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Abstract: Slowing down replacement cycles to reduce resource depletion and prevent waste gen-
eration is a promising path toward a circular economy (CE). However, an obligation to longevity
only sometimes makes sense. It could sometimes even backfire if one focuses exclusively on material
resource efficiency measures of the production phase and neglects implications on the use phase. The
(environmental) lifespan of circular products should, therefore, be optimized, not maximized, consid-
ering all life cycle phases. In this paper, a generic method for determining the optimal environmental
lifespan (OEL) of energy-using products (EuPs) in a CE is developed, allowing the simultaneous
inclusion of various replacement options and lifetime extension processes, like re-manufacturing,
in the assessment. A dynamic programming approach is used to minimize the cumulative envi-
ronmental impact or costs over a specific time horizon, which allows considering an unordered
sequence of replacement decisions with various sets of products. The method further accounts for
technology improvement as well as efficiency degradation due to usage and a dynamic energy supply
over the use phase. To illustrate the application, the OEL of gas heating appliances in Germany
is calculated considering newly evolved products and re-manufactured products as replacement
options. The case-study results show that with an average heat demand of a dwelling in Germany,
the OEL is just 7 years for climate change impacts and 11 years for the aggregated environmental
indicator, ReCiPeendpoint (total). If efficiency degradation during use is considered, the OEL for both
environmental impact assessment methods even lowers to 1 year. Products are frequently replaced
with re-manufactured products to completely restore efficiency at low investment cost, resulting
in higher savings potential. This not only implies that an early replacement before the product
breaks down is recommended but also that it is essential to maintain the system and, thus, to prevent
potential efficiency degradation. The results for cost optimization, as well as currently observed
lifespans, vary considerably from this.

Keywords: lifespan optimization; optimal replacement; circular economy; efficiency degradation;
energy efficiency; learning curve; residential heating system; gas boiler; lifespan profile;
environmental assessment

1. Introduction

The concept of circular economy (CE) is experiencing increased attention [1] and has
been integrated into the EU strategy to ensure sustainable consumption [2]. At the center
of CE is the principle to close material cycles. Slowing down replacement cycles in order to
use fewer products for the same service is another key principle of CE [3–5].

Slow cycles reduce the need for raw materials and, therefore, intend to protect the
“environment’s capacity to provide natural resources of a useful quality” [6] for future
generations. The value of materials embodied in products is, thus, preserved for as long
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as possible. This is considered superior to recycling by the waste hierarchy [7], as every
recycling process step may lead to a degradation in material quality and the loss of its
original functionality [8]. An example of this is the contamination of aluminum by cop-
per that occurs during recycling [9,10] and reduces material properties, such as corrosion
resistance. To restore the quality, one is forced to dilute the contaminants, which may
result in additional environmental impacts and entropy production (both thermodynamic
or statistical entropy [11]). Long-lasting products are, therefore, an important element of
resource efficiency strategies [12], and the resulting prevention of generated waste shall
secure the progress toward sustainable consumption [13]; while this statement is generally
valid for products that do not cause any or, at least, only a small environmental impact
during the use phase, prolonging the useful lifetime might not always be environmen-
tally beneficial, even if it reduces the direct resource-related environmental burden from
production [12,14,15]. For energy-using products (EuPs), such as washing machines or
heating systems, the question arises whether greater environmental benefits are achieved
by extending the life of the product or, on the contrary, by replacing the product early with a
new, more energy-efficient model before it is broken [16,17]. A holistic assessment is pivotal
to avoiding negative side effects and contributing to sustainable consumption. Together
with Desing et al. [4], Allwood et al. [12] and Cooper and Gutowski [15], we conclude that
the aim of CE should be to optimize the lifespan and not necessarily to maximize it.

Optimal Environmental Lifespan

The optimal environmental lifespan (OEL) of a product is the replacement time where
the potential impact savings resulting from using a (more energy-efficient) replacement
product are equal or higher than the embodied impacts of that product such that cumulative
impacts over a time horizon become minimal. As the efficiency of products generally
decreases with wear (e.g., on moving parts with dependence on load cycles) or with age
(e.g., calcification in heat exchangers or deterioration of insulating properties of foam),
it is necessary to consider not only the initial efficiency of the product and efficiency
improvements of a potential replacement product but also efficiency degradation of the
product in use [18]. Both, continuous technology change and efficiency degradation, tend
to shorten the OEL.

