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Borna Abramović, Ondrej Stopka,

Csaba Csiszár and Jereb Borut

Received: 29 July 2023

Revised: 23 August 2023

Accepted: 25 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

An Agent-Based Decision Support Framework for a Prospective
Analysis of Transport and Heat Electrification in Urban Areas
Gonzalo Bustos-Turu 1,2,3,* , Koen H. van Dam 1 , Salvador Acha 1 and Nilay Shah 1

1 Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
k.van-dam@imperial.ac.uk (K.H.v.D.); salvador.acha@imperial.ac.uk (S.A.); n.shah@imperial.ac.uk (N.S.)

2 Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile
3 National Centre for Artificial Intelligence (CENIA), Santiago 7820436, Chile
* Correspondence: gb1612@imperial.ac.uk

Abstract: One of the main pathways that cities are taking to reduce greenhouse gas emissions is the
decarbonisation of the electricity supply in conjunction with the electrification of transport and heat
services. Estimating these future electricity demands, greatly influenced by end-users’ behaviour,
is key for planning energy systems. In this context, support tools can help decision-makers assess
different scenarios and interventions during the design of new planning guidelines, policies, and
operational procedures. This paper presents a novel bottom-up decision support framework using
an agent-based modelling and simulation approach to evaluate, in an integrated way, transport and
heat electrification scenarios in urban areas. In this work, an open-source tool named SmartCityModel
is introduced, where agents represent energy users with diverse sociodemographic and technical
attributes. Based on agents’ behavioural rules and daily activities, vehicle trips and building occu-
pancy patterns are generated together with electric vehicle charging and building heating demands.
A representative case study set in London, UK, is shown in detail, and a summary of more than ten
other case studies is presented to highlight the flexibility of the framework to generate high-resolution
spatiotemporal energy demand profiles in urban areas, supporting decision-makers in planning
low-carbon and sustainable cities.

Keywords: agent-based modelling; integrated urban energy systems; transport and heat electrification;
electricity demand profile; energy user behaviour

1. Introduction
1.1. Context

Currently, more than half of the world’s population lives in urban areas, and it is
expected that by 2050, 68% of the population will live in cities [1]. It is estimated that
75% of the global final energy demand is concentrated in cities with probably a similar
proportion of direct and indirect carbon emissions [2], contributing to the so-called “climate
emergency” [3], with enormous risks and devastating impacts to society and environ-
ment [4]. In addition to global scale impacts, cities must deal with local environmental
challenges. According to [5], in 2019, 99% of the world’s population was living in places
with air pollution levels above the limits set by the World Health Organization, and in 2016,
4.2 million deaths per year were attributable to ambient air pollution [6].

In line with international agreements, cities need to take strong actions to reduce the
carbon footprint related to the energy services they provide, such as transport, electricity,
and heat, without compromising energy security and affordability. Urban energy systems
should evolve towards enabling a more sustainable, flexible, and integrated energy in-
frastructure, including increasing levels of renewable power generation, a diverse set of
energy efficiency measures in buildings, and faster adoption of low-carbon technologies
for transport and heat [4,7].
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The transport sector currently accounts for 23% of global energy-related CO2-eq
emissions [8]. Therefore, low carbon targets would most likely require the adoption of
new cleaner vehicle technologies. Among these, electric vehicles (EVs) represent one of
the main options to decarbonise urban mobility [9]. According to the International Energy
Agency, there were 10 million EVs on the road by the end of 2020, and in the most optimistic
scenario (sustainable development scenario), this number is expected to rise to 230 million
by 2030 [10].

Heat represents more than 50% of final energy consumption globally, and it is supplied
mainly by fossil fuels [11]. In the UK, heating demand accounts for 46% of final energy use,
with 75% of this demand associated with residential, commercial, and public buildings. Due
to path dependency from historically low gas prices, domestic supply and comprehensive
infrastructure, the UK supplies 81% of this demand using gas-fired boilers connected
to the main natural gas network [12]. Among the different supply technology options
for the decarbonisation of the heat sector, heat pumps (HPs) have been shown to be a
cost-effective alternative to reduce CO2-eq emissions, especially when installed in new
energy-efficient homes or in buildings not connected to the main gas network [13]. In the
case of district heating networks, some studies have shown the CO2-eq savings are greater
when heat pumps supply low- or medium-temperature networks, so the temperature
difference between the source and the sink is lower, increasing the heat pump efficiency [14].
However, similar to the case of electric vehicles, their uptake needs to be coupled with
the deployment of renewable electricity to ensure a low-carbon electricity supply for their
operation, and behaviour change to ensure that their use is in tune with a wider smarter
energy system [15].

1.2. Literature Review

In planning the electrification of the transport and heat sectors, it is important to
consider the increment of interconnections between sectors that were historically planned
and developed individually, changing the traditional way of designing and operating
energy networks. When planning this transition, one of the main tasks is to estimate
and evaluate the consequences of different interventions or strategies and compare their
impact before implementation. For this, decision support systems based on computational
tools can help in the process of the multi-criteria evaluation of a diverse range of possible
solutions [16,17]. Computational models can be a useful starting point to explore options
in a multi-stakeholder and multi-disciplinary environment, supporting the discussion in
terms of the effect of different parameters on the performance of the system and making
clear the underlying set of assumptions behind the explicit model.

In the case of transport and heat electrification, the additional electricity demand
could lead to network overload, increased energy losses, imbalances, etc., if not managed
properly [18]. It could also create the need for upgrades of the distribution and trans-
mission networks [19] as well as the generation capacity [20]. Additionally, the power
generation needed to supply this extra demand may cause considerably higher emissions if
the generation mix is carbon intensive [9]. To avoid these negative impacts, different opera-
tional strategies have been proposed, such as demand-side management (DSM) and smart
control technologies that take advantage of the flexibility offered by these new electrical
loads [21–25]. The potential of these strategies, however, is influenced by the flexibility
energy consumers can provide. This flexibility, characterised by different temporal and
spatial scales is, in turn, strongly influenced by the energy consumption behaviour of
individual users. According to Pfenninger et al. [26], there is a tendency in energy system
modelling to focus only on techno-economic factors, neglecting complex factors, such
as human behaviour and non-financial barriers for technology deployment. Focused on
general urban energy systems, reviews from Keirstead et al. [27] and Allegrini et al. [28]
show that available tools are focused mainly on the supply side with less consideration
regarding the influence of user behaviour in energy demand flexibility. Specifically, for
the case of building heating demand, Wei et al. [29] analysed the driving factors for space
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heating in residential buildings and indicated that occupant behaviour is typically ignored
in simulating building energy performance. In their review of the literature related to
EV use, Daina et al. [30] conclude that modellers tend to neglect important aspects of
charging behaviour in their methodologies. The diversity of factors influencing driving
and charging behaviour and the resulting energy demand is investigated in [31,32], but the
challenges remain in incorporating all these factors in a modelling framework that is able
to realistically simulate the charging behaviour and energy demand.

On the other hand, when prospectively assessing different mitigation strategies, it is
important to analyse the interactions between transport, buildings, and energy systems
in an integrated way. The literature shows a general lack of tools to holistically analyse
the impact of interventions in the transport and building energy demand at a city scale
with high temporal and spatial resolution. A few examples reviewed by Sola et al. [33]
show the tendency in the literature to analyse the building and transport energy demands
separately. They also highlight the current efforts on using agent-based (or activity-based)
microsimulations for transport analysis, coupled with building energy simulation models.
For example, Robinson et al. [34] present an analysis of transport and building demand
using two separate tools: MATSim (that uses the agent-based simulation approach) for
transport and CitySim for building energy demand estimation. Also, in the case of Berger-
son et al. [35], two different tools are used: the agent-based POLARIS model for transport
and LakeSIM for buildings. A similar approach is found in Chingcuanco and Miller [36],
where the authors use the ILUTE model to simulate transport demand and the HOT2000
model to simulate building energy performance. In the case of the SynCity tool kit, de-
veloped by Keirstead et al. [37], an activity-based simulation model is used to simulate
urban resource demand (transport, electricity, and gas) with a high spatial and temporal
resolution. However, the methodology used to convert activity schedules into energy
demand profiles does not explicitly capture the processes behind transport and building
energy systems, making it difficult to explore the effects of different variables in the energy
demands such as weather, user behaviour, technical parameters, control strategies, etc.
Finally, the model iTEAM, developed by Ghauche [38], is another of the few examples
of a common framework using an activity-based model to integrate the analysis of land
use, transportation, and energy consumption, including the modelling of the behaviour of
households and firms in urban areas. However, only the theoretical framework is presented
with a simple fictitious case study to show some of the potential of the model. Moreover,
this model does not include any model for electric vehicles or space heating in buildings,
so it is not feasible to assess prospective electrification scenarios.

To address the gaps previously identified, this paper presents the development, imple-
mentation, and testing of an agent-based modelling and simulation (ABMS) framework
to analyse, in an integrated way, both transport and building energy demand. The frame-
work considers not only the technical aspect of urban energy systems but also the urban
design and building environment, as well as socio-demographic and behavioural aspects of
energy users. With these, the developed approach supports the characterisation of the spa-
tiotemporal aspect of energy demand under a scenario of transport and heat electrification,
considering the diversity among users.

Based on the literature analysis presented above, this paper aims to address the following
research gaps, highlighting the novelty of the developed agent-based simulation tool:

• Integrated city-scale assessment of transport and building energy demand with a high
spatial and temporal resolution;

• Spatiotemporal characterisation of energy requirements among energy users consid-
ering their behaviour related to plug-in electric vehicles (PEVs) and building heat-
ing technologies;

• Transparency and modularity in the design and implementation of the tool to allow its
continuous development in a collaborative and participatory modelling environment.

In the next section, the methodology of the proposed decision support framework is
presented in detail. Section 3 shows a detailed case study describing the main inputs and
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results from the model, while Section 4 discusses the main findings from the research and
summarises the results of more than ten other research case studies that have applied this
ABMS framework. Finally, Section 5 concludes this work. It is worth mentioning that part
of the literature review (Section 1), the methodology (Section 2) and the main case study
(Section 3) presented in this paper build on the PhD dissertation of the first author [39].
More details and further analyses can be found in that reference.

2. Materials and Methods

The framework presented in this work allows for the assessment of different scenarios
related to transport and heat electrification in urban areas. The framework, therefore,
supports the generation of a synthetic population for a given urban land use and demo-
graphics to simulate the daily activities of energy users. Finally, it estimates transport and
energy demands together with several related key performance indicators. The decision
support framework is built using the ABMS method [40,41], in which each agent repre-
sents an energy user, characterised by an internal state and a set of behavioural rules that
define its interaction with the environment, generating energy service (electricity, heat and
transport) demands.

As shown in Figure 1, the framework generates stationary and mobile energy demand
profiles related to the residential sector and the (privately owned) electric vehicle fleet,
respectively. These profiles are generated with a bottom-up approach in which the indi-
vidual activities of energy users are the main drivers for transport demand and building
occupancy patterns. These, in turn, generate the final PEV charging and building energy
demands when combined with the physical and environmental properties of the system.
In the process, different influencing factors such as the city layout, land use distribution,
socio-demographic characteristics of users, weather conditions, technical parameters, and
the charging and transport networks, are considered. More details of the sub-models are
presented in the next sub-sections.
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Figure 1. Agent-based modelling and simulation framework data flow.

The framework is implemented using the free and open-source Java library Repast
Simphony [42] and is built on top of the RepastCity model [43]. The code of this tool, under
the name of SmartCityModel, is currently hosted in a private repository [44], but access to
the source code can be granted upon request by contacting the corresponding author.

The general structure of the SmartCityModel is shown in Figure 2, where the main
inputs (e.g., city layout, land use, vehicle technology, charging infrastructure) and outputs
(e.g., travelled distance, state of charge (SOC), residential heat and electricity demand) are
depicted. In the next sections, a more detailed description of each of the modules (namely
synthetic population generator, transport and charging model, electric vehicle model, and
residential energy model) is presented, together with the urban GIS-based representation
as the main external input.
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2.1. Urban GIS

To incorporate the spatial elements of the urban environment in which agents behave, a
GIS-based representation is considered. The first vector layer, made of polygons, represents
geographical areas (buildings, districts, boroughs, etc.), where synthetic agents carry out
their different activities (being at home, working, shopping, leisure, etc.). The land use
(residential, commercial, etc.), socio-demographic parameters (households, employment
rate, vehicles), and building properties (heat loss parameter, height, etc.) can be defined
for each spatial unit in this layer depending on the specific case study. A second vector
layer is made of polylines to model the road network, which are defined by a set of links
and nodes and represent streets and intersections, respectively. This allows agents to set
routes and travel around the urban area between origins and destinations specified in
the polygon layer. The distance travelled along this network is then used to estimate
PEV energy consumption. When agents are not travelling, they occupy a specific spatial
unit, generating the occupancy profiles that are then used in the static energy demand
calculations. In this sense, the spatial resolution of the energy demand profiles will be
determined by the scale of the spatial units.

2.2. Synthetic Population Generator

The purpose of this module is to create a synthetic population of energy users living in the
different zones of the urban area. This population, with their different activity schedules, will
then generate energy demands that are spatially and temporally distributed throughout the city.
Following the diagram shown in Figure 3, the first step is the creation of the environments based
on the GIS model described previously, with each GIS layer representing a different aspect of
the environment in which the agents behave (more information in [45]).
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Once the environments are created, the next step is to generate a synthetic population
of agents representing energy users. This process, implemented in the AgentFactory java
class, creates the agents for each spatial unit, according to the attributes defined in the
urban GIS model. Probability distributions are used extensively during the initialization of
the model to define the agent’s properties, such as departure time, type of PEV (mini, small,
medium), destination locations, etc., However, they are not used to inform the agent’s
actions during the simulation, as these are driven by the agent’s decision rules. While
the methodology was first introduced in [45], more details are incorporated in the current
study. The steps to generate this synthetic population of energy users are the following.
First, the number of agents pevj in each spatial unit j is estimated based on the number of
electric vehicles, which is dependent on the total number of vehicles vj and the general
PEV adoption percentage α (see Equation (1)).

pevj = vj × α, (1)

Then, the agent’s activity locations are defined by considering four different activities,
each one related to a different land use (i.e., home with residential, workplace with work
locations, shopping with commercial, and leisure activities with leisure areas). Then,
for each agent, home and work locations are considered fixed and defined based on a
probability proportional to the total floor space area (considering the height of buildings)
linked with each activity (e.g., spatial units with higher proportions of residential/industrial
floor space area will have higher numbers of agents living/working there).

Once an agent’s home and workplace are selected, its working status (worker, non-
worker) is defined (note that a workplace is defined for all agents, including those with
non-worker status, potentially accounting for agents looking for jobs or visiting offices).
This definition uses the employment rates for each spatial unit, defined previously in the
GIS model. Next, the PEV charging access level (defined as the probability for an agent
to have a charging point of a specific type available) is set for each location. Then, each
agent is associated with a PEV with a specific set of properties (more details are presented
in Section 3.1.4), including an initial state of charge (SOCini), based on whether the agents
have access to a charging point at home, and its activity schedule, defined according to its
employment status. Based on the methodology presented in [45], the activity schedule ASi
is created for each energy user (agent i) according to its type (workers, non-workers) and it
is defined with a list of 4-tuples, as shown in Equation (2).

ASi = {(ACTa, MDTa, SDa, PDa )}, (2)

In Equation (2), ACTa denotes the specific agent’s activity, with a representing its
category (work, home, shopping, leisure). In this equation, the departure time is defined as
a normally distributed random variable, with MDTa as its mean departure time (in hours)
and SDa as its standard deviation (in hours) to account for variability in the departure time
among agents. Finally, a probability of departure PDa is included to account for the fact
that not all agents will perform the same activities (e.g., irregular shifts, non-worker agents
going to an office in the morning, workers going shopping in a retail area at lunchtime, etc.).
After the initialisation of the environment and the population, these schedules are then
used in the transport and charging model to generate trips; further details are presented in
the next section.

2.3. Transport and Charging Model

For the transport and charging model, trips are generated based on the agent’s activity
schedules, defined previously in the synthetic population generation stage (see Equa-
tion (2)). Among other variables, each agent has a state variable that is used to keep track
of the current state of the agent (parked, plugged, charging, or driving). During the time-
driven simulation, agents will keep updating these variables as they perform their activities
around the city, using the road network and occupying different buildings. Each agent will
remain parked or plugged or charging (at a charging point) until a new activity is created
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(for simplification, it is assumed all agents are parked in their homes at the beginning
of the simulation at 4 a.m.). When it is time for the next activity, the agent chooses their
destination. For the case of home and work, the destination is fixed and defined previously
in the synthetic population generation stage (see Section 2.2). In the case of shopping and
leisure activities, their destinations are selected during the simulation before their starting
time. The locations of these non-fixed destinations are set using the same allocation rule as
in the case of home and work (i.e., based on a probability proportional to the specific floor
space). Once the destination is defined, the route between the origin and destination is set
based on the shortest path between the two sets of coordinates, and the agents start the
new journey (changing their state variable to driving). Figure 4 shows the decision-making
process considered for this first part of the simulation.
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In this work, the charging decision model is formulated in terms of conditional logic
rules. Although this proposed model generates realistic agent behaviour and is easy
to implement, it is important to consider that there are many variations that could be
implemented within the tool, depending on the specific case study. A review of different
charging behaviours and location choice modelling is presented in [46]. Agents will keep
travelling until their PEV’s state of charge (SOC) falls below a certain threshold (SOCmin),
assuming the driver will have access to this information (the value of this parameter is
scenario-specific). In this low battery condition, agents make the decision to charge (either
at their destination or at a charging station) based on the availability of a charging point
at their destination. If there is a charging point available at their destination, agents keep
travelling and charge their PEV upon arrival (it is assumed the minimum state of charge
would allow every agent to reach their destination). If there is no access to a charging point
at their destination, agents set a new route to a public access charging station, changing
their destinations temporally. It is worth noting here that there will be some cases where
agents will need to travel more in order to find a public charging point. In this sense,
there is an effect of the charging point location on the travelled distance, and, therefore, on
the charging electricity demand. Upon arrival, agents will charge until the SOC reaches
a maximum value SOCmax. After the charge is completed, agents continue to travel to
their original destination before going to the charging station. Once they arrive at their
destination, they check if there is a charging point available (independent of the SOC). If so,
they will start charging their PEV until either the battery is fully charged (in which case it
will remain plugged in), or the next activity starts. The previous process is then repeated
for all agents for each time step until the end of the simulation. The travelling and charging
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behavioural model described previously is summarised in the activity diagram shown
in Figure 5.
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2.4. Plug-In Electric Vehicle Model

Plug-in electric vehicles are modelled as a generic energy storage device with the
following properties: battery capacity, energy consumption rate, and round-trip efficiency.
When PEVs are charging, power flows from the grid to the PEV battery, and the soc%

i,t
(in terms of the percentage of battery capacity) is calculated at each time using Equa-
tion (3). For simplicity, the effect of the round-trip efficiency is considered only during the
charging process.

soc%
i,t+1 =

1
battCapi

(
soce

i,t + chRatei ×
η

100
× ∆t

)
× 100, (3)

In Equation (3), battCapi is the battery capacity (in kWh) of the PEV related to agent i,
soce

it is the state of charge (in terms of absolute energy, in kWh) of agent i at time t, chRatei
is the charging power rate (in kW) of the charging point or charging station where agent i is
currently charging, η is the round-trip efficiency that accounts for the losses in the charging
and discharging processes, and ∆t is the simulation time step.

For each time step, when the PEV is travelling to its destination, the PEV discharging
process is characterised by Equation (4).

soc%
i,t+1 =

1
battCapi

(
soce

i,t − disti,t × eRatei
)
× 100, (4)

where distit is the distance travelled by the agent (in km) during the time step and eRatei is
the energy consumption rate (in kWh/km) of the vehicle related to agent i.

2.5. Residential Energy Model

The travel and charging behavioural rules previously described allow the simulation
model to generate trips and charging events for the whole PEV fleet in the simulated urban
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area. These activities and trips create occupancy patterns for each of the spatial units
defined in the city. These patterns are then used to generate electricity and heat demand
profiles for residential areas using the following steps.

Residential occupancy resOccj,t is calculated at each time step based on the num-
ber of awake residents resAwakej,t and the total inhabitants inhabj for each spatial unit j
(see Equation (5)).

resOccj,t =
resAwakej,t

inhabj
, (5)

The residential electricity demand redj,t (in kW) for each spatial unit j and simulation
time step t is generated using Equation (6) considering a base (Lbasej) and a peak (Lpeakj)
load (both in kW), the number of households per spatial unit (HH j) and the residential
occupancy profile generated previously. This electricity demand does not consider the
extra electricity demand from PEVs and HPs.

redj,t = HH j·
[

Lbasej +
(

Lpeakj − Lbasej

)
× resOccj,t

]
, (6)

The residential space heating demand rhdj,t (in kW) for each spatial unit j and simula-
tion time step t is generated using Equation (7) considering the difference between indoor
(Tinj,t) and outdoor (Toutt) temperatures (both in K), the heat loss parameter HLPj (in
W/m2K), the residential floor area RFAj (in m2), and the occupancy profile generated pre-
viously. This approach is similar to the traditional heating degree day method, but hourly
data is used instead, and the occupancy of the whole zone is included in the calculation.

rhdj,t =
(
Tinj,t − Toutt

)
× HLPj × RFAj × resOccj,t, (7)

The residential heat pump electricity demand rhpdj,t (in kW) is estimated for each
spatial unit j and simulation time step t using Equation (8), where COPt is the coefficient
of performance (dimensionless), rhdj,t is the residential heat demand, and HPALj is the
adoption level (in %) of heat pumps for each spatial unit.

rhpdj,t = HPALj × rhdj,t/COPt, (8)

The COPt is calculated for each time step depending on the external temperature. This
effect is estimated based on the results presented by Caneta Research Inc. (North York, ON,
Canada) [47] for a set of commercial air-source heat pumps, as shown in Figure 6.
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The linear approximation shown in Figure 6 is used to characterise the effect of outdoor
temperature Textt (in C) on the COPt, according to Equation (9).

COPt = 0.04627·Textt + 3.03283, (9)

3. Results

To demonstrate how the model can be used to provide decision support to key stake-
holders, this section shows a detailed case study that applies this methodology to an urban
area within London, UK. The model inputs and main assumptions are described with a
general description of the results generated.

3.1. Model Inputs and Assumptions

In the next sub-sections, the main inputs and assumptions used in the SmartCityModel
tool are described.

3.1.1. GIS City Model

The urban area under study is shown in Figure 7. It includes seven boroughs in central
and west London, with a total area covering approximately 176 km2 and a total population
of 1.4 million [49]. Geographic information system (GIS) data were used in the definition of
the spatial units and the transport network. Data for the road network were extracted from
the Ordnance Survey [50] and, for simplicity, they consider only the main roads. The urban
area is considered closed; therefore, trips from/to external areas are not represented in this
case study.
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In this case study, each of the spatial units represents a borough with its specific
socio-demographic information (number of households, vehicle ownership, employment
rate, and land use) extracted from census data [49]. To estimate the employment rate,
the population is classified into two groups: workers and non-workers. Based on the
categories used in [49], the worker group is defined as including all the economically
active employees and self-employed, while the non-workers group includes economically
active unemployed, students, and other economically inactive populations (e.g., old age
pensioners). The distribution of these groups is shown in Figure 8.
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Figure 8. Employment rate for each borough (Brent, Camden, City of London, Ealing, Hammersmith
and Fulham, Kensington and Chelsea, and Westminster). Source: [49].

The land use distribution is simplified into four different types, namely residential,
commercial, work, and leisure, which are linked to the agent activities according to the
activity allocation criteria explained in Section 2.2. For each of these types, the floor area is
estimated using the Land Use Statistics and Commercial and Industrial Floorspace infor-
mation from the Office for National Statistics (ONS) [49], which is aggregated in Table 1.

Table 1. Land use category aggregation.

Land Use Type ONS Categories

Residential Residential

Commercial Retail Premises

Work Offices, Commercial Offices, “Other” Offices, Factories, Warehouses

Leisure Green Space *, Other Bulk Premises
* For green space, it is assumed floor area is equal to the footprint area.

In the case of the residential floor area, this information is not directly available (only land
use is provided) and, therefore, it is estimated using the average floor area for all the properties
in each borough, extracted from [51], and multiplying it by the number of households, extracted
from census data. The final land use distribution is shown in Figure 9.
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3.1.2. PEV Ownership and Technology

The estimation of the number of electric vehicles in the simulation is based on the level
of PEV adoption (which is scenario-specific) and the car ownership for each borough [49],
assuming PEVs will follow the current vehicle ownership distribution. In this work, the
total number of PEVs is disaggregated among different PEV types (including plug-in hybrid
electric vehicles, battery electric vehicles, and extended-range electric vehicles) to account
for the heterogeneity in PEV technical parameters, such as battery capacity and energy
consumption rate. Following the methodology presented in [52], the parameters and the
market share used for this specific case study are presented in Table 2. The average speed
is assumed to be constant and equal to 40 kmph based on a mobility survey [53], and the
round-trip efficiency is assumed to be 90% (considering battery and charger).

Table 2. PEV technical parameters and market share.

Segment
Battery

Capacity
[kWh]

Battery
Consumption

[Wh/km]

Electrical Range
[km]

Market Share
[%]

A-Mini 15 135 115 4

B-Small 23 148 155 47

C-Medium 14 169 83 49

3.1.3. PEV Charging Infrastructure

Access to charging infrastructure is determined depending on the location type (home,
work, and public areas) and single probabilities. Using information from Zap-Map’s EV
Charging Survey [54], it is assumed that 83% of EV users have access to a charging point at
home, and 16% have access at work, in both cases with 7 kW as the most common charging
power rating. For public charging points, using data from Zap-Map [55], it can be estimated
that 13,378 connectors have been installed by 2021, with most of them being “fast”. It is
also shown that most users prefer to use the 7 kW fast-charging option. Also, according
to DfT and DVLA [56], London has a current fleet of 53,413 plug-in electric vehicles. With
these figures, it can be estimated there is approximately one charger for every four PEVs;
therefore, a 25% probability of access with a charging rate of 7 kW is assumed for the
simulations. Finally, to account for the cases in which the PEV is running out of battery,
a “Rapid” public charging station is considered in each borough, and for simplicity, it is
located at the centroid of the spatial unit with a charging rate of 50 kW. In this case study, it
is also assumed a total interoperability between different vehicles and chargers, so there
are no additional access restrictions.

3.1.4. User Activities and PEV Charging Behaviour

The activity schedule for each agent is created based on the statistical definition
given in Section 2.2. For this case study, an example of a general weekday schedule is
considered, depending on the agent’s economic activity (i.e., worker or non-worker). The
activity schedules are shown in Table 3 (see Equation (2) in Section 2.2. for details), and
the parameters used for the PEV charging model, described in Section 2.3, are presented in
Table 4. These are defined arbitrarily to include more heterogeneity in EV charging events.
For example, an 80% battery charge is considered for public charging points, assuming
users will prefer to reduce their charging time during their daily activities, preferring to
fully charge when they are at home.
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Table 3. Activity schedule parameters by agent type.

Activity Schedule, ASi={(ACTa,MDTa,SDa,PDa)}
Worker Non-Worker

(wake-up, 7.0, 1.0, 1.0) (wake-up, 8.0, 1.0, 1.0)

(work, 8.0, 1.0, 1.0) (work, 9.0, 1.0, 0.1)

(shopping, 13.0, 0.5, 0.1) (shopping, 11.0, 0.5, 0.3)

(work, 15.0, 0.5, 1) (home, 13.0, 0.5, 0.7)

(home, 17.0, 1.0, 0.7) (work, 14.0, 1.0, 0.1)

(leisure, 18.0, 1.0, 0.3) (leisure, 17.0, 1.5, 0.5)

(home, 21.0, 1.0, 1.0) (home, 21.0, 1.5, 1.0)

(sleep, 23.0, 1.0, 1.0) (sleep, 24.0, 1.0, 1.0)

Table 4. Parameters for the PEV charging model.

Parameter Value

SOCmin 30%

SOCmax 80%

SOCini (with charging unit at home) 100%

SOCini (without charging unit at home) 60%

3.1.5. Residential Energy Demand Parameters

The parameters used in the residential electricity demand model (see Section 2.5)
are estimated using the “Domestic Unrestricted” load profile from [57]. The values are
presented in Table 5. For the heat loss parameter, the average for the UK (3.2 W/m2K)
was considered [58]. An average temperature profile is used to represent different seasons
(summer and winter) based on hourly data available in Met Office [59] for a weather station
located in Heathrow, London, for 2014. Finally, an internal comfort temperature of 20 ◦C is
used for all spatial units (boroughs) and the whole simulation (24 h). For this particular
case study, a 10% adoption of residential heat pumps is considered.

Table 5. Residential electricity demand parameters for the case study.

Parameter Value Units

Lbasej 0.2 kW

Lpeakj 0.92 kW

3.2. Model Results

After the definition of the case study, the model is implemented and run to simulate
a 24 h period with a time step of 5 min, starting at 4:00 a.m. on a weekday. A snapshot
of the simulation is shown in Figure 10, where each star denotes an individual PEV, with
its size and colour representing the SOC level (big and red for a low SOC, medium size
and yellow for a medium SOC, and small and green for a high SOC). In the next sections,
different results are shown to highlight the potential of the SmartCityModel tool to generate
and evaluate different scenarios of transport and heat electrification in urban areas.
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3.2.1. Travel and Charging Demand

For this part of the analysis, a scenario with 10% PEV adoption is considered, repre-
senting a fleet of 38,611 vehicles. Based on simulation results, the transport demand can
be characterised by the probability density (Figure 11) and the cumulative distribution
(Figure 12) functions to show the variation in trip distances for the whole PEV fleet during
a day.
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Figures 11 and 12 show similar shapes compared to the results from trials and surveys
found in the literature [60,61]. However, without specific data for London, a more com-
prehensive validation is hard to perform, as the results vary considerably from region to
region. Nevertheless, Table 6 shows some relevant transport demand indicators that can
be compared with statistics for England [62] and London [63], indicating that simulation
results are within the range of realistic values. The difference observed in the average
distance per trip, where simulation results show a higher value, especially when contrasted
with London’s statistical data, can be explained by the distribution of land use across each
borough and the delineation of the urban area. In the context of this case study, central
London is located in the eastern periphery of the urban area (see Figure 7) and, as the
borough with the highest proportion of work-related land use (see Figure 9), it attracts a
higher proportion of trips related to work activities compared to what would be anticipated
in a real-world scenario.

Table 6. Transport statistics comparison.

Parameter
England

(All Modes,
Source: [62])

London
(All Modes,
Source: [63])

Simulation

Trips per vehicle per day 2.61 2.21 2.32

Average distance per trip (km) 10.98 5.93 11.02

Distance travelled per day (km) 28.66 13.11 25.62

In terms of charging behaviour, Figure 13 shows the temporal variation in the pro-
portion of the PEV fleet that is parked, plugged in, or charging (i.e., whenever the vehicle
is not driving). In the case of parking proportion, the results of the simulation show that
on average, 97.7% of the fleet is parked at any time of the day. This value is very similar
to those found in the literature, in which it is suggested that an average vehicle is parked
96.5% of the time [64]. However, the proportion of plugged and charging vehicles is much
lower. According to the simulation results, 60.7% of the fleet is plugged in and only 2.7%
is charging on average during the day. These results are relevant to assess the level of
flexibility PEV fleets can offer to charging management strategies that take advantage of
the best time in the day (e.g., lower charging price, lower emissions) to charge the PEVs. In
this sense, these strategies will be constrained by the number of PEVs that are plugged in
and/or charging at different times and locations throughout the urban area.
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The charging of PEVs generates an electricity demand in different zones (i.e., boroughs)
of the urban area. Figure 14 shows the aggregated charging profiles of the whole PEV fleet
for the different boroughs considered in the case study.
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Results of the simulation show how the charging demand varies temporally and
spatially depending on the land use, agents’ activity schedules, and level of access to
charging infrastructure. For example, boroughs with high levels of workplace land use
(e.g., the City of London, Westminster) present an important PEV charging demand during
the peak hours in the mornings, which are associated with agents who can charge their
PEV at work. A different result is obtained for boroughs with high residential and leisure
areas (e.g., Ealing, Brent, Kensington, and Chelsea), where the charging demand is focused
on the evenings when drivers charge their vehicles after arriving at home.

3.2.2. Residential Energy Demand

Some of the results shown in this section were first published in [62] and here they
are shown, for completeness, as examples of outputs that can be generated by the tool.
Figures 15 and 16 show, for each borough, the residential daily electricity and heat demand
profiles, respectively. The similitude in the shape of these curves is expected, as occupancy
is one of the main influencing factors of energy demand in buildings. Depending on the
specific situation, this assumption could be challenged. For example, in periods of partial
occupancy, it can underestimate the real demand, as there could be cases where occupants
use the heating system at full capacity or turn on the lights (or any other electrical appliance)
without fully occupying the property, or even keep the heating system running (or the
lights on) when nobody is at home.
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Figure 16. Heat demand profile for the winter scenario. © 2016 IEEE. Reprinted with permission
from [48].

The effect of the outdoor temperature on the heat demand can be seen in Figure 17,
where heat profiles are compared for two different seasons (summer and winter). It is
important to note these temperature profiles represent the three-month average for each
season (winter and summer) and, therefore, the variability of the temperatures is smoothed.



Energies 2023, 16, 6312 18 of 26
Energies 2023, 16, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 17. Seasonal heat demand and outdoor temperatures. © 2016 IEEE. Reprinted with permis-
sion from [48]. 

In Figure 18, PEV charging demand is added on top of the residential demand for 
various levels of PEV adoption (from 10% to 50%). This figure represents the total resi-
dential electricity demand of the whole urban area, while similar graphs could also be 
generated for individual areas. 

 
Figure 18. Electricity demand for different levels of PEV adoption. 

The results show that the additional electricity demand for PEV charging could rep-
resent an important proportion of the residential demand in certain periods. For example, 
for a 10% adoption level, the additional demand represents just 2% (on average) of the 
residential load, with a maximum of 6% around 18:00. For a 50% adoption, PEV demand 
represents 11% of residential demand (on average), with a peak of 29% at around the same 
time. 

Finally, Figure 19 shows the electricity demand associated with the use of heat 
pumps when considering a 10% adoption of this technology in residential buildings. 

Figure 17. Seasonal heat demand and outdoor temperatures. © 2016 IEEE. Reprinted with permission
from [48].

In Figure 18, PEV charging demand is added on top of the residential demand for
various levels of PEV adoption (from 10% to 50%). This figure represents the total residential
electricity demand of the whole urban area, while similar graphs could also be generated
for individual areas.
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Figure 18. Electricity demand for different levels of PEV adoption.

The results show that the additional electricity demand for PEV charging could repre-
sent an important proportion of the residential demand in certain periods. For example,
for a 10% adoption level, the additional demand represents just 2% (on average) of the
residential load, with a maximum of 6% around 18:00. For a 50% adoption, PEV demand
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represents 11% of residential demand (on average), with a peak of 29% at around the
same time.

Finally, Figure 19 shows the electricity demand associated with the use of heat pumps
when considering a 10% adoption of this technology in residential buildings.
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The simulations show that the impacts will have a seasonal dependence, with winter
being the most critical period of the year. Although, in summer, this demand can represent
up to 5%, and during winter peak times it can represent up to 17% of the baseline residential
electricity demand.

4. Discussion and Other Case Studies

The simulation framework presented in this work has been developed iteratively,
sometimes in different directions, to increase its capability of supporting the evaluation of a
diverse set of prospective scenarios, interventions, and strategies. More than 10 case studies
(see Table 7) have been developed using the SmartCityModel tool alone or in combination
with other models. For example, when evaluating different urban designs, the tool can be
used to simulate the impact of different urban layouts and land uses on mobility patterns
and their respective energy requirements. On the other hand, when looking at strategies
to reduce the impact of electrification of transport and heat on the existing electricity
infrastructure, the simulation tool, combined with optimization models, can help in the
evaluation of different energy management mechanisms. Finally, behavioural aspects of
energy users can be included in the analysis to evaluate the effectiveness of measures
to incentivise changes in user habits such as flexible thermostat set points, PEV charge
shifting, etc. Due to the variety of aspects to be covered by the proposed framework, the
development of the simulation tool has been performed in a collaborative way, making
use of open-source libraries and a shared platform to keep track of different versions of
the main code. Table 7 summarises a selection of case studies that have been implemented
during the last decade, using and extending the presented SmartCityModel tool. This table
showcases the flexibility and modularity of the framework, as well as an indication of the
size of the user base. By providing different (spatial) input data, new case studies were set
up and extensions and modifications were made, where applicable, to include different sets
of behaviours (e.g., taxi drivers rather than personal transport or non-residential buildings
rather than domestic), which could then be utilised in future applications of the framework.
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Table 7. Example applications that used and/or extended the SmartCityModel tool (in reverse
chronological order).

# Reference Model Purpose Number of
Agents Agent Types Spatial Scale Temporal

Scale
Extensions/Changes

to Main Model

1 Yang et al.,
2020 [65]

Assessment of
transport

infrastructure and
public space

scenarios

80% of total
motor

vehicles
Car drivers

Haidian
District,
Beijing,
China

24 h
New quickest path
algorithm for route

choice model

2
Chakrabarti
et al., 2019

[66]

Financial
assessment of
electric vehicle
integration in
decentralised

energy schemes

10% and 30%
of vehicle

fleets

Residential
and

commercial
EV users

Urban area
centred in
Islington
borough,
London

24 h

New commercial
vehicle agent. Use of
EV charging demand

as part of the
operation strategy of
the District Heating

Network.

3 Lowans, 2017
[67]

Performance
assessment of the

PHEV taxi
charging network

4200 PHEV taxi
drivers

Greater
London 24 h

New PHEV taxi
agents. New

network of charging
points

4 Ladas, 2016
[68]

Simulate energy
demand in urban

areas
9828 Residents

Isle of Dogs
area, London,

MSOA as
spatial unit

24 h,
5 min time

step

More details on
building energy
demand model.

New energy demand
model for

non-residential
buildings

5 Briola, 2016
[69]

Analyse the
operational

performance of
district heat

networks

647 Residents

Queen
Elizabeth
Olympic
Park area,
London

24 h,
5 min time

step

New heat exchange
from/to the district

heat network

6 Xin, 2016 [70]

Simulate the
performance of EV

taxi charging
infrastructure

1400 EV taxi
drivers

Central
London area

+ nearby
airports

24 h

New EV taxi agents,
new charging

network
performance

indicators

7
Bustos-Turu
et al., 2016

[48]

Estimate electricity
and heat demand

in urban areas
38,342 PEV users

London area
(Central

West)
24 h

Comparison
between simulated

and published
annual energy

consumption at the
borough level

8 Clifford, 2015
[71]

Evaluate energy
sustainability of

urban masterplans

2131
(5% pop.) Residents

Old Oak
Common,
London.

Buildings as
spatial units

24 h,
5 min time

step

Extensions to the
residential heat

demand model, a
simplified district

heat network model,
and new

sustainability
indicators

9 Ferard, 2015
[72]

Evaluate DR
mechanisms in

different
geographical areas

100 Residents
Reunion

Island and
London

24 h

New shiftable
electricity demand
model, electricity

supply model, and
geographical

constraints in the
O-D model

10 Plessiez, 2015
[73]

Compare different
smart charging
algorithms in
reducing the

impacts on the LV
network

1% EV
adoption

Private PEV
users

London
district area

24 h, 10 min
step

Output file
processing tools for
integration with the
power flow model
and smart charging

strategies
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Table 7. Cont.

# Reference Model Purpose Number of
Agents Agent Types Spatial Scale Temporal

Scale
Extensions/Changes

to Main Model

11 Mallet, 2015
[74]

Economic analyses
of different

charging
management

strategies based on
ToU tariffs

500 Private PEV
users

London
district area 1 week

A new aggregator
agent to control PEV

charging

12

Bustos-Turu,
2013 [52],

Bustos-Turu
et al., 2014

[75]

Explore the impact
of charging

infrastructure on
electricity demand

and flexibility

68 Private PEV
users

Fictitious
urban area,

and London
district area

24 h, 3 min
step

New charging
infrastructure model

13 Acha et al.,
2011 [76]

Modelling the
integration of

ABM and optimal
power flow for
electric vehicle
impact analysis

14 PEV users Urban area
(example) 24 h

Include PEV agents
in the original

Repast City model
(Malleson, 2012) and
integrate them with

smart charging
strategies

Table 7 shows all the applications where the proposed framework has been used/extended,
supporting the notion of this framework being extensible and applicable to other geogra-
phies, user types, etc.

As mentioned in the literature review, the tool developed in this work aims to fill
some important gaps related to the integrated planning of future urban energy systems.
However, some challenges remain with respect to the integrated simulation of transport and
building energy demands. In the current version, the tool is able to simulate only private
vehicles with domestic users, with no consideration of public transport or commercial fleets
(although taxis have been included in [67,70], and a simplified version of the commercial
fleet in [66]). Similarly, most case studies consider only residential buildings. Commercial,
industrial, and public buildings have only been considered in a simplified way in [68], as
their energy demand characterization is more challenging. In these types of buildings, the
electricity and thermal demands are not necessarily dependent on an hourly occupancy
profile, and their energy intensity is strongly dependent on the specific purpose of the
building. Finally, the current building thermal model accounts only for residential space
heating, without considering hot water or any other process heat demand.

Another limitation of the tool is the fact it has been mainly tested in small and medium-
size urban areas (except for the case studies presented in [67,72]). We expect that some
of the behavioural rules of the agents might not be realistic when considering very large
scenarios, especially those related to the choice of locations for different activities (work,
shopping, leisure, etc.). However, the framework presented can easily be adapted to those
scenarios by updating the initialization or behavioural rules implemented for the agents,
or by providing new input data. The modular and extensible nature of the framework,
as demonstrated by the varied use cases, shows that the approach can be modified when
required, and different types of agents and activities could be added.

Finally, the proposed modelling framework has not gone through a rigorous and
complete validation process. The complexity of the represented system and the lack of
real-world data make it considerably hard to validate such a model. In order to assess if
the results are sensible, we have attempted to partially validate the framework, comparing
some of the results with aggregated (temporally and/or spatially) information. For example,
the comparison shown in Table 6 (see Section 3.2.1) is used only to check if the simulation
results were in the order of magnitude of real data (sanity check), as a full validation of
travel demand would need a careful examination to make sure the real data represent a
similar system to the simulated one (similar urban boundaries, user types, etc.). Another
example of the partial validation of the modelling framework is presented in [48], where
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simulation results are compared to statistical data on residential annual electricity and heat
demand for an urban area in London at the borough level.

5. Conclusions

The agent-based simulation model developed and presented in this work allows for a
unified analysis of transport and building electrification. The modelling framework allows
for the representation of a heterogeneous group of energy system users, each one with
their own specific energy requirements as a result of their individual behaviour, interacting
with the rest of the built environment and relevant energy systems for transport, heating,
and power. Taking this generative and bottom-up modelling approach, spatiotemporal
energy demand profiles can be produced and analysed for a spatially explicit urban area
under various behaviour scenarios and linked directly to land-use distributions and urban
planning settings.

A case study was presented to show the potential of the framework to analyse the
impact of the additional electricity demand from both transport and building electrification
in an integrated fashion. This case study was based on a future scenario where the private
residential transport and heat demand is partially electrified. This study focused on
understanding the energy requirements related to the charging of electric vehicles and the
use of heat pumps in residential buildings. The results of this application showed that
the model can generate realistic transport behaviour, which is necessary to estimate the
charging and energy requirements as well as the utilization of the charging infrastructure.
It was also shown that the simulation model is a useful tool to estimate daily energy
profiles for charging, power, and heat demand in different zones of the city and explore the
influence of land use and agents’ activities and preferences on these demands.

Although it is still in an early stage, the modelling framework presented in this work
can be used to estimate the impact of transport and heat electrification on current system
load under different prospective scenarios and energy system pathways. While this study
has provided valuable insights, it is important to acknowledge its limitations, as discussed
in the previous section. These limitations pave the way for avenues of future work. In
the context of transport systems, other transport agents, such as public transport and
commercial fleets, can be incorporated, while also considering multimodal transport in
which agents can switch between transport networks. Regarding heating demand, future
versions of the tool should incorporate residential hot water demand, and the rest of the
building sector (commercial, industrial, public) could also be considered. The presented
framework can also be used to explore energy management strategies for PEVs and HPs,
especially in electricity networks that would otherwise need to be upgraded to cope with
the additional demand. Also, through a rigorous sensitivity analysis, the influence of
each factor affecting the additional electricity demand could be assessed. Additionally,
uncertainty analyses could be performed in future work, running multiple simulations
considering the value of some parameters from specified ranges or probability distributions
(modifying random number generator seed values). We are especially keen to explore
how the framework will be used and extended by new users independently from the core
team and monitor how the urban planning and urban modelling community can utilise the
presented tools in helping to solve real and urgent global challenges.

To conclude, the agent-based modelling framework presented in this paper can be
applied in a wide range of urban planning, transport, and energy management scenarios
at the planning and operational levels. The outputs generated by the model can provide
insights for planners, engineers, policymakers, network operators, etc., who are interested
in the design and implementation of low-carbon solutions in urban areas. The applicability,
flexibility, and extensibility of the model were demonstrated through a range of case studies,
showing how the model can be initialised from spatial input data and have some elements
configured without having to modify the source code, while the open-source nature of
the SmartCityModel enables modellers to extend and adapt the tool where required. The
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framework will thus continue to provide relevant insights into the future of cities as part of
the urgent transition to more sustainable urban environments.
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Abbreviations
The next table shows the list of acronyms used throughout the article, with their respective units
(where applicable).
Acronym Definition
ABM Agent-based modelling
ABMS Agent-based modelling and simulation
CO2-eq Carbon dioxide equivalent
COP Coefficient of performance
DSM Demand-side management
EV Electric vehicle
GIS Geographic information system
HP Heat pump
ONS Office for National Statistics
PEV Plug-in electric vehicle
PHEV Plug-in hybrid electric vehicle
SOC State of charge
ToU Time of use
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