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Abstract: Refrigerated transport by road is essential for the food industry but also contributes
significantly to global energy consumption. In particular, last-mile transport, where the doors of the
cooling chamber are opened frequently, puts a strain on energy efficiency and temperature control
due to the high heat ingress from outside into the cooling chamber. These difficulties can be reduced
by thermal energy storage systems, such as secondary loop refrigeration systems, if combined with
a sophisticated control scheme. Although the storage capacity of such systems is critical for the
overall performance of the cooling system, little research was performed regarding the sizing of the
secondary loop thermal storage capacity. Therefore, this article examines the effect of the secondary
loop thermal storage capacity on energy consumption and controller performance utilizing closed-
loop simulations of a refrigerated vehicle model. Both a mixed-integer model predictive control
scheme that can anticipate door openings and a conventional temperature controller are analyzed. An
optimal thermal storage capacity of the secondary loop is found with the model predictive controller,
whereas the conventional controller cannot exploit the secondary loop and thus shows significantly
inferior performance. By using a dimensionless parameter for the thermal storage capacity of the
secondary loop, the optimum found can be easily applied to refrigerated vehicles with various
cooling chamber dimensions.

Keywords: refrigerated vehicle; secondary refrigerant; door openings; model predictive control; sizing

1. Introduction

Approximately 8% of the worldwide electric energy consumption is caused by the food
industry for refrigeration and maintaining the cold chain [1]. Much of this is attributable
to refrigerated transport by road, whose cooling units are generally exposed to harsher
conditions and have much poorer energy efficiency than stationary refrigeration units [2].
Therefore, for both economic and environmental reasons, substantial efforts are devoted
to reducing the energy consumption of refrigerated vehicles [2–4]. However, the energy
efficiency of refrigerated vehicles is still compromised by improper temperature control
concepts, such as commonly used heuristic controllers. This is particularly evident for
last-mile transport, where frequent door openings and the resulting heat ingress from the
outside stress temperature control due to the high cooling demand required to cool down
the cooling chamber after the door is closed [5].

Already in the design stage, the correct dimensioning of the individual components of
the refrigerated vehicle is of great importance. For example, Maiorino et al. [6] studied the
optimal design of the battery and photovoltaic panels of a hybrid refrigerated van. However,
particular attention should be paid to the sizing of the cooling system, as this is one of
the most critical components in terms of energy consumption and meeting the vehicle’s
cooling needs. Generally, refrigeration units are oversized for steady-state operation due to
sizing for peak cooling loads [7,8], leading to increased energy consumption, wear of the
compressor, and acquisition costs. In the literature, the sizing of the cooling equipment in
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stationary conditions is broadly discussed, e.g., for HVAC systems in buildings [9,10] and a
refrigeration system in an industrial plant [11]. Although already some simulation-based
design methods for optimizing refrigeration systems exist [12–14], little has been done
regarding the sizing of the cooling equipment of small-scale refrigerated vehicles with the
consideration of door openings.

Therefore, this work analyzes the sizing of a secondary loop refrigeration unit for a
small-scale refrigerated vehicle together with a mixed-integer model predictive controller
(MPC). For this purpose, closed-loop simulations of a refrigerated vehicle with differently
sized thermal energy storage (TES) capacities of the secondary loop are conducted. In
the simulations, the system is disturbed by multiple door openings. Furthermore, the
same simulations are performed using a rule-based proportional–integral (PI) controller,
commonly used in industry for temperature control of refrigerated vehicles [15]. The two
controllers and the differently sized secondary loops are compared based on their energy
consumption and time required to bring the cooling chamber temperature back to the
reference after door openings.

The use of TES has already found application in many fields [16], and it has been
shown that they can significantly increase the efficiency of energy systems, e.g., photovoltaic
panels [17]. TES systems are also very promising in the cold chain industry [18]. Cold
TES can either use latent heat mediums like phase change materials (PCM) or sensible
heat mediums. Storage systems with latent heat mediums generally have a much higher
energy density than systems with sensible heat mediums, while TES systems using sensible
heat mediums are more straightforward to realize, require less maintenance, and are less
expensive [16], making them more suitable for small-scale refrigerated vehicles. In [19], the
parameters of a PCM-based TES in a refrigerator cycle are analyzed. The results show that
a suitably sized TES can significantly improve the cooling system’s efficiency compared
with a system without a TES. However, the analysis only included the cooling unit with
the TES, without any cooling chamber. Jeong et al. [20] proposed a cooling system that
stores low-temperature liquid refrigerant by actively controlling the refrigerant mass flow
rate for the evaporator. Experimental results show that this allows the cooling capacity
to be temporarily increased for peak cooling demand, thereby allowing a smaller cooling
unit design.

Refrigeration systems with TES are especially beneficial for small-scale refrigerated
vehicles, which often face door openings, resulting in high peak cooling demand [5].
Systems for road refrigeration can solely be based on TES, which are charged at the base,
or be combined with a conventional cooling unit [3]. Mousazade et al. [21] studied the
thermal performance of a cooling system with only a TES for a 6-ton refrigerated truck. In
their experimental evaluation of three different PCM materials, the cooling chamber of a
stationary truck could be kept solely by the TES at a constant temperature for a maximum
of 5.1 h. However, cooling systems solely relying on a TES have a relatively high mass
and practically no setpoint change capability. The storage capacity of PCM-based TES
operated in parallel with a conventional cooling unit is analyzed in [14]. The influence of
the sizing is given by means of closed-loop simulations with a heuristic control concept,
although door openings were not taken into account. Shafiei et al. [22] used a similar
cooling system architecture for their control concept for a refrigerated truck, which can
achieve considerable energy savings by future load predictions and utilizing the TES. This
paper also shows that only a suitable control structure can unleash the full potential of such
combined systems, but their control concept lacks the inclusion of door openings.

Due to the high global warming potential of HFC refrigerants, increasingly more
environmentally friendly liquids are being used as refrigerants, such as propane, ammonia,
or hydrocarbon, which have the major drawback of being flammable. As a result, alter-
native refrigeration technologies, such as secondary loop refrigeration systems [23], are
becoming more popular for physically separating hazardous refrigerants from the cooling
chamber by adding an additional loop to the primary cooling cycle. Both single-phase (e.g.,
glycol mixtures and hybrid nanofluids [24]) and two-phase fluids (e.g., CO2 [25], paraffin
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emulsion [26], and salt hydrates [27]) are used as secondary refrigerants. Advantages of
this architecture are reduced primary refrigerant charge and leakage and the ability to use
the secondary loop as a TES [23]. Storage management of the TES allows a more flexible
operation of the refrigeration unit without limiting the cooling of the cooling chamber,
which means that the refrigeration unit can be operated generally more energy efficiently.

Due to the aforementioned reasons, TES systems with sensitive heat mediums are
better suited for small-scale refrigerated vehicles. Therefore, this work considers a sec-
ondary loop cooling system with a glycol mixture as the secondary refrigerant, which is
always kept above its freezing point. The modeling of a refrigerated vehicle with such a
cooling system is described by Fallmann et al. [28]. In their work, a dynamic low-order
model was estimated by a gray-box modeling approach using measurement data from a
small-scale refrigerated vehicle with door openings. Based on that work, a control concept
that takes advantage of the storage capability of the secondary loop was proposed and
evaluated on a test bed in [29]. The experimental results show significant performance
benefits regarding both energy consumption and peak cooling capacity for cooling after
door openings. However, in the literature, the sizing of the secondary loop storage capacity
was not studied until now.

The remainder of the paper is structured as follows: First, Section 2 describes the
model of the small-scale refrigerated vehicle with a secondary loop cooling unit. Next,
Section 3 explains the variation of the secondary loop storage capacity in the model. The
two controllers to regulate the temperature inside the cooling chamber are introduced in
Section 4. Section 5 summarizes the parameters of the simulation study, followed by the
results in Section 6. The paper concludes with a discussion and conclusion in Section 7 and
Section 8, respectively.

2. Model Description

For modeling the cooling chamber and the cooling unit of the small-scale refrigerated
vehicle, the model proposed by Fallmann et al. [28] was adopted since it shows good agree-
ment with measurement data from a real-world refrigerated vehicle. The only modification
to the original model was the removal of the heater acting as a disturbance heat flow in
the cooling chamber, as this disturbance is irrelevant to this work. In the following, a brief
overview of the model is given, and the interested reader is referred to [28], where the mod-
eling of the system and its validation is explained elaborately. Note that the thermodynamic
quantities in this work correspond to ISO 80000-5:2019 [30].

Figure 1 shows the system scheme with the cooling unit and cooling chamber, as well
as important modeling variables. The cooling unit is a commercially available secondary
loop refrigeration unit [31], which can be divided into a cooling loop and a storage loop.
The cooling unit can be switched on and off by scu ∈ {0, 1}, activating/deactivating the
compressor of the cooling loop, the condenser fan, and the glycol pump of the storage
loop. The cooling loop is a standard vapor compression refrigeration cycle with propane as
refrigerant, powered by a compressor rotating with the speed ncpr ∈ R. The storage loop,
containing glycol, can store thermal energy supplied by the cooling loop and release thermal
energy to the air in the cooling chamber through an air chiller. The glycol temperatures at
the inflowing and outflowing position of the air chiller are given by ϑin

gly ∈ R and ϑout
gly ∈ R,

respectively. A fan mounted to the air chiller evokes a heat flow, Q̇ac ∈ R, either due to
natural or forced convection between the secondary loop and the air inside the cooling
chambers, depending on the status of the fan sacf ∈ {0, 1}. The interior of the cooling
chamber, with the lumped air temperature ϑcc ∈ R, is separated from the environment by
insulated walls and a door. A second-order system describes the heat transfer characteristics
of the insulated walls with the two wall temperatures ϑw,1 ∈ R and ϑw,2 ∈ R. Door
openings are indicated by sdoor ∈ {0, 1}, which entails a heat flow between the air inside
the cooling chamber and the ambient air (ambient air temperature ϑamb ∈ R). Furthermore,
the model describes the power consumption of the compressor Pcpr ∈ R, the condenser
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fan Pcf ∈ R, the glycol pump Pp ∈ R, the air chiller fan Pacf ∈ R, and the total consumption
of all components Ptot ∈ R.
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Figure 1. Schematic illustration of the refrigerated vehicle, consisting of a cooling chamber (a) and
a secondary loop cooling unit (b). Important temperatures ϑ, the air chiller heat flow Q̇ac, switching
variables s, and the compressor speed ncpr are highlighted. Door openings are indicated by the
warm inflowing air colored in red and the outflowing cold air colored in blue. The secondary loop
refrigeration unit can be divided into a cooling loop with propane as refrigerant and a storage loop
filled with a glycol mixture. Figure adopted from [28].

Table 1. Classification of the mode m depending on the status of the cooling unit scu, the air chiller
fan sacf, and the door sdoor.

Mode m(t) scu(t) sacf(t) sdoor(t)
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1
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Figure 1. Schematic illustration of the refrigerated vehicle, consisting of a cooling chamber (a) and a
secondary loop cooling unit (b). Important temperatures ϑ, the air chiller heat flow Q̇ac, switching
variables s, and the compressor speed ncpr are highlighted. Door openings are indicated by the
warm inflowing air colored in red and the outflowing cold air colored in blue. The secondary loop
refrigeration unit can be divided into a cooling loop with propane as refrigerant and a storage loop
filled with a glycol mixture. Figure adopted from [28].

The mathematical description of the dynamic model relies on first principles, which
is explained comprehensively in [28]. Given that the model comprises both continuous
and binary variables, it is a hybrid model [32]. Hence, a model formulation with a mode
selector and a switched affine system is chosen. This approach allows to separate binary
and continuous variables. The mode selector maps the three binary variables of the model
on one of the eight modes m ∈ {1, 2, . . . , 8}, see Table 1.

Table 1. Classification of the mode m depending on the status of the cooling unit scu, the air chiller
fan sacf, and the door sdoor.

Mode m(t) scu(t) sacf(t) sdoor(t)

1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Depending on the mode, an associated affine model is selected in the switched affine
system. This model comprises solely continuous variables and can be written in state-space
formulation as

ẋc(t; m) = A(m) xc(t; m) + B(m) uc(t) + E(m) vc(t) + g(m), (1)

yc(t; m) = C(m) xc(t; m) + D(m) uc(t) + F(m) vc(t) + h(m), (2)

where t ∈ R≥0 denotes the continuous time. This state-space model describes the system
dynamics by transforming the state vector xc ∈ R4 according to
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xc(t; m) :=


ϑcc(t; m)
ϑout

gly (t; m)

ϑw,1(t; m)
ϑw,2(t; m)

 (3)

with the continuous input uc ∈ R and disturbance vc ∈ R given by uc(t) := ncpr(t)
and vc(t) := ϑamb(t), respectively, into the model outputs yc ∈ R8 according to

yc(t; m) :=



ϑcc(t; m)
ϑin

gly(t; m)

ϑout
gly (t; m)

Ptot(t; m)
Pcpr(t; m)

Pcf(m)
Pp(m)

Pacf(m)


. (4)

The transformation is defined by the system matrix A ∈ R4×4, input vector B ∈ R4,
system disturbance vector E ∈ R4, affine system vector g ∈ R4, output matrix C ∈ R8×4,
feedthrough vector D ∈ R8, output disturbance vector F ∈ R8, and affine output vector
h ∈ R8. The model matrices of the state space systems and their parameters were adopted
from [28], where they were experimentally identified and validated. Their values are given
in Appendix A.

3. Parameter Variation

To investigate different thermal capacities of the storage loop, the scaling factor
Kscl

sl ∈ R≥0 is introduced. In the case of the unscaled model (see [28]), the dynamics
of the glycol temperature are given by

χ−1
3

d
dt

ϑout
gly (t; m) =

χ2

χ3

[
ϑin

gly(t; m)− ϑout
gly (t; m)

]
+ Q̇ac(t; m) (5)

with the model parameters χ2 ∈ R and χ3 ∈ R. The thermal capacity of the glycol is
defined by the ratio of the heat added to the rate of change of its temperature [33]. Hence,
the thermal capacity of the glycol in the secondary loop is given by Cgly = χ−1

3 ∈ R. By
adapting Equation (5) according to

Kscl
sl Cgly

d
dt

ϑout
gly (t; m) =

χ2

χ3

[
ϑin

gly(t; m)− ϑout
gly (t; m)

]
+ Q̇ac(t; m), (6)

the thermal storage capacity of the glycol is scaled linearly by the factor Kscl
sl . With Kscl

sl = 1,
the same storage capacity of the secondary loop as in the unscaled model is obtained. A
scaling factor between 0 and 1 describes a secondary loop with lower thermal storage capac-
ity, and a scaling factor greater than 1 represents a storage loop with higher storage capacity
compared with the unscaled model. Later in this work, Kscl

sl is varied to investigate the
effects of this sizing parameter on the closed-loop performance of the refrigerated vehicle.

4. Temperature Control

Two different control concepts were evaluated for controlling the temperature inside
the cooling chamber. One is an MPC, an advanced control algorithm based on an online
optimization of the system. The other is a rule-based PI controller commonly used in
industry for the temperature control of refrigerated vehicles. Both control schemes were
adopted from [29] with small modifications and are explained in detail below.
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4.1. Model Predictive Controller

The MPC calculates the control inputs based on minimizing an objective function
subject to constraints over a finite prediction horizon with the length Npr ∈ N. This
optimization problem is schematized in Figure 2 to support the upcoming elaboration of
the control scheme.

Figure 2. Illustration of the MPCs optimization problem with a future door opening, highlighted by
an orange background shading. Decision variables and constraints are depicted schematically. A
blue background shading highlights the temperature window, and deviations from that window are
marked red. Figure adapted from [29].

Model-based predictions of the future trajectory of the system quantities are used
to select the control inputs optimally in terms of the objective function. Therefore, the
controller utilizes a discretized version of the state-space model derived in Section 2, using
zero-order hold with sampling time Ts, yielding

xc(k + 1; m) = Ad(m) xc(k; m) + Bd(m) uc(k) + Ed(m) vc(k) + gd(m) (7)

yc(k; m) = Cd(m) xc(k; m) + Dd(m) uc(k) + Fd(m) vc(k) + hd(m) (8)

with the current sampling instance k ∈ N and discretized model matrices Ad ∈ R4×4,
Bd ∈ R4, Ed ∈ R4, gd ∈ R4, Cd ∈ R8×4, Dd ∈ R8, Fd ∈ R8, and hd ∈ R8 to compute the
stacked vector of future states Xc ∈ R4 Npr and outputs Yc ∈ R8 Npr at the current sampling
instance k according to
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Xc :=


xc(k + 1|k; m)
xc(k + 2|k; m)

...
xc(k + Npr|k; m)

, Yc :=


yc(k|k; m)

yc(k + 1|k; m)
...

yc(k + Npr−1|k; m)

 (9)

using the current state vector x(k; m), and the vectors of stacked future continuous inputs,
binary inputs, continuous disturbances, and binary disturbances, Uc ∈ RNpr , Ub ∈ R2 Npr ,
Vc ∈ RNpr , and Vb ∈ RNpr , respectively, see (10):

Uc :=


uc(k)

uc(k + 1)
...

uc(k + Npr−1)

, Ub :=


ub(k)

ub(k + 1)
...

ub(k + Npr−1)

,

Vc :=


vc(k)

vc(k + 1)
...

vc(k + Npr−1)

, Vb :=


vb(k)

vb(k + 1)
...

vb(k + Npr−1)


(10)

The vectors of future disturbances are based on ambient temperature and door status
predictions. Furthermore, constraints to the optimization problem have to be observed to
consider the system’s physical limits and reduce the optimization problem’s complexity to
ease the computational effort required to solve it.

4.1.1. Constraints

To reduce the computational effort of the MPC, a control horizon Nctr ∈ N≤Npr is
introduced. Only during the control horizon, the controller can select the inputs. For the
rest of the prediction horizon, the inputs are constant. Door openings are excluded in
that period to ensure that the controller can track a reference temperature after the control
horizon. For the same reason, the cooling unit and the air chiller fan are active after the
control horizon. These conditions imply the following constraints:

ncpr(k + i) = ncpr(k + Nctr), ∀i ∈
{

Nctr, Nctr + 1, . . . , Npr−1
}

(11)

scu(k + i) = 1, ∀i ∈
{

Nctr, Nctr + 1, . . . , Npr−1
}

(12)

sacf(k + i) = 1, ∀i ∈
{

Nctr, Nctr + 1, . . . , Npr−1
}

(13)

sdoor(k + i) = 0, ∀i ∈
{

Nctr, Nctr + 1, . . . , Npr−1
}

(14)

Furthermore, the compressor is physically limited by a lower, nmin
cpr ∈ R, and upper

speed, nmax
cpr ∈ R, when the cooling unit is active. When the cooling unit is inactive, the

compressor speed is 0. Due to the enforced constant inputs after the control horizon Nctr,
it was necessary to soften the limits of the lower compressor speed after Nctr to track the
reference temperature during this part of the horizon:

ncpr(k + i) ≤ nmax
cpr scu(k + i), i ∈

{
0, 1, . . . , Npr−1

}
(15)

ncpr(k + i) ≥ nmin
cpr scu(k + i), i ∈ {0, 1, . . . , Nctr−1} (16)

ncpr(k + i) ≥ 0, i ∈
{

Nctr, Nctr + 1, . . . , Npr−1
}

(17)

However, the control inputs after the control horizon are never implemented on the plant
due to the receding horizon control law, explained below, and thus, the actual physical
limits of the plant are observed.

Since the secondary refrigerant should always be in a liquid state, the following
constraints apply to the minimum glycol temperature:
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ϑout
gly (k + i|k; m) ≥ ϑout,min

gly , ∀i ∈
{

1, 2 . . . Npr
}

, (18)

where ϑout,min
gly ∈ R is the freezing temperature of the glycol.

Additionally, the minimum up and down times are enforced on the cooling unit and
air chiller fan to prohibit extensive switching, which can significantly reduce the lifespan of
the components. The formulation of these constraints was taken from [34] according to

sµ(k + i)− sµ(k + i−1) ≤ sµ(τup), ∀i ∈
{
−Nup

µ ,−Nup
µ + 1, . . . , Nctr−1

}
(19)

sµ(k + i−1)− sµ(k + i) ≤ 1− sµ(τdown), ∀i ∈
{
−Ndown

µ ,−Ndown
µ + 1, . . . , Nctr−1

}
(20)

with τup ∈ {k + i, k + i + 1, . . . , min(k + Nctr−1, k + i + Nup
µ −1)}, τdown ∈ {k + i, k + i + 1,

. . . , min(k + Nctr−1, k + i + Ndown
µ −1)}, and µ ∈ {cu,acf}, where Nup

µ ∈ N and Ndown
µ ∈ N

is the minimum up and down time in samples, respectively.
The modes where the fan is active while the door is open are very disadvantageous

in terms of energy efficiency due to the increased air exchange between the inside of the
cooling chamber and the environment. However, these dynamics were not considered
by [28] when modeling the system. Thus, the modes were generally prohibited in the
control law of the MPC:

sacf(k + i) sdoor(k + i) = 0, ∀i ∈
{

0, 1 . . . , Npr−1
}

. (21)

The computational cost of solving optimization problems scales with the degree of
freedom (i.e., number of free inputs), and binary decision variables place a particular
burden on solving such problems. Therefore, move blocking constraints, similar to those
described by [35], are introduced for the binary input variables. Instead of optimizing
all the binary decision variables in the control horizon Ub,ctr :=

[
uT

b(k), uT
b(k + 1), . . . ,

uT
b(k + Nctr−1)

]T ∈ R2 (Nctr−1), the problem is restated in terms of finding the optimal

reduced binary input vector Ured
b,ctr :=

[
ured

b,1 , ured
b,2 , . . . , ured

b,M

]T ∈ R2M with M ∈ N≤(Nctr−1)
binary decision vectors, which relates to Ub,ctr by:

Ub,ctr :=
(
Tmb ⊗ I2

)
Ured

b,ctr, (22)

where ⊗ denotes the Kronecker product and Tmb ∈ R(Nctr−1)×M is the blocking matrix,
which contains only ones and zeros and has exactly one non-zero element in each row.

4.1.2. Objective Function

The objective function J ∈ R≥0 of the MPC can be divided into multiple terms
according to

J := Jtw + Jcon + J∆ncpr + Jt, (23)

where Jtw ∈ R≥0 penalizes the violation of a prescribed temperature window, Jcon ∈ R≥0
the power consumption over the horizon, J∆ncpr ∈ R≥0 the rate of change of the compressor
speed from one sample to the next, and Jt ∈ R≥0 the final temperature at the end of the
prediction horizon.

The MPC regulates the air temperature inside the cooling chamber to stay within a so-
called temperature window with the lower bound ϑmin

tw ∈ R and the upper bound ϑmax
tw ∈ R.

However, this temperature window is not always active since door openings pose a major
disturbance, making it infeasible to hold the cooling chamber temperature within the bound-
aries of the temperature window. Therefore, the temperature window is switched to be inac-
tive by the variable stw ∈ {0, 1} during and shortly after door openings. Hence, the profile
of the temperature window status Stw :=

[
stw(k + 1), stw(k + 2), . . . , stw(k + Npr)

]T ∈ RNpr

is closely coupled to the predicted door openings and is also given as input to the opti-
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mization problem. In the objective function, a deviation from the temperature window is
penalized in each sample by the factor Q ∈ R≥0 according to

Jtw := Q
Npr

∑
i=1

δtw(k + i|k) stw(k + i) (24)

with the helper variable δtw ∈ {0, 1}, indicating a violation of the temperature window
given by

δtw(k + i|k; m) :=

{
1, if ϑmax

tw ≤ ϑcc(k + i|k; m) ≤ ϑmin
tw

0, otherwise
. (25)

In addition, the controller should minimize energy consumption. Therefore, the total
power consumption in each time step is penalized by the factor R1 ∈ R≥0, according to

Jcon := R1

Npr−1

∑
i=1

Ptot(k + i). (26)

To limit fast changes in the compressor speed, which could damage the components of
the refrigeration system, the quadratic rate of change of the compressor speed is weighted
by the factor R2 ∈ R≥0 according to

J∆ncpr := R2

Npr−1

∑
i=1

[
ncpr(k + i)− ncpr(k + i−1)

]2. (27)

At the end of the prediction horizon, the terminal cost is added to the objective
function, given by

Jt := T1 δt(k + Npr|k; m) + δt(k + Npr|k; m) T2 δt(k + Npr|k; m) (28)

with the factors T1 ∈ R≥0 and T2 ∈ R≥0 weighting the linear and quadratic deviations
from the reference temperature ϑref

cc ∈ R at the last time step of the prediction horizon,
and the helper variable δt ∈ R≥0 indicating the temperature deviation at the end of Npr
according to

δt(k + Npr|k; m) =
∣∣ϑcc(k + Npr|k; m)− ϑref

cc
∣∣. (29)

4.1.3. Implementation

With the objective function and all constraints defined, the optimization problem of
the MPC can be stated according to[

Ured,∗
b,ctr , U∗c

]
= arg min

Ured
b,ctr,Uc

J (30)

subject to (7)–(8) and (11)–(22) with ∗ indicating the optimized control variables. Con-
sidering that the optimization problem comprises discrete and continuous variables, the
controller is a mixed-integer MPC [32]. Compared to a conventional MPC with only contin-
uous variables, a mixed-integer MPC can explicitly consider the switching dynamics of the
model, e.g., induced by door openings, and thus improve the accuracy of the controller’s
predictions. The optimization problem of the MPC is solved at each time step, with only
the first set of optimized inputs implemented on the system, resulting in a receding horizon
control law.

Standard guidelines [29,36] were used to obtain the MPCs parameters. Care was taken
to keep the computational complexity within limits and obtain a controller performance
close to the global optimality. The model’s fastest eigenvalues determine the controller’s
maximum sampling time Ts according to the Nyquist criterion. At the same time, the
slowest dynamics dictate the minimum length of the prediction horizon Npr. Extensive
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closed-loop simulations were performed to select the control horizon and move blocking
constraints to reduce the computational complexity of the controller while preserving the
global optimality. In Table 2, the parameters of the MPC are listed. The optimization
problem is constructed using the Matlab framework Yalmip [37] and solved using the
Gurobi solver [38].

Table 2. MPC parameters.

Parameter Value

Ts 20 s

Npr 60

Nctr 31
nmin

cpr 700 rpm
nmax

cpr 5000 rpm

ϑout,min
gly −35 ◦C

Nup
µ , Ndown

µ 5

Tmb see Appendix B

M 13

ϑref
cc 5 ◦C

ϑmin
tw 4.5 ◦C

ϑmax
tw 5.5 ◦C

Q 8 · 106

R1 0.1

R2 1 · 10−5

T1 5 · 103

T2 1 · 103

4.2. Rule-Based PI Controller

With this control scheme, the refrigeration unit is operated based on a PI control law to
track the reference temperature ϑref

cc . However, the physical limits of the compressor speed
and the two binary control variables necessitate additional rules to track the reference
temperature and compute the binary variables. In Figure 3, the calculation of the status of
the cooling unit and fan are visualized, supporting the upcoming elaboration.

For the sake of simplicity, the two binary manipulated variables are operated in
parallel, yielding the condition

scu(k) = sacf(k) = sµ(k) (31)

As with the MPC, rules for the minimum up and down times are enforced. By
operating the air chiller fan and cooling unit in parallel, a uniform minimum up and down
time, Nup ∈ N and Ndown ∈ N, can be defined according to

Nup = max
(

Nup
cu , Nup

acf

)
(32)

Ndown = max
(

Ndown
cu , Ndown

acf
)
. (33)

The air chiller fan becomes inactive when the door opens since this is, as described
above, a very inefficient operating mode. Hence, the cooling unit is also set to be inactive
due to the parallel operation.

If none of the above cases apply, an on–off controller computes the binary control
variables with the following control law:
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sµ(k) =


1, if e(k) ≤ −Hϑ

0, if e(k) ≥ Hϑ

sµ(k−1) otherwise

, (34)

where e(k) := ϑref
cc − ϑcc(k) ∈ R is the control error and Hϑ ∈ R≥0 is the switching threshold.

Figure 3. Flow diagram for the calculation of the binary control variables sµ with µ ∈ {cu,acf}.

The compressor speed is 0 when the cooling unit is inactive. Otherwise, the speed is
determined based on the discrete-time PI control law [39] according to

ncpr(k) = ncpr(k−1) + PPI e(k) +
[
Ts IPI − PPI

]
e(k−1) (35)

with the proportional gain PPI ∈ R and the integral gain IPI ∈ R. Further, the computed
compressor speed is limited between the minimum and maximum speeds nmin

cpr and nmax
cpr ,

respectively.
The parameters of the rule-based PI controller are listed in Table 3. The PI controller

gains were tuned using the the Matlab PID Tuner application [40] to obtain a closed-loop
bandwidth of 0.01 rad/s and 10◦ phase margin.
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Table 3. Parameters of rule-based PI controller.

Parameter Value

Ts 20s
nmin

cpr 700 rpm
nmax

cpr 5000 rpm

Nup, Ndown 5

ϑref
cc 5 ◦C

Hϑ 0.4 ◦C
PPI −764

IPI −16.2

5. Simulation Setup

A simulation-based approach was used to study the refrigeration system’s perfor-
mance with differently sized secondary loop storage capacities, a methodology frequently
used in the literature to design other cooling systems [12–14]. Matlab/Simulink [41]
was used as the simulation environment, where the continuous-time model described in
Section 2 and the discrete-time controllers are simulated in a closed loop. The parameters
of the simulation study and the individual simulations are given in Table 4.

Table 4. Parameters of simulation study and individual simulations.

Condition Value

Simulation study:

Kscl
sl

{0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1.125, . . .
1.25, 1.375, 1.5, 1.75, 2, 2.25, 2.5, 3, 3.5, 4}

# of scaling factors 19
# of door opening 7

realizations
# of controllers 2
# of simulations 19 · 7 · 2 = 266

Individual simulation:
Tsim 120 min
ϑamb 22 ◦C
Door openings:

Start [20 min + ω1, 45 min + ω2, 70 min + ω3, 90 min + ω4]
Duration [3 min, 1 min, 4 min, 2 min]
T2TWmax [100 s, 60 s, 120 s, 80 s]

Initial conditions:
xc [2.70 ◦C, 5 ◦C, 5.27 ◦C, 6.69 ◦C]T

uc 1080 rpm
m 7

Computation:
Processor Intel Core i9-10850K [42]
RAM 32 GB
Solver Matlab ode15s [43]

A total of 19 differently sized storage loops were examined by varying the scaling
factors Kscl

sl between 0.125 and 4. Each storage loop size is simulated seven times with
different disturbances due to door openings, for both the MPC and the rule-based PI
controller. This results in 266 individual simulations.

Each simulation has a length of Tsim = 120 min. Within this period, the system is
disturbed by four door openings, lasting between 1 and 4 min. Because the timings of these
switching disturbances strongly influence the results, the starting time of each of the door
openings is randomly shifted by ω1,2,3,4 ∈ R, normally distributed random numbers in the
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interval (−125 s, 125 s). These random door opening shifts are generated seven times for
each of the simulations with the same secondary loop sizing and controller (values listed
in Appendix C). In this manner, the controllers and the differently sized storage loops are
evaluated with the same seven different door opening timings.

Logistics information systems are widely used in the industry for route planning
for refrigerated vehicles. These systems also provide information about the time of door
openings, when cargo is loaded or unloaded. In this work, it is assumed that these timings
are perfectly accurate. Hence, the door openings in the simulation are precisely embedded
in the MPC predictions of disturbances. Furthermore, the profile of the temperature window
is derived from those predicted door openings. The temperature window is inactive during
the duration of the door openings and the period T2TWmax ∈ R≥0 after the door is closed.
Further, it is assumed that the full state measurement or state reconstruction is available
without uncertainty or measurement noise for this simulation study.

Each simulation starts at a steady state, where the cooling chamber temperature equals
the reference temperature ϑref

cc , and the cooling unit and fan are active with a closed door.
The ambient temperature is 22 ◦C for all simulations, which corresponds to the year-round
temperatures in Central Europe for which the vehicle under consideration was configured.
Furthermore, the adopted model [28] was identified at similar ambient temperatures and
thus is most accurate in this outside temperature range.

6. Results

In this section, the results of the simulation study are presented. First, the MPC and the
rule-based PI controller are compared using two simulations with equally sized secondary
loops. Then, the results of all simulations are statistically evaluated, and the optimal storage
loop sizing is determined.

6.1. Controller Evaluation

Figure 4 shows the results of two exemplary simulations with the same secondary
loop sizing.

The two uppermost graphs show the simulated temperatures of the cooling chamber
and the thermal energy storage. Below, the power consumption of the compressor, the
condenser fan and glycol pump, and the air chiller fan are displayed, allowing to conclude
on the respective control variables selected by the controllers. Both controllers hold the
cooling chamber temperature during steady-state operation without door openings inside
the temperature window, marked in blue. However, after the door openings, indicated by
the orange background shading, the MPC can cool down the cooling chamber significantly
faster than the rule-based PI controller. Before the door openings, the MPC increases the
compressor speed but does not activate the air chiller fan. As a result, thermal energy is
stored in the secondary loop, lowering the glycol temperature. When the door is closed
again, the MPC activates the air chiller fan and cools the cooling chamber quickly due to
the large temperature difference between the glycol and the air inside the cooling chamber.
The rule-based PI controller lacks information about future door openings and thus does
not react in advance.

A difference between the two controllers is also evident in the energy consump-
tion, Econ ∈ R≥0, which can be derived from the power consumption according to

Econ =
∫ Tsim

0
Ptot(t; m) dt. (36)

In the simulation shown in Figure 4, the MPC consumes 693 Wh, and the rule-based
PI controller 795 Wh. The power consumption graphs also indicate that the most energy
consumption is attributable to door openings. Stationary operation with a closed door
requires significantly less power due to the good insulation of the walls. Furthermore, the
computational time of the closed-loop simulation with the MPC is significantly longer than
with the rule-based PI controller due to the complexity of the optimization task. In fact, the
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single simulation with the MPC takes 62.7 min, while with the rule-based PI controller, it
only takes 3.24 s.

Figure 4. Closed-loop simulation results with MPC and rule-based PI controller with Kscl
sl = 1 and

ω1 = 55.1 s, ω2 = −25.8 s, ω3 = 42.6 s, and ω4 = −46.6 s. The 4 door openings are indicated by an
orange background shading, and the MPC temperature window by a blue background shading. The
two upper diagrams depict the air temperature inside the cooling chamber and the glycol temperature
with the MPC and rule-based PI controller. The lower two diagrams show the power consumption of
the components, from which the control variables for the compressor speed, cooling unit status, and
air chiller fan status can be derived.

6.2. Simulation Study

For the statistical evaluation of the simulations, two performance parameters are
introduced to improve the comparability of the results. The energy consumption of each
simulation is related by λcon ∈ R≥0 to the reference energy consumption according to

λcon =
Econ

Eref
con

, (37)

where Eref
con ∈ R≥0 is the mean energy consumption of the seven simulations with the MPC

and Kscl
sl = 1.

The relative time to reach the target temperature after door openings λt2tw ∈ R≥0 is
defined according to

λt2tw =
T2TW

T2TWmax , (38)

where T2TW ∈ R≥0 is the time to reach the upper bound of the temperature window ϑmax
tw

after each door opening.
Additionally, the scaling factor of the storage loop was generalized to make the

results of this work applicable to cooling chambers with different dimensions by defining
the dimensionless relative thermal storage capacity of the secondary loop, λcap ∈ R≥0,
given by

λcap(Kscl
sl ) =

Cscl
gly(K

scl
sl )

Ccc
, (39)
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where Cscl
gly = Kscl

sl Cgly ∈ R≥0 is the scaled storage capacity of the glycol loop, and

Ccc = ξ−1
1 ∈ R≥0 the thermal capacity of the air inside the cooling chamber with the model

parameter ξ1 ∈ R (value, see Appendix A).
Figure 5 shows the two performance parameters for each simulation depending on the

relative capacity of the storage loop. A line and background shading highlight the mean
and standard deviation of the simulations for each relative thermal storage capacity.

For both controllers, the energy consumption decreases as the storage capacity of the
secondary loop increases. However, the energy consumption of the rule-based PI controller
is generally around 20% higher compared with the MPC. Further, the relative time for
reaching the temperature window increases with increasing the storage capacity of the
glycol loop. As shown in the individual simulations above, the rule-based PI controller
takes about twice as long to cool down the cooling chamber after a door opening compared
with the MPC. Furthermore, at very small thermal storage capacities of the secondary loop,
the power consumption and the time to reach the temperature window increase significantly
with the MPC. In fact, the energy consumption is around 20% higher compared with the
slightly larger storage capacities with the same controller.

Figure 5. Simulation results of the relative energy consumption λcon and relative time for reaching
the target temperature after door openings λt2tw for different relative secondary loop thermal capac-
ities λcap with the MPC and the rule-based PI controller. The mean and standard deviation of the
simulations for each thermal storage capacity and controller are highlighted by a line and background
shading, respectively.

The amplitude statistic of the glycol temperature for different storage capacities is
shown in Figure 6.

With the MPC, the glycol temperature is much lower at small thermal storage capacities
and spans a broader temperature range. Moreover, the system is more affected by the
minimum glycol temperature at low thermal storage capacities. However, with the rule-
based PI controller, the glycol temperature remains relatively constant over the entire λcap
range and has a small variance. This also shows that this conventional temperature
controller cannot utilize the thermal energy storage due to its simple heuristic control law
in which the cooling unit and fan are operated in parallel.

To facilitate the sizing of the secondary loop storage capacity, the parameter λper ∈ R≥0
is introduced, which gives the controller performance according to

λper = ψ λ̄con + (1− ψ) λ̄t2tw, (40)
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where λ̄con ∈ R≥0 and λ̄t2tw ∈ R≥0 are the means of λcon and λt2tw for the different
secondary loop storage capacities of the individual simulations, and ψ ∈ R≥0 is a weighting
factor between 0 and 1. The weighting factor can either prioritize low energy consumption
or fast cooling after door openings in the secondary loop storage capacity design. Figure 7
shows λper for three different weighting factors and indicates the optimal sizing of the
secondary loop with the MPC.

Figure 6. Amplitude statistic of glycol temperature ϑout
gly plotted for the different relative thermal

storage capacities with the MPC and rule-based PI controller. A circle indicates the mean glycol
temperatures for each secondary loop storage size, and a dashed line highlights the minimum
permissible glycol temperature ϑout,min

gly .

Figure 7. Controller performance λper for three different weighting factors ψ depending on the
relative storage capacity of the secondary loop λcap. Control performance is defined with ψ = 1 solely
by the relative energy consumption λcon, with ψ = 0 by the relative time to reach the temperature
window after door openings λt2tw, and with ψ = 0.5 by equally weighting λcon and λt2tw. A region
of an optimal relative secondary loop storage capacity can be observed for the MPC, where both the
minimum energy consumption and fast cooling after door openings are realized.
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With ψ = 1, the design exclusively focuses on minimal energy consumption, while
for ψ = 0, only the time to reach the temperature window after door openings is con-
sidered. When both targets should be equally satisfied, with ψ = 0.5, a clear optimum
between λcap = 0.25 and λcap = 1.25 is observable for the MPC. The rule-based PI con-
troller performs much worse than the MPC, and no obvious optimum exists. Therefore, the
design can either focus on fast cooling after door openings with high energy consumption
or vice versa.

7. Discussion

The thermal storage capacity of the storage loop must be chosen appropriately, as both
an over- and undersized secondary loop can hinder the overall performance of the cooling
system. Employing an MPC, an undersized storage loop increases energy consumption and
reduces the temperature control capability due to the limitations of the minimum glycol
temperature, which only allows an insufficient amount of thermal energy to be stored in
the secondary loop for the given cooling chamber. With an oversized secondary loop, the
pass-through of the control input to the cooling chamber temperature gets too slow. Due to
the finite horizon of the MPC, caused by limited computational resources, the time before
door openings is too short to cool down the storage loop sufficiently to achieve fast cooling
after door openings. On the other hand, the rule-based PI controller is unsuitable for
utilizing the thermal storage of the secondary loop and thus has significantly higher energy
consumption and takes longer to cool down the cooling chamber after door openings,
which is in line with [22,29]. From the results, it is also evident that a smaller storage
capacity leads to greater agility of the system since the pass-through of the controlled
variables on the temperature inside the cooling chamber is faster, as also stated in [23].
This allows the controller to respond quickly to incorrectly predicted door openings, model
errors, or other disturbances.

Overall, this work shows the importance of considering the control strategy besides
the vehicle operating conditions, such as ambient temperature, door openings, or other
exogenous factors, when sizing the secondary loop storage capacity for the implementation
in real-world refrigerated vehicles. Furthermore, this work recommends using predictive
controllers for temperature control of secondary loop cooling systems, as only those are
suitable to utilize the thermal energy storage of the secondary loop by predicting the future
required cooling capacity.

However, the proposed sizing concept for the secondary loop storage capacity comes
at the expense of extensive closed-loop simulations. Especially with the MPC, the compu-
tational time is substantial due to the complexity of the optimization task, even though,
for example, limited horizon length and move blocking were applied. Although it is not a
problem for the offline simulations performed, both controllers are real-time capable and
thus suitable for application in actual refrigerated vehicles, which was also experimentally
shown for similar control schemes in [29,44].

Since the vehicle under consideration is intended for use in Central Europe, simula-
tions with an ambient temperature of 22 ◦C, characteristic for this region of the world, are
considered in this work. Nevertheless, the proposed methodology offers the possibility to
consider different ambient temperatures to adapt the sizing of the secondary loop thermal
capacity to the specific operating conditions under which the vehicle shall be operated.
However, for ambient temperatures below the freezing point, it is recommended to extend
the model of the refrigerated vehicle to account for ice formation and mass infiltration
during door openings as discussed in [28].

Furthermore, when designing a refrigeration system, one should consider economic
factors, as was done in [11,12,45,46]. The costs of the refrigeration system over its entire
lifetime are mainly driven by its energy consumption when considering a fixed system
architecture (secondary loop cooling system with a sensible heat medium). A change in the
thermal storage capacity of the secondary loop and the associated change in the amount of
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glycol only marginally affects the costs. Hence, energy consumption was the only economic
factor considered when optimizing the secondary loop storage capacity.

By expanding the model with a submodel for the cargo as described by [47,48], the
thermal capacity of the cargo could be considered in the optimization of the secondary
loop sizing. However, as is common for small-scale refrigerated vehicles, the frequent
change of different types of cargo, whose parameters are often unknown, makes this
approach impractical. Therefore, an empty cooling chamber was assumed in this work,
which is the most conservative approach, as there is no additional thermal storage within
the cooling chamber.

The proposed sizing concept can be utilized to design secondary loop refrigeration
systems, increasing their efficiency and cooling performance. In addition, optimizing the
sizing of the secondary loop can allow for a smaller cooling unit design, which further
entails increased efficiency and lifetime, and reduces the acquisition costs of the cooling
system. In general, combining a secondary loop refrigeration system with a suitable control
scheme can be a simple alternative to more complex and costly cooling systems with
PCM-based TES [14,22].

Future work includes the consideration of the vehicle’s powertrain when optimizing
the size of the refrigeration system’s thermal energy storage. Since in most refrigerated
vehicles, the energy for the cooling system is provided directly by the vehicle’s powertrain,
optimizing the thermal energy storage of the refrigeration system can enable the use of
load-shifting strategies for the powertrain to increase the vehicle’s energy efficiency further.
Another task of interest is optimizing the cooling power of the primary loop in parallel to
the size of the thermal energy storage.

8. Conclusions

This work studies the parameter of the storage capacity of a secondary loop cooling
unit for a small-scale refrigerated vehicle. By closed-loop simulations of an experimentally
validated refrigerated vehicle model, a mixed-integer MPC and a rule-based PI controller
are evaluated with different thermal storage capacities of the secondary loop. The results
show that the predictive control concept with a suitable secondary loop storage capacity
can save energy and increase the cooling performance in the event of door openings. For
the MPC, the optimal thermal storage capacity of the secondary loop is between 0.25 and
1.25 times the thermal capacity of the air inside the cooling chamber. At this size, both
minimum energy consumption and fast cooling after door openings are equally met. In
particular, the energy savings of up to 20% compared to an undersized thermal energy
storage system are very promising for reducing the environmental impact of refrigerated
vehicles. Since future door openings are not explicitly considered in the control law, the
conventional rule-based PI controller cannot exploit the advantages of the storage capability
of the secondary loop and performs significantly worse than the predictive controller. With
the rule-based PI controller, minimum energy consumption and rapid cooling after door
openings conflict, and no clear optimum can be found for both goals. Therefore, this work
shows that only an appropriately sized secondary loop, in combination with a suitable
control concept, can exploit the full potential of secondary loop refrigeration systems. Thus,
it is of great importance that the design of the cooling system takes into account not only
the operating conditions of the vehicle but also the control strategy.
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Appendix A. State-Space Representation of Hybrid Model

Matrices appearing in the state-space representation of the model (1)–(2):

A(m) =


A11(m) A12(m) ξ2 0

χ3 R1(m) A22(m) 0 0
ζ1 0 −(ζ1 + ζ2) ζ2
0 0 ζ3 −(ζ3 + ζ4)



B(m) =


−α1χ1ξ1 R1(m) scu(t)

−α1χ1 [χ2 − χ3 R1(m)] scu(t)
0
0



E(m) =


ξ3 sdoor(t) + α2χ1ξ1 R1(m) scu(t)

α2χ1 [χ2 − χ3 R1(m)] scu(t)
0
ζ4



g(m) =


ξ1 [α4χ1 R1(m) + R3(m)] scu(t) + ξ1κ1 sacf(t)

α4χ1 [χ2 − χ3 R1(m)] scu(t)
0
0



C(m) =



1 0 0 0
0 1− α3 χ1 scu(t) 0 0
0 1 0 0

κ6 scu(t) 0 0 0
κ6 scu(t) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


D(m) =



0
0
0

κ4 scu(t)
κ4 scu(t)

0
0
0



F(m) =



0
0
0

κ5 scu(t)
κ5 scu(t)

0
0
0


h(m) =



0
0
0

κ1 sacf(t) + (κ2 + κ3 − κ7) scu(t)
−κ7 scu(t)

κ2 scu(t)
κ3 scu(t)
κ1 sacf(t)
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with

A11(m) = −ξ2 − ξ3 sdoor(t)− ξ1 [R1(m)− R2(m) scu(t)] (A1)

A12(m) = ξ1 R1(m) [1− α3χ1 scu(t)] (A2)

A22(m) = α3 χ1 [−χ2 − χ3 R1(m)] scu(t)− χ3 R1(m) (A3)

and

R1(m) := β1 sacf(t) + β2 [1− sacf(t)] (A4)

R2(m) := −γ1 sacf(t) + γ3 [1− sacf(t)] (A5)

R3(m) := γ2 sacf(t) + γ4 [1− sacf(t)] (A6)

The parameter values of the model are listed in Table A1.

Table A1. Model parameter values (adopted from [28]).

Parameter Value Unit

α1 9.24 · 10−5 W rpm−1

α2 6.78 · 10−4 W(◦C)−1

α3 4.25 · 10−3 W(◦C)−1

α4 2.85 · 10−2 W

β1 1.40 · 102 W K−1

β2 4.46 W K−1

γ1 34.3 W(◦C)−1

γ2 2.93 · 102 W
γ3 10.2 W(◦C)−1

γ4 0 W

κ1 68.5 W
κ2 65.0 W
κ3 43.2 W
κ4 0.178 W rpm−1

κ5 10.1 W(◦C)−1

κ6 0.510 W(◦C)−1

κ7 2.28 · 102 W

χ1 2 · 10−2 K W−1

χ2 17.5 s−1

χ3 7.42 · 10−5 K(W s)−1

ξ1 6.09 · 10−5 K(W s)−1

ξ2 2.96 · 10−2 s−1

ξ3 1.39 · 10−2 s−1

ζ1 1.42 · 10−2 s−1

ζ2 2.67 · 10−3 s−1

ζ3 1.18 · 10−3 s−1

ζ4 1.10 · 10−4 s−1

Appendix B. Blocking Matrix

Table A2 lists each of the 30 non-zero elements of the blocking matrix Tmb, given by
the row number R, column number C, and value V.
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Table A2. Non-zero entries of the move blocking matrix Tmb, given by its row number R, column
number C, and value V.

R 1 2 3 4 5 6 7 8 9 10
C 1 2 3 4 5 6 7 8 9 10
V 1 1 1 1 1 1 1 1 1 1

R 11 12 13 14 15 16 17 18 19 20
C 11 11 11 11 11 12 12 12 12 12
V 1 1 1 1 1 1 1 1 1 1

R 21 22 23 24 25 26 27 28 29 30
C 13 13 13 13 13 13 13 13 13 13
V 1 1 1 1 1 1 1 1 1 1

Appendix C. Door-Opening Shifts

The seven sets of randomly generated shifts of door openings are listed in Table A3.

Table A3. Values of the 7 sets of door-opening shifts.

Nr. ω1 ω2 ω3 ω4

1 55.1 s −25.8 s 42.6 s −46.6 s
2 −20.7 s −38.6 s −118 s 117 s
3 −125 s 9.70 s −20.7 s 48.1 s
4 −49.4 s −20.2 s 14.7 s 94.1 s
5 −88.3 s 46.3 s −89.9 s 98.7 s
6 −102 s −73.9 s −75.5 s −104 s
7 −78.4 s 94.5 s 75.2 s −115 s
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