Improved replacement times of EuPs have been studied a lot for energy-intensive
products [19–21], especially for household appliances such as washing machines [22,23] or
refrigerators [16,24–26]. To review them, the existing literature on the topic of replacement was
found through a reverse search based on references in the review of Cooper and Gutowski [15],
Schaubroeck et al. [27], Jensen et al. [28] and van Loon et al. [29] and expanded through a
literature search in ScienceDirect. In general, there are two broad objectives for determining
the OEL in the literature, which are listed in Table 1: either (a) by minimizing the impact rate
at break-even or (b) by minimizing the cumulative impact over a time horizon. Concerning
the first objective (a), most studies do not consider efficiency degradation and continuous
technology change simultaneously. For example, Dewulf and Duflou [18] take only one of
these into account at the same time, making the mathematical problem linear and analytically
solvable. The same applies to approaches determining the eco-payback period, as discussed
by van Nes and Cramer [14]. The alternative objective (b) of minimizing the cumulative
impacts over a time horizon can also be numerically solved with mathematical series when
neglecting various dynamics in the use phase [30]. Ardente and Mathieux [22] simplify the
“environmental assessment of durability” even further by comparing exclusively certain sce-
narios with discrete efficiency improvements or fixed replacement times. This may limit the
solution space so that only the better of the considered variants can be found but not the
best possible variant or not the optimal solution. In contrast to this, if several dynamical
effects are considered simultaneously, the optimization problem becomes mathematically
non-linear and requires an optimization algorithm for a solution. The complexity of such an
assessment has been demonstrated by Kim et al. [31] with a dynamic programming approach
for automobiles [31] and refrigerators [32] in the U.S. Kim et al. [31] calculated the optimal



Energies 2023, 16, 6711 3 of 27

usage duration of a product that minimizes total environmental impact over several prod-
uct lifetimes with multiple possible replacements at an irregular frequency. Various other
authors have applied their approach to further case studies [27], such as de Kleine et al. [33]
and Bakker et al. [34]. Dynamic programming has been applied to many other product life
cycle problems such as resource allocation. However, only one replacement option at a time
with a predefined replacement order is considered. For example, Liu et al. [35] optimized
an ordered replacement policy for residential lighting with a defined trajectory of different
lighting technologies. Hence, investigating the best pathway with further relevant replace-
ment options in a CE, such as re-use or re-manufacturing, is not possible simultaneously.
Secondhand usage of products is, in general, not considered in the OEL literature. Studies
addressing these options instead focus on a specific scope, e.g., under which conditions
functioning devices collected at waste treatment plants shall be reconditioned for re-use or the
embodied materials recycled [26,36].

What is missing is an approach assessing an unordered sequence of replacement
decisions with various sets of products (e.g., first replace a product with a re-manufactured
one, then switch to a new one and, finally, replace with a re-manufactured product again,
or any other sequence) [27]. Such an approach should be capable of determining the OEL of
EuPs at an irregular replacement frequency, taking into account various dynamics induced
by CE measures.

Table 1. Approaches used in the literature to environmentally optimize replacement options and time
(* their life cycle optimization model has been used by many other authors, such as Kim et al. [32],
de Kleine et al. [33], Bakker et al. [34]; ** due to simultaneous consideration of efficiency degradation
and improvement; one replacement option: keep old or replace with an alternative product).
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Minimizing
impact rate

at
break-even

Iterative approach
with scenario

assessment

van Nes and
Cramer [14] one one no -

Analytical
approach by

solving integral

Dewulf and
Duflou [18] one one no Cars, refrigerators

Minimizing
cumulative

impact
over a
time

horizon

Numerical
approach in which

derivatives of
mathematical series

are solved
iteratively

Skelton and
Allwood [30]

Several with
(ir)regular
frequency

one no Cars, plane, washing
machine, office block

Dynamic
programming

Kim et al. [31] *,
Liu et al. [35],

Chung et al. [37]

Several with
irregular

frequency
one yes

Cars, refrigerators,
freezers, washing

machines, air
conditioners,

residential lightning

Scenario assessment
(no optimization

algorithm)

Ardente and
Mathieux [22],

Boldoczki et al. [24],
Pérez-Belis et al. [36]

one one no

Vacuum cleaners,
washing machines,

refrigerators, freezers,
printers, laptops,

monitors, PCs

In this paper, we develop a generic method for determining the OEL of products in a
CE, based on Kim et al. [31], to consider various replacement options with re-manufacturing
or a technology switch, which also allows considering a sequence of multiple, unordered
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replacements (Section 2). To illustrate the application, the OEL of gas heating appliances
in Germany is calculated in a simplified case study (Section 3). Heating systems have
only recently been included in the scope of legislations like the Waste of Electrical and
Electronic Equipment (WEEE) Directive [38], which is why this product category is not as
well documented as other EuPs. This paper will, therefore, enhance the state of knowledge
not only by studying the OEL but also by presenting the current lifespan profile of heating
systems and, moreover, by showing further novel data with an efficiency progression of
the gas boiler technology (Section 3.1). The OEL results for climate change impacts and
ReCiPeendpoint (total) are compared to a conducted cost optimization (Section 4). Finally, OEL
results are further discussed in an extended scenario analysis with different gas mixes of
biomethane and green power to hydrogen.

2. Generic Lifespan Optimization of Circular Products

The OEL of EuPs is affected by various dynamics of opposing forces. On the one
hand, it becomes shorter with a steep technological efficiency progression or efficiency
degradation due to usage. On the other hand, higher manufacturing-related impacts
(e.g., due to increased material use, making a product more durable), as well as reduced
impacts due to improved energy infrastructure or sufficient/reduced (behavioral) use (e.g.,
decreasing frequency of use), extend the OEL. A generic dynamic programming approach is
developed here to account for those dynamics in a CE during OEL assessment. The method
is based on a combinatorial optimization problem in which all different replacement options
in a CE can be represented with their respective impacts in a decision tree (Section 2.1). The
aim is to find the optimal decision path in that tree that determines the optimal replacement
schedule of a product when cumulative impacts become minimal (Section 2.2). This allows
for determining the OEL, considering multiple possible replacements over the optimization
horizon whose order is not predetermined. The general procedure is shown as a flowchart
in Figure 1.

Figure 1. Flowchart showing how, in the proposed framework, the decision tree is developed
using inputs to determine the environmental impacts in the decision tree (modeling), and then, the
cumulative impacts are optimized over the entire optimization horizon using a dynamic programming
approach to determine the optimal lifespan of each product used (optimization).
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2.1. Developing Decision Tree with a Varying Number of Replacement Options

To determine the OEL of an EuP, the decision has to be modeled on whether to keep
the old product (O1), which is then subject to efficiency degradation and may also require
maintenance and repair, or to replace it with another product (O2, . . . , OΩ) at a given time.
In the latter case, environmental impact is caused due to the production of that product as
well as waste treatment and recycling of the old product. In any case, impacts arise from
the energy requirements of product use. Such a decision can then be made again after a
certain time step, dt. Repeating this decision process creates a decision tree with a number
of possible paths of ΩN , whereby Ω is the number of different decision options considered
and N is the number of time steps, i.e., stages, considered over the optimization period
T = (N + 1) dt. This is illustrated in Figure 2 for three decision options (Ω = 3) and three
stages (N = 3).

Figure 2. Decision tree for 3 decision options (Ω = 3, O1: keep old product, O2: replace product
with new one, O3: replace product with re-manufactured (r) one) and 3 stages (N = 3), with time
step, dt, and impact per time step, ck,j (see Section 2.1). The gray dotted extensions at stage N + 1
and the minimum impact for each stage and state, ϑk,i, serve to illustrate the optimization approach
(see Section 2.2). Furthermore, the maximum lifespan is chosen to be τmax = 2dt, resulting in
c2,1 = c3,10 = c3,19 = ∞ (dashed lines). An exemplary optimal path resulting in minimum cumulative
impact at the optimization horizon is highlighted with thick lines: ρ = [1, 3, 9]. This results in an
optimal lifespan of 2 dt for the first product and of 1 dt for the second product.

Considering more than just two decision options (Ω > 2) allows for a more generic
approach, in which the simultaneous inclusion of new (more efficient) products and CE
principles, such as re-manufacturing, or even the assessment of the best time for a technol-
ogy switch is possible. Describing such a mathematical optimization problem generically
as a function of Ω thereby extends the approach by Kim et al. [31]. This, first of all, requires
defining the order of decision options (O1, O2, . . . , OΩ). As in the example before, the first
option at each decision point is here defined to further use the product (O1). For all other
options, the product is replaced at this point. Their order of decision options must remain
the same at each decision point. What might change for these replacement options are, for
example, the impact intensities for production and end of life (EoL), as well as the use phase.
In this paper, replacement comprises circular strategies (e.g., re-manufacturing) as well as
replacement with new products and technologies. Replacement is considered to happen
with an equivalent product, not the same. On the other hand, repair and maintenance is
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something that takes place on-site, which is not considered a replacement strategy in our
paper and, therefore, not depicted as an additional decision option but already included in
Equation (3).

Next, a state j variable, which is the index for each pathway at stage k (time steps
elapsed), must be defined to determine the position in the decision tree. This depends on
the number of possible decision options, Ω, and an option counter, o, that is iteratively
increased between 1 and Ω:

j = Ω (i− 1) + o (1)

with i =
[
1, Ωk−1

]
, ∀i ∈ N

and o = [1, Ω], ∀o ∈ N
and k = [1, N], ∀k ∈ N

whereby l = j−Ω (i− 1)

and p =
j + Ω− 1

Ω

Since the first decision option is defined to continue using the product, no replacement
occurs for any paths for which o = 1, and thus, the condition in Equation (2) holds.

j = Ω (i− 1) + 1 (2)

2.1.1. Modeling Impacts in the Decision Tree

Then, the impact per time step (ck,j), or, in other words, the impact between two nodes,
in Figure 2 can be described. It is a function of impacts from production (Pk,j), recycling
(Rk,j) and maintenance and repair ( fMk,j ), as well as direct impacts stemming from product
use itself (Equation (3)). Due to age, technology or stage specifics, they may all vary with
stage, k, and state, j, which is represented with the corresponding indices in the individual
formulas. For better understanding, Tables S2–S5 in Supplementary Materials (SM) provide
all indices used to describe the functions necessary for the exemplary case from Figure 2.

ck,j =
Ek fsk,j(k) dt

ηk,j fdk,j
(agek,j)

+ fMk,j(agek,j) + Pk,j + Rk,j (3)

with c0,1 =
E0 fs0,1(0) dt

η0,1
+ P0,1

No impacts from production as well as waste treatment and recycling need to be
considered if the replacement condition from Equation (2) holds (see Equation (4)).

Pk,j, Rk,j =

{
Pk,l , Rk,l , if j 6= Ω (i− 1) + 1
0, 0 , if j = Ω (i− 1) + 1

(4)

with initialization by P0,1, R0,1 = P0,1, R0,1

Impacts resulting directly from product use form the first part of the term in
Equation (3) and are determined by the energy demand per time step, Ek; the technology
as well as stage-dependent specific impact function, fsk,j(k) (e.g., per kWh input); and the
efficiency of the product in use. The latter is determined with the initial efficiency of the
product in use by ηk,l if a replacement took place and by ηk−1,p if the old product is further
used (Equation (5)). It is then further reduced with the technology and age-dependent effi-
ciency degradation function, fdk,j

(agek,j). The age of the product in use, agek,j, is determined
for this using Equation (6).
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ηk,j, fdk,j
, fsk,j , fMk,j , τmax

k,j =

{
ηk,l , fdk,l

, fsk,l , fMk,l , τmax
k,l , if j 6= Ω (i− 1) + 1

ηk−1,p, fdk−1,p
, fsk−1,p , fMk−1,p , τmax

k−1,p , if j = Ω (i− 1) + 1

with initialization by

η0,1, fd0,1 , fs0,1 , fM0,1 , τmax
0,1 =η0,1, fd1,1 , fs1,1 , fM1,1 , τmax

0,1

(5)

agek,j =

{
0 , if j 6= Ω (i− 1) + 1
agek−1,p + dt , if j = Ω (i− 1) + 1

(6)

with age0,1 = 0

All products must be replaced at their maximum considered lifetime, τmax
k,j (e.g., when

existing at their maximum technical lifetime). In the generic approach, the impact at the
tree elements where agek,j ≥ τmax

k,j must be set to infinity (see Equation (7)), which results
in a forced replacement by any of the given alternative options (o > 1) in the optimization
and implicitly eliminates the whole tree structure further down that path.

ck,j =

{
∞ , if agek,j ≥ τmax

k,j

ck,j , else
(7)

2.1.2. Technology-Specific Functions

For the functions determining efficiency degradation, fdk,j
; the specific impact, fsk,j ;

and impact from maintenance and repair, fMk,j , the same applies with respect to the indices
as described for the product’s efficiency, ηk,j (see Equation (5)). The degradation function,
fdk,j

, is here defined to take values in the interval of (0, 1], whereby a value of one means no
degradation, and values smaller than one mean that the efficiency of the product degrades.
The decline in efficiency is technology-specific and can, therefore, vary for each pathway in
the decision tree. Any age-dependent function can be used to model the product-specific
shape starting from an initial value of one (see Section 3). The same applies to impacts
due to maintenance and repair, fMk,j(agek,j). This may depend on the age of the product
and the technology as well. Accordingly, no impact from maintenance and repair may be
considered in the first operational year of a product, i.e., after replacement.

To express technology improvements in efficiency over time, ηk,j, and the progression
of energy required per time step, Ek, is also freely selectable by the modeler and, likewise,
the functions for production, Pk,j, and recycling, Rk,j, impacts. Any discrete or continuous
function, for example, starting from an initial value η0, E0, P0 and R0 (Equation (8)), can
express this. What is necessary for this is to translate the elapsed time steps, k, into the
elapsed time, t, with t = k dt in the first place. In addition, the technology-specific functions
have to be assigned to the corresponding indices (Equation (9)). In case only one technology
is considered in an assessment, its functions may not depend on the pathway, j, so this
assignment step may become obsolete.

η = f (t, η0, . . . ); fd = f (t, . . . ); Ek = f (t, E0); fs = f (t, . . . ); fM = f (t, . . . ); (8)

P = f (t, P0, . . . ); R = f (t, R0, . . . )

η:,1, fd:,1 , fs:,1 , fM:,1 , P:,1, R:,1 ↔ ηO2, fdO2
, fsO2 , fMO2 , PO2, RO2 (9)

η:,2, fd:,2 , fs:,2 , fM:,2 , P:,2, R:,2 ↔ ηO2, fdO2
, fsO2 , fMO2 , PO2, RO2

η:,3, fd:,3 , fs:,3 , fM:,3 , P:,3, R:,3 ↔ ηO3, fdO3
, fsO3 , fMO3 , PO3, RO3

η:,4, fd:,4 , fs:,4 , fM:,4 , P:,4, R:,4 ↔ ηO4, fdO4
, fsO4 , fMO4 , PO4, RO4

. . .↔ . . .
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2.2. Finding Optimal Path in the Decision Tree Determining Optimal Lifespan

The objective is to find the path in the decision tree with minimum cumulative environ-
mental impact over the whole optimization period (min ZN,j), which implicitly determines
the best replacement time. Therefore, all ck,j along one path must be summed up and the
minimum of those sums according to Equation (10) selected (please note that the floor op-
erator is used to define the corresponding index; this could be confused with absolute bars).
This approach allows for considering multiple replacements over the optimization period.
However, in the case of the last replacement, the product in use may have a remaining
(technical) lifetime. To reduce the calculation complexity, the impacts from production and
EoL are not adjusted to the temporal scope here [22].

min
j=[1, xN ], ∀j∈N

ZN,j

with Zk,j = ck,j + Zk−1,bpc
and Z0,1 = c0,1 (10)

2.2.1. Optimization of Cumulative Impacts with Dynamic Programming

To model all possible decision paths with their associated impacts is very
computationally intense. This kind of problem can better be solved with a dynamic
programming approach, which is based on Bellman’s optimality principle that an optimal
solution to a problem is composed of optimal solutions to the sub-problems [39]. It is
generally used to analyze sequential decision processes in order to find the optimal de-
cision path that causes the best possible cumulative (environmental) costs [31]. For this
purpose, the optimization problem is structured into multiple stages in order to solve
only single-stage sub-problems at a time. These partial results are systematically stored
and used in the next larger sub-problem. The optimization procedure is then recursively
repeated until the overall N-stage optimum is found. In backward induction, problems
are solved moving back, one stage at a time, until all stages are included and the global
optimum is determined. The computation thereby starts at the final stage N of the problem.
The objective function from Equation (10) can, therefore, be restructured as a recursive
relationship with i as a counter for the node under consideration at stage k (Equation (11)).
In this way, the minimum environmental impact over the current and subsequent stages,
ϑk,i, is calculated by initializing the computation with ϑN+1,j = 0 as the so-called stage-zero
problem. The last calculated stage is ϑ1,1, which is the cumulative impact of the optimal
path. The first replacement is considered to be possible after the first time step (k = 1), for
example, after the first year (dt = 1 a).

ϑk,i =

{
0 ∀k > N, k ∈ N
min {ck,j + ϑk+1,j} ∀k = [1, N], k ∈ N

(11)

The impacts of the very first year as well as the production of the initial product have
not yet been taken into account. They occur before the first decision, are, therefore, always
the same for all options and, consequently, have no effect on the optimization result. They
are added according to Equation (12) to determine the total minimum impacts, ϑ0,1, from
beginning to end.

ϑ0,1 = c0,1 + ϑ1,1 (12)

2.2.2. Optimal Path

The dynamic programming result is the minimum cumulative impact at the opti-
mization horizon, but the best replacement times are still unknown, even though the
optimization result is an implicit consequence of them. Accordingly, the information of
when to replace with which option, in other words, the definition of the optimal path in
the decision tree, is still missing and, thus, also the lifespan of each individual product
used. Which state the optimal path, ρ, passes through at each stage, k, is obtained with
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forward calculation using Equation (13). The calculation thereby starts at stage 1, whereby
minimum cumulative impacts, ϑk+1,j, at stage k + 1 are known from the solved backward
calculation (Equation (11)) this time. This result can then be used to calculate the impacts
at each stage, ck,ρk

, that lead to minimum cumulative impacts at the optimization horizon.

ρk = index

(
min

j=[Ω (ρk−1−1)+1, Ω ρk−1],∀j∈N
{ck,j + ϑk+1,j}

)
+ Ω (ρk−1 − 1);

∀k = [1, N], k ∈ N (13)

with ρ0 = 1

2.2.3. Optimal Lifespan

The optimal path, ρ, in turn, determines the optimal lifespan, λ, of each product
used, b, (numerator for the number of products) by iterating over Equation (14) until the
replacement condition (Equation (2)) holds, with i = ρk−1. The last product in the optimal
path may well have a longer optimal lifespan than its age indicates at this point in time
since its replacement will only pay off after the optimization horizon. Therefore, it is not
taken into account in the calculation of the λb values.

λb = agek−1,ρk−1
+ dt , if ρk 6= Ω (ρk−1 − 1) + 1 (14)

In case no replacement is beneficial within the optimization horizon, T, OEL is defined
to equal T as a baseline and should then be selected longer in the next assessment sequence.
However, the last possible replacement always determines the path with minimum cumu-
lative impacts for all previous replacements, which is why results will always depend on
the selected optimization period due to the path dependencies of non-linear dynamics.

Life cycle cost (LCC) optimization works in a similar way; while discounting of impacts
is not applied in the environmental assessment [40], it is taken into account in the economic
assessment to consider the productivity of capital, for example. Possible subsidies that reduce the
investment for a newly purchased product or pricing in of external costs, such as from climate
damage, are also included. The focus of this paper is on environmental optimization, which is
why the reader is referred to Supplementary Materials for necessary cost-related changes in the
definition of time-step-specific impacts (ck,j) (Supplementary Materials Section S2.1).

3. Application to Case Study

The installed heating stock in Germany is very old and accordingly very
inefficient [41,42]. Gas boilers have the highest share of this (80%) [43] and still repre-
sent the most sold heating systems for existing buildings [44]. Heating, thus, accounts for
the largest part (70.5%) of climate change impacts caused by households in Germany [45].
Hence, gas boilers should be replaced frequently to ensure that technological efficiency
improvements diffuse into the market, reducing climate change impacts caused by house-
holds [46]. We, therefore, apply the generic method in a case study on residential heating
systems in Germany. In the first step, simplifications are made for this illustration, such
as the fact that only full substitutes for the gas boiler technology with newly evolved or
re-manufactured products and, hence, no technology switch, for example, to heat pumps,
is considered (Ω = 3, such that a decision tree, as illustrated in Figure 2, is created; O1:
further use of the product; O2: newly evolved gas boiler; O3: re-manufactured gas boiler
with restored initial efficiency of the respective product). The goal is to investigate the
improvement potential of optimized replacement only within this product category. To
illustrate its full potential, the effect of “green gas” is analyzed as well. We consider
biomethane (produced from corn, etc.) and green power to hydrogen as green gases here.
This discussion is particularly of interest where the technology switch, for example, to heat
pumps, is technically limited by contextual dependencies of the housing, which is often
still the case in Germany and in many other countries.
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Life cycle assessment (LCA) is used to determine the required data on the potential en-
vironmental impacts of a product system. With LCA, the impacts on the environment caused
by resource extraction or emissions are modeled for the entire life cycle [47]. The functional
unit for the assessment is to satisfy the yearly heat demand of a German dwelling over the entire
optimization period with a maximum of N boilers. In this context, a dwelling is an average resi-
dential unit that has all the rooms necessary for running a household and, consequently,
has an average living space.

The OEL method is applied to two exemplary environmental impact assessment
methods. Climate change as an essential core planetary boundary is beyond the safe
operating space for sustainable human development [48,49] and is the most relevant im-
pact category for EuPs using fossil-fuel-based energy carriers. In addition to this, the
single score, ReCiPeendpoint(total), indicator is included in the assessment to take a holis-
tic view. It is a single-score damage-oriented indicator that includes damages to hu-
man health, ecosystems and resource availability. Climate change impacts are calculated
based on the IPCC [50] methodology (100-year time horizon) and ReCiPeendpoint(total) based
on Goedkoop et al. [51] methodology (H/A).

Moreover, we calculate the optimal lifespan for costs. Financial burdens are expressed
with expenses only [52]. The prices always refer to the current prices of the respective first
installation year.

The environmental inventory and impacts are modeled in Brightway 2 [53] with
Ecoinvent (version 3.4 cut-off system model) as a background database [54]. Environmental
impacts as well as cost data are then imported into the dynamic programming model
in Matlab (R2017b).

3.1. Model Structure and Technology Assumptions for Gas Boilers

Gas boilers are replaced for various reasons [55]: reorganization due to other building
projects, efficiency concerns, or the old product breaks down or is prone to breakdown. The
design time of gas boilers is 15 years [56], which is chosen to be the optimization period
here with a time step resolution (dt) of 1 year, resulting in 14 decisions over time (N = 14).
Therefore, using the product until the end of the design time is the baseline for comparing
the impacts of the optimized replacement scenarios. Because the use phase of gas heating
appliances comes with high environmental impacts, an optimization period of 15 years
is sufficient to obtain stable OEL results. In contrast, the cost optimization requires an
optimization period of 30 years with a time step resolution (dt) of 2 years. The maximum
considered lifespan of gas boilers (τmax) is assumed to be 30 years, which corresponds to
the current legislative time limit under the German Energy Saving Act [57]. This means
that τmax has no influence on the OEL assessment in the case study.

The oldest boiler we assess here was initially installed in 2006 and reached its design
time after 15 years in 2020. All other 15 recent installation years are also assessed as indi-
vidual cases, whereby the time of initial installation defines the starting point and further
course in the assumed technological efficiency progression. Moreover, the installation year
defines the annual heat demand to cover (see Figure 3), as well as the electricity demand
required for this. The latter is also linked to an annually differentiated, varying energy mix
(dynamic energy system). In all 15 cases with different starting years (Case2006–Case2020),
3 maintenance schedules with different resulting efficiency degradation scenarios are as-
sumed. The first scenario serves as a reference in which no efficiency degradation occurs
(D0) so that solely the influence of the technological efficiency progression is examined.
In the second and third scenarios, efficiency degradation is assumed to represent either
“annual and professional” (D0.5: F = 0.5%, see Equation (15)) or “no, respectively, seldom”
maintenance (D1.5: F = 1.5%).



Energies 2023, 16, 6711 11 of 27

Figure 3. Model structure and baseline scenarios with exemplary illustration for Case2010 (including a
dynamic model of heat demand, technological efficiency progression defining the initial product effi-
ciency and annually differentiated, varying electricity energy mixes) and efficiency degradation, D0.5.

3.1.1. Continuous Technology Improvement of Gas Boiler Technology

It is assumed that the gas boiler technology is mature today and has reached its
technical limit, so after 2018, there will be no further efficiency improvements. Before
this, gas boiler technology improved greatly. To determine the technological efficiency
progression, η(t), for this period, energy efficiency data of gas boilers from BMWI [58]
are used. Parameters describing the general characteristics of the boiler are translated
according to DIN 15316-4-1 [59] to derive the seasonal energy efficiency for space heating.
This is supplemented with data from a German gas boiler producer for the most recent
years [60]. A polynomial progression is fitted to the data for the most common rated
capacity class of approximately 30 kW [61] without considering the production volume per
gas boiler, taking into account the products that are available on the market for the end
user (see Supplementary Materials Section S3.3.2).

3.1.2. Re-Manufacturing

Re-manufacturing is the process of restoring a used product to at least like-new
condition [62], i.e., restoring the product to its initial efficiency. The de-installed product
is brought back to the manufacturer (or a re-manufacturing service provider) where the
so-called core (of the product) is reconditioned. Subsequently, the re-manufactured product
is installed in replacement of another device for another customer, ensuring that the
replacement is equivalent, although not identical, to the original product. During re-
manufacturing, only the residual components and parts are replaced and, thus, recycled [63].
As a result, production-related resources are saved, and production costs are reduced.
Therefore, production impacts can be assumed to be similar or even smaller than those
caused by normal production [64,65], which may be expressed as a fraction of the impacts
for a new product, Preman = fr · Pnew.

To estimate the impact saving for re-manufacturing, we adapt the figures from Hum-
men and Wege [64], which analyze the re-manufacturing of a circulation pump used in
gas boilers, to calculate the fraction, fr, of production impacts for a new boiler caused in
re-manufacturing (see Supplementary Material Table S11). It is assumed that the initial effi-
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ciency of the core product is fully restored and that it is like new. The efficiency degradation
curve is then assumed to be the same as for new products.

3.1.3. Efficiency Degradation

Efficiency degradation due to the use of gas boilers has various reasons. According
to Baldi et al. [66] lime scaling in the heat cell (1 mm can cause a 7% increase in energy
demand for the same output), insulation degradation (which causes 10% more heat loss) or
actuator faults are the most important ones. Eleftheriadis and Hamdy [67] have shown that it is
a significant factor to take into account in the energy performance assessment of buildings. They
use degradation factors (F) for different maintenance schedules from Hendron [68] to express
the efficiency decay over time, t, in order to evaluate the actual efficiency of the installed heating
stock in the U.S. This rule of thumb is adapted with a Weibull function in the assessment here
(Equation (15), see Supplementary Materials Section S3.3.4 for Weibull parameters α, β and τ,
as well as degradation factors, F).

fd(t) = 1− (1− FWeibull)×
(

1− exp
(
−
(

t
β

)α))
(15)

with FWeibull = (1− F)τ

3.1.4. Heat Demand

In order to account for the increasing insulation standards of the building envelope
and the following decrease in heat demand of buildings, the building stock in Germany is
modeled considering various building typologies and specific refurbishment, as well as
demolition rates [69,70]. Furthermore, specific heat demand per square meter and average
living area per building class are used to derive an average heat demand per dwelling and
year for Germany (E0(y0)) (see Supplementary Materials Section S3.3.5 for the living-space-
and insulation-dependent heat demand modeling). The derived average heat demand
decreases by 21% between 2006 and 2020, meaning that a boiler from 2006 is not only
less efficient than a boiler from 2020 but also has to cover a higher heat demand. It is
assumed that no energetic renovation is conducted during the optimization period so that
the heat demand remains constant at the level of the first installation year, y0, of the boiler
(Ek = E0(y0)). The likely reduction in heat demand and its effect on per-case results is
discussed in an extended scenario analysis in Section 3.3.

3.2. Further Assumptions for LCA and LCC

Inventory data for the LCA and LCC assessment are described in detail in
Supplementary Materials Section S3.3.6. It is assumed that the material composition
and weight as well as the production processes remain constant for all boilers over time; hence,
the same environmental impact from production is always assumed. Similar to Baxter [65], we,
thus, neglect any improvements in energy intensity in material production and assembly or
any scaling relationships [71]. In contrast, production and installation are adjusted with the
inflation rate for the assessment of financial burden. With regard to the environmental life
cycle inventory, burden from EoL are taken into account with WEEE treatment. According
to the chosen cut-off system model, these impacts are allocated to the waste producer.
Further treatment of any valuable by-product is not included in line with the responsibility
principle, as these impacts or credits will be allocated to the product in which the recycled
materials are embodied. Further allocations that go beyond those from the selected cut-off
system model are not taken into account when applying the method.

The share of natural gas and auxiliary electricity to produce 1 kWh of heat output is
assumed to remain constant at 99.94% and 0.06%, respectively, over time for all gas boilers.
It is, therefore, assumed that efficiency improvements are evenly distributed between the
combustion process and the electrical components, which results in an overestimation
of the efficiency development of the combustion process, as recent efficiency gains are
rather achieved due to improved electrical components, such as the circulation pump.
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Moreover, no technology differentiation of the combustion technology itself is considered.
The distinction between impacts caused by electricity use and natural gas consumption
allows for the modeling of a dynamic electricity energy supply with varying energy mixes.
Since the biggest environmental impact stems from the natural gas burned in the boiler
(i.e., through consumption and combustion [72]), scenarios for an alternative fuel mix
(see Section 3.3) seem most relevant.

Maintenance determines the efficiency degradation scenario in the model. It is as-
sumed that a product that is not undergoing regular maintenance does not break earlier
than a regularly maintained product but is subject to stronger efficiency degradation. More-
over, the impact of the repair itself, including necessary spare parts, is modeled with a
Weibull function: the older the product is, the more repairs with more spare parts are neces-
sary (see Supplementary Materials Section S3.2). Transport for maintenance and repair or
replacement are included with specific transport distances in the environmental assessment,
whereas they are already priced into the production or maintenance cost, respectively (see
Supplementary Materials Section S3.3.6).

3.3. Extended Scenario Analysis

The OEL tends to be longer the smaller the impact intensities from the use phase
become, which is why the impact of the use phase is reduced in extended scenario analy-
sis for climate change impacts to better understand the results and to illustrate potential
effects of an improved energy system. Biomethane and, especially, green power to hydro-
gen are repeatedly mentioned as important components on the road to a climate-neutral
Germany [73]. However, biomethane is severely limited, for example, by the necessary
land use required for food production, [74], and, therefore, has only lower importance as
a characteristic transition technology for climate protection. The latter, on the other hand, is
increasingly being discussed as an important lever in the course of the German hydrogen
strategy [75]. Renewable energy (such as wind) is used to produce electricity for the elec-
trolyzer to generate hydrogen, which is then injected into the natural gas pipeline and used
as a mix in the heating boiler. Hydrogen in heating systems may have a high long-term po-
tential and is currently technically limited to around 20%Vol. in the gas mix by the boiler
technology [76]. A changed gas mix with green power to hydrogen and biomethane
as well as a reduced heat demand through improved insulation or better energy manage-
ment is, therefore, assumed in an extended scenario analysis (see Supplementary Materials
Section S3.3.7). Starting from the baseline scenario (I(100/0/0;0)) from Section 3.1 (see Figure 4
for notation), the proportion of hydrogen and biomethane are first increased gradually in
further scenarios (I(80/20/0;0): 20%Vol. green hydrogen, I(70/20/10;0): with additional 10%Vol.
biomethane) and then heating further decarbonized with an additional reduced heat de-
mand of 13%Vol. (I(70/20/10;13)). These infrastructure scenarios are further combined with
the efficiency degradation scenarios and cases for the initiation year, which are already used
in the baseline scenarios (see scenario combination overview in Figure 4). The infrastructure
scenarios remain constant per case, meaning that, for example, no gas mix switch is allowed
within one scenario.



Energies 2023, 16, 6711 14 of 27

Figure 4. Overview of the four different infrastructure scenarios (I(n/h/b;r)) evaluated in the scenario
analysis; each differed in the assumed efficiency degradation resulting from different maintenance
schedules (D0, D0.5, D1.5) and the first installation year of the product (Case2001–2020). The latter
defines the start efficiency of the product with potential further technological efficiency progression
and annual heat demand. Per-case assessed, all scenario components remain constant.

4. Results

The climate change impact optimization results for two selected extreme cases are
shown in Figure 5. Each diