CES, L0}. The initial value l1 is
set to 1.

(3) Raise the load demand to L0 + l1 × L’; update the power supply reliability, which is
denoted as Re{Ccon + Cren + CES, L0 + l1 × L’}; and determine whether
Re{Ccon + Cren + CES, L0 + l1 × L’} is greater than Re{Ccon, L0}. L’ denotes the search-
ing step used while seeking the incremental power supply capability, and l1 denotes
the accounting number of searching steps. If yes, proceed to step (5); otherwise,
proceed to step (4).

(4) Let l1 = l1 + 1; return to step (3).
(5) The incremental load demand corresponding to the credible capacity is between

[L0 + (l1 − 1) × L’, L0 + l1 × L’]. At this point, the obtained ∆L = l1 × L’ is the DG
credible capacity. The schematic diagram of completing one credible capacity search
is depicted in Figure 2.
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3. Power Supply Reliability Evaluation Method Based on Island Partition

According to the theory detailed above, it is necessary to evaluate the power supply
reliability value, during which the influence of DG and ES devices must be accounted
for accurately.

3.1. Island Partition Model

The core of evaluating the credible capacity of DG and ES devices is searching for an
accurate load improvement level ∆L. This paper takes the EENS as the system reliability
indicator, and the sequential Monte Carlo method is used for power supply reliability
evaluation. When evaluating the power supply reliability of the DN, it is necessary to
conduct fault consequence analysis based on the island partition.

After a system failure, if DG and ES devices are not considered, the total power outage
during the failure period is Etotal. The remaining EENS index after adopting island partition
measures is recorded as ENS, and its calculation method is shown in Equation (1):

ENS = Etotal −
T

∑
t=1

A

∑
a=1

∑
i∈Ωa

Pload
i,t , (1)

where Pi,t represents the active output of node i at time t, T represents the duration of the
fault, N represents the set of nodes, A represents the number of islands, and Ωa represents
the set of nodes within the ath island.

The purpose of island partitioning is to restore power supply to more important loads
in the DN. The objective function is used to minimize the potential power outage loss of
load nodes within the island, as shown in Equation (2):

min ∑
i∈N

[(1− STi)×
t2

∑
t=t1

Bi,t], (2)

where Bi,t represents the reduced power outage loss of node i due to power restoration
at time t, t1 represents the beginning time of the fault, and t2 represents the end time of
the fault. STi and sti,t represent whether node i is included in the island. These are both
0–1 binary variables: if node i is put in the island at time t, then sti,t is 1; otherwise, it is 0.
This model comprehensively considers many factors such as the source load fluctuation,
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load priority, and secondary power outage constraints, as well as the flexible operation and
radial structure constraints of connecting lines in the DN.

STi =

{
1 i f sti,t = 1 ∀i ∈ N, ∀t ∈ [t1, t2]
0 i f sti,t = 0 ∀i ∈ N, ∀t ∈ [t1, t2]

sti,t =


1 i f i ∈

A
∪

a=1
Ωa ∀i ∈ N, ∀t ∈ [t1, t2]

0 i f i /∈
A
∪

a=1
Ωa ∀i ∈ N, ∀t ∈ [t1, t2]

Bi,t = Pload
i,t ∗ PRi ∀i ∈ N, ∀t ∈ [t1, t2]

βij + β ji = ωij ∀i ∈ Ωa, j ∈ NBi, ∀a ∈ [1, A]
βij = 0 ∀i ∈ Λa, ∀a ∈ [1, A]
βij ∈ {0, 1} ∀i ∈ Ωa/Λa, j ∈ NBi, ∀a ∈ [1, A]

∑
j∈NBi

βij = 1 ∀i ∈ Ωa, ∀i /∈ Λa, ∀a ∈ [1, A]

0 ≤ ωij ≤ 1 ∀i ∈ Ωa, j ∈ NBi, ∀a ∈ [1, A]
Ωa ∩Ωb = ∅ ∀a ∈ [1, A], b ∈ [1, A], a 6= b
Λa ∩Λb = ∅ ∀a ∈ [1, A], b ∈ [1, A], a 6= b
PGi,t ≤ PGmax

i,t ∀i ∈ Λa, ∀a ∈ [1, A], ∀t ∈ [t1, t2]

∑
i∈Ωa

Pload
i,t ∗ sti,t = ∑

j∈Λa

Pdis
j,t − Pcha

j,t + PGj,t ∀a ∈ [1, A], ∀t ∈ [t1, t2]

Emin 6 Ei,t 6 Emax ∀i ∈ Λa, ∀t ∈ [t1, t2]
Ei,t1 = E0 ∀i ∈ Λa
Ei,t = Ei,t−1 − Pdis

i,t + Pcha
i,t ∀i ∈ Λa, ∀t ∈ [t1, t2]

0 ≤ ucha
i,t + udis

i,t ≤ 1 ∀i ∈ Λa, ∀t ∈ [t1, t2]

Emax ∗ ucha
i,t ∗ βmin ≤ Pcha

i,t ≤ Emax ∗ ucha
i,t ∗ βmax ∀i ∈ Λa, ∀t ∈ [t1, t2]

Emax ∗ udis
i,t ∗ βmin ≤ Pdis

i,t ≤ Emax ∗ udis
i,t ∗ βmax ∀i ∈ Λa, ∀t ∈ [t1, t2]

(3)

If all the values of sti,t for node i during the fault period [t1, t2] are 1, then STi = 1;
otherwise, it is equal to 0. Therefore, the island scheme decision variable STi is achieved by
taking the intersection of the sti,t values during the fault period [t1, t2]. The island benefit
Bi,t is composed of the product of the active power Pi,t of the load within the island and
the priority weight PRi. βij and βji are both 0–1 variables representing whether the DN
maintains radial operations. ωij is a 0–1 variable representing whether a switch is open
or closed. Λa represents the set of load points with DG and ES devices connected within
the ath island. NBi represents adjacent nodes of node i. The DG output is denoted as PGi,t,
and t cannot exceed its predicted output upper limit PGmax

i,t . Pcha
j,t and Pdis

j,t represent the
ES charging and discharging capacities connected to node j at time t, respectively. Ei,t
represents the remaining ES at time t at node i, while Emin and Emax are the lower and
upper limits of the state of charge. ucha

i,t is a 0–1 variable representing whether the ES device
is in charging state, with 1 denoting charging. udis

i,t is a 0–1 variable representing whether
the ES is in discharging state, with 1 denoting discharging. βmin and βmax are the upper
and lower limit parameters, respectively, for ES charging and discharging.

The first two formulas of Equation (3) represent the secondary power outage constraint,
and the nodes drawn into the island cannot experience a secondary power outage under
the fault state. The third formula of Equation (3) represents the island benefit calculation
method, which is taken as the objective function of the island partition model. The 4th
to 8th formulas of Equation (3) represents the radial operation constraints of the DN,
which ensure that there is no ring network within the island. The 9th to 10th formulas of
Equation (3) represents the island non-joint constraint, which means that each DG device
and load node can only operate on a portion of one island (i.e., they cannot belong to two
islands at the same time). The eleventh formula of Equation (3) represents the upper limit
constraint of the DG output. The twelfth formula of Equation (3) represents the power
and electricity balance constraint. The 13th to 18th formulas of Equation (3) represents the
relevant operational constraints of ES devices.
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The optimization variable of the island model is whether each node is drawn into
the island, denoted by the variable STi. If the STi value of node i is 1, it indicates that
node i is restored; meanwhile, if its value is 0, node i is not restored. The optimization
objective of the island partition model is the weighted benefit of the total restored load
Bi,t. It should be emphasized that non-linear node voltage limits and branch power flow
constraints are not considered in Equation (3). For the island partition scheme developed
using the above model, it is necessary to check whether the node voltage and branch power
flow requirements are met. If the node voltage or the branch current exceeds the limit,
it is necessary to cut off leaf load nodes of the islands to meet the voltage and thermal
constraints. As this is not the core work of this paper, further details along these lines are
not provided.

3.2. A Method for Quickly Solving the Island Partition Model

The island partition results are closely related to the remaining electricity at the
fault beginning time, and, so, a reasonable calculation method for the remaining ES must
be established.

3.2.1. Calculation Method for Remaining Electricity at Fault Beginning Time

In developing island partition schemes, the remaining electricity in the ES devices
at the beginning time of a failure is a critical parameter. As the sequential Monte Carlo
method is used for evaluation of the reliability, it is convenient to simulate the continuous
change in the running state of the system. The ES devices in the DN can perform various
functions, and the main scheduling goal during normal operations of the DN is to cut the
peaks and fill the valleys, where peak and valley electricity prices are used to arbitrage
and promote the efficient consumption of renewable energy. The purchase cost and sales
revenue of the DN are recorded as C1, the network loss cost of the DN is recorded as C2, and
the ES loss cost is recorded as C3. Therefore, the system operation cost can be calculated
as follows:

C = C1 + C2 + C3 =
T

∑
t=1

(Ct,buyPtra
t,buy − Ct,sellPtra

t,sell) + Ct

T

∑
t=1

∑
ij∈B

I2
ij,tRij + CES

T

∑
t=1

NES

∑
i=1

max
{

Pdis
i,t , Pcha

i,t

}
, (4)

where Ct,buy and Ct,sell represent the unit prices for purchasing and selling electricity
between the DN and the superior grid at time t, respectively; Ptra

t,buy and Ptra
t,sell represent

the power of purchasing and selling electricity from the superior power grid at time t,
respectively; Ct represents the cost of unit network loss; B represents the collection of all
branches in the DN; Rij and Iij,t represent the branch resistance with node i as the starting
point and node j as the ending point and the branch current at time t, respectively; CES
represents the ES cost for 1 kWh charging/discharging; and NES represents the number of
nodes with ES.

The injected power of a node should meet the power balance constraint, and the
following constraint conditions were established based on the DistFlow power flow model:

Pji,t − Rij I2
ij,t − ∑

k∈H(i)
Pik,t = Pload

i,t − PPV
i,t − PES

i,t , (5)

Qload
i,t = Qji,t − xij I2

ij,t − ∑
k∈H(i)

Qik,t, (6)

where Pji,t and Qji,t represent the active and reactive power of the branch at time t flowing
from node j to node i, respectively; xij represents the branch reactance between nodes i
and j; H(i) represents the set of branches associated with node i; and Qload

i,t represents the
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reactive load of the user at node i at time t. The voltage between adjacent nodes meets the
following voltage drop constraints:

U2
j,t = U2

i,t − 2
(
rijPij,t + xijQij,t

)
+
(

r2
ij + x2

ij

)
I2
ij,t, (7)

I2
ij,t =

P2
ij,t + Q2

ij,t

U2
i,t

, (8)

where Ui,t and Uj,t represent the voltage at the beginning and end nodes of the branch with
node i as the first segment and node j as the end, respectively. To make the DN operate
securely, branch current and node voltage constraints are established:

I2
ij,t ≤ I2

ij,max, (9)

Ui,min ≤ Ui,t ≤ Ui,max, (10)

where Ui,min and Ui,max represent the lower and upper voltage limits of node i, respectively,
and Iij,max represents the upper branch flow current limit. The ES charging and discharging
processes are detailed in Equation (3). The above day-ahead DN economic dispatch model
can be solved using common second-order cone planning using commercial software,
which will not be expanded on here.

3.2.2. Solving Process with Genetic Algorithm

The island partition decision variable is the STi value of each node. Due to the
existence of radial constraints and the inability to recover load nodes at intervals, if STi
is randomly generated for each node, it is likely that the solution will be infeasible. The
island partition model is a special knapsack problem that considers radial constraints,
secondary power outage constraints, power supply continuity constraints, and sequential
operation constraints of ES devices. The ordinary genetic algorithm cannot solve this kind
of problem directly.

This paper improves the genetic algorithm by (1) starting from the DG nodes and
sequentially searching the island partition scheme for each island, and (2) for the ath island
scheme to be developed, the number of load nodes Nnode gradually increases from 0, and
the genetic information is a random set of nodes containing DG nodes without node jumps.
At this time, the length of the gene is Nnode.

When searching for the isolated island scheme Ωa, the specific calculation process is
as follows:

(1) Initialization: Set the number of evolutionary iterations t to a value of 0. Set the
maximum number of evolutionary iterations Tmax and randomly generate M genes
with a length of Nnode based on the node connection matrix of the DN, GENnode

m . Each
element represents the number of nodes included in Ωa:

GENnode
m =

[
NO1, NO2, · · · , NONnode

]
m ∈ [1, M]. (11)

(2) Individual fitness evaluation: Check whether the constraint conditions of Equation (3)
are met, where the state of charge of the stored energy is determined according to the
following logic. When the DG output is greater than the sum of the loads of all nodes,
the remaining electricity will charge the ES under the condition that the ES capacity
and power do not exceed the limit; otherwise, the DG and ES will both supply power
to the load, and the state in which the ES capacity is less than the minimum value
of the state of charge will occur, which means that the constraint conditions are out
of bounds. The fitness function of GENnode

m is recorded as FINnode
m . If any constraint
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condition from Equation (3) is out of its limits, then FINnode
m = 0; otherwise, FINnode

m is
calculated according to the objective function in Equation (3).

(3) Selection operation: Select the individual with the best fitness and save the gene. With
the help of the selection measure, the optimal individuals can be directly inherited
to the next generation, and they will help to generate new individuals through the
cross-mutation process.

(4) Cross operation: Randomly exchange genes from different populations with the genes
of the optimal individual, ensuring population variability through cross operation on
the optimal individual. The crossover process is the key step in genetic algorithms.

(5) Mutation operation: Each individual is set to change part of their individual gene
values with a certain mutation rate, ensuring the richness and diversity of genes in
the population.

(6) Let t = t + 1 and return to step (3) until t = Tmax. The best fitness function when the

gene length is Nnode is recorded as FINnode
max . Next, proceed to step (7).

(7) Let Nnode = Nnode + 1; return to step (1) and re-calculate FINnode
max until the FINnode

max of

the Nnode generation is zero. The GENnode
m corresponding to the maximum value of all

FINnode
max is the island scheme is to be solved.

For the ath island that has already completed the island search, consider it equivalent
to a new node and replace all nodes in Ωa. Update the node connection matrix of the DN;
then, search for the (a + 1)th island until all DG devices in the DN are traversed.

4. Case Study
4.1. System Parameter

Based on the method proposed in the paper, we evaluated the incremental power
supply capability of the PG&E 69-node system. The topological structure of the PG&E
69-node system is shown in Figure 3, with the superior power grid regarded as an infinite
power source. In particular, 1 MW PV units were connected at nodes 5 and 36, 2 MW wind
turbines were connected at nodes 18 and 52, and 20% ES devices were installed at each DG
node. The components considered in the DN reliability estimation included the busbars,
circuit breakers, distribution transformers, and distribution feeders. The above components
were modeled as operation–failure two-state models. The failure rate was 0.2 times per
year, and the repair rate was set as 1000 times per year. Interconnection switches were
included, as shown in Figure 3, which are considered to be open during normal system
operations. The fluctuation of load demand is shown in Figure 4, and the one-year output
curves for the PV equipment and wind turbine are given in Figures 5 and 6, respectively.
The load priority of the PG&E 69-bus system is detailed in Table 1.
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Table 1. Load priority of the PG&E 69-bus system.

Load Level Priority Load Nodes (Number)

I 100 3 4 5 6 13 14 17 18 19 27 28 29 36 37 39 51 52 54 59 66 69

II 10 1 2 7 8 9 10 11 12 15 16 20 21 22 23 26 30 31 32 38 40 42 43
44 45 46 47 48 49 50 53 55 57 63 64 65 67 68

III 1 24 25 33 34 35 41 56 58 60 61 62
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4.2. Island Partition Scheme

During the reliability assessment process, based on the sequential Monte Carlo sam-
pling results, a fault occurred on line 0–1 at 903–907 h, with a duration of 5 h. The down-
stream load could not be supplied, and maximum island partitioning of the DN had to be
carried out based on the output of DG devices and the remaining electricity information of
the ES devices at each time point. Based on the calculation method detailed in Section 3.1,
under the condition of no fault, the maximum output of the PV units and wind turbines
and the remaining electricity of their configuration ES devices within that day are shown in
Figure 7.
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We developed island partition schemes for the DN failure between 903 and 907 h.
When generating the initial population using genetic algorithms, connectivity constraints
need to be incorporated to ensure that all load nodes in the obtained islands meet the
power supply rules. The number of genes and particles were both set to be 100, and
the product of load power and priority weight was used as the fitness function. The
convergence criterion was to optimize over 200 iterations. According to the introduction of
Section 2, credible capacity searching is a one-dimensional search that requires continuous
iteration until certain convergence criteria are met. The sequential Monte Carlo method
was used, and system faults within a sampled year were generated through this method.
To complete one power supply reliability estimation, about 10,000–50,000 sequential Monte
Carlo simulations should be carried out. During the one-year Monte Carlo simulation,
there were about 100 random failures. For each fault, respective island partition schemes
were formulated to restore important loads in the DN. However, the sequential Monte
Carlo calculation process took up a lot of time, while the island partition model should be
solved in as little time as possible.

The island partitioning problem belongs to NP hard problems. Unless the solution
space is traversed, the optimal solution cannot be mathematically guaranteed. A compari-
son of the island partition scheme and calculation time is provided in Table 2. In the genetic
algorithm designed in this paper, the chromosomes do not indicate the state of each switch
(i.e., open or closed), but, instead, the number of load nodes that are restored. According
to the information of each chromosome, a potential recovery scheme can be specified
under the premise of satisfying topological coherence, greatly avoiding the probability of
infeasible solutions. After crossover and mutation operations, obvious infeasible solutions
can be quickly eliminated according to the power and energy constraints.
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Table 2. Island partition scheme based on genetic algorithm.

Genetic Algorithm Binary Particle Swarm
Optimization

Differential Evolution
Algorithm

Simulated Annealing
Algorithm

Traversal Solving
Algorithm

Calculation speed/s 24.59 421.10 65.19 710.02 uncontrollable
Island benefit 2.00 × 105 1.798 × 105 1.970 × 105 2.002 × 105 2.01 × 105

From the comparison, it can be seen that the method proposed in this paper was
significantly faster than the binary particle swarm optimization [32], the differential evo-
lution algorithm [33], the simulated annealing algorithm [34], and the traversal solving
algorithm [35], of which the results obtained using the traversal solving algorithm could be
regarded as the benchmark. Through comparison, it was found that the algorithm proposed
in this paper can find a solution very close to the optimal solution in a relatively short
period of time. The other algorithms took tens or even hundreds of seconds to solve the
complex island partition model, while the proposed genetic algorithm provided the fastest
solution speed while guaranteeing optimal results. The genetic algorithm can already meet
engineering requirements. The range of the island partition scheme provided by the genetic
algorithm is shown in Figure 8.
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Under the island partition scheme developed using the method proposed in this paper,
the remaining ES during the fault period is shown in Figure 9. The island partition scheme
obtained when the ES devices are not connected to the power system and secondary power
outage constraints are considered is shown in Figure 10. Due to the secondary power
outage constraints, if the DG output is insufficient at certain times under the fault state, a
large number of important loads cannot be restored. Comparing the presence and absence
of ES devices in different scenarios, it was found that the integration of ES devices can
provide emergency support for important loads under fault conditions.

4.3. Improved Effectiveness of Power Supply Capability Based on Credible Capacity

When selecting the EENS as a reliability indicator, the system’s power shortage before
the DG devices were connected was 2.241 × 105 kWh, which serves as the reliability
benchmark. After the integration of 6 MW DG, the system’s power supply reliability
was improved, and the EENS decreased to 1.078 × 105 kWh. According to the binary
method, continuous adjustment of the load demand level was made until the convergence
criterion was met. The search process is shown in Figure 11. After six searches, it was
found that when the load increased by 772.7 kW from the original level, the system’s
unserved electricity was 2.232 × 105 kWh, which met the convergence criterion under
the principle of equal power supply reliability. The combination of 6 MW DG and 20%
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ES increased the power supply capability of the DN by 772.7 kW, which is 12.88% of the
installed capacity of DG.
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To reflect the impact of the selection of the reliability index on the reliability capacity
evaluation results, we considered the EENS system power supply reliability rate [9] and
system outage duration [30] as reliability indicators, in order to evaluate the reliability
capacity of the DN. Taking the system power supply reliability rate and system outage
duration as reliability indicators, the system’s power supply reliability rate was 99.893%
before the DG was connected, and the total outage duration of the system load was 241 h.
After the 6 MW distributed power supply DG was connected, the power supply reliability
of the system is 99.949%, and the total power outage duration of the system load was
112 h. The binary method was used to continuously search for the credible capacity value.
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When the system load demand increased to 20.32% of the original level—that is, when the
load increased by 772.7 kW—the power supply reliability rate of the system was 99.897%,
meeting the equal reliability criterion based on the system’s power supply reliability rate
(as the reliability index). When the system load demand increased to 21.10% of the original
level—that is, when the load increased by 802.3 kW—the total power outage duration of
the system load was 244 h, meeting the equal reliability criterion based on the reliability
index of the power system. According to the search results, it is not difficult to see that
the difference in the credible capacity evaluation results was relatively small under the
different reliability indicators, indicating that the credible capacity evaluation results were
relatively stable.

The DG credible capacity evaluation results can inform the configuration of the propor-
tion of ES devices and the installed DG capacity, which plays a guiding role in the operation
and planning of power systems. Although the installed capacity of a single DG device
is relatively small, the total credible capacity of thousands of DG devices will have an
undeniable impact on the power system. The credible capacity of DG devices can be used
in DNs for customer self-balancing and regional power balance analysis, and it has been
applied in capacity market transactions abroad. For DN planning, the traditional approach
of optimizing substations with load rates that meet N − 1 conditions as constraints is
changing. The credible capacity of DG devices can replace the traditional approach, and
the investment in new substations can be reduced by more than 30% when the credible
capacity index is considered in the planning stage. At present, the credible capacity index
is regarded as the goal for optimizing the installed capacity of rooftop photovoltaic devices
in certain intelligent communities. The effective coordination and optimization of multiple
and massive controllable resources within power systems can be effectively achieved, in
which it can be expected that the credible capacity index will play an important role.

5. Discussion

A method for evaluating the improvement of power supply capability in a distribu-
tion network (DN) based on credible capacity was proposed in the paper. The temporal
fluctuation of the distributed generation (DG) output and load demand was considered
during a fault period, and an island partition model considering the secondary power
outage constraint was established. In reliability calculations, the expected energy not served
(EENS) indicator was regarded as a reliability index, and the improvement of power supply
capability can be obtained based on the DG–ES dichotomy. However, the island partition
model with complex constraints cannot be solved easily. For convenience of solution, a
modified genetic algorithm was proposed to solve the complex island partition model
directly. Compared with common heuristic algorithms, such as the greedy algorithm, the
proposed genetic algorithm obtained an island partition scheme with greater benefit at an
appropriate speed, making it suitable for the optimal scheduling problem.

The improved PG&E 69-bus system was analyzed in the case study of this paper.
Notably, the proposed method is universal for all radial distribution networks. According
to the simulation results, the proposed method possesses a strong searching ability and
excellent convergence performance. In the sensitivity analysis, considering the secondary
power outage constraint during the fault period, configuring an appropriate proportion
of energy storage (ES) can significantly improve the power supply capability of the DN.
Moreover, the results suggested that the power supply capability improvement brought
about by 6 MW DG can reach about 773 kW with a 20% configuration ratio of ES devices.
As such, the capacity value of DG and ES devices cannot be ignored.

Furthermore, the IEEE 33-bus system is studied to enrich the results. The topology is
shown in Figure 12. The installed capacities and integration nodes of DGs are as follows:
node 7 with 1 MW PV, node 11 with 2 MW wind turbine, node 14 with 1 MW PV, node 29
with 2 MW wind turbine, and node 31 with 1 MW PV. The five interconnection switches
are on the tie-lines of 7-20, 11-21, 8-14, 24-28, and 17-32, respectively. The failure rate is
0.2 times per year, and the repair rate is 1000 times per year. After the integration of 7 MW
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DG, the EENS is decreased from 1.609 × 105 kWh to 7.689 × 104 kWh. We adjust the value
of incremental load demand to meet the equal reliability criteria. The ∆L with a value of
1306.06 kW is locked. Therefore, the incremental power supply capability is 1.306 MW.
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However, there still remain huge challenges regarding how to increase the calcula-
tion speed when using genetic algorithms. In the future research, the real-time monitoring 
data of micro-phasor measurement units on the operation status of a distribution network 
can be considered to improve the accuracy of load and distributed power output. In ad-
dition, the ES integration mode has an important effect on the power restoration ability 
under fault states. Our research team will continue to conduct in-depth research on the 
above challenges. 

6. Conclusions 
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However, there still remain huge challenges regarding how to increase the calculation
speed when using genetic algorithms. In the future research, the real-time monitoring
data of micro-phasor measurement units on the operation status of a distribution network
can be considered to improve the accuracy of load and distributed power output. In
addition, the ES integration mode has an important effect on the power restoration ability
under fault states. Our research team will continue to conduct in-depth research on the
above challenges.

6. Conclusions

In this paper, we proposed a method for evaluation of the incremental power supply
capability in a DN. The proposed method incorporates island partitioning as the core means
of reliability evaluation in the credible capacity evaluation process, and the power supply
capability is calculated incrementally with respect to credible capacity indicators. Through
numerical analysis of the improved PG&E 69-bus system, we found the following:

(1) When considering the secondary power outage constraint during the fault period,
configuring an appropriate proportion of ES devices can significantly improve the
power supply capability during the fault period. Island partitioning is an important
aspect of fault consequence analysis.

(2) With a 20% configuration ratio of ES devices, the power supply capability improve-
ment brought about by 6 MW DG can reach about 773 kW, and the capacity value of
DG and ES devices should be taken into consideration.
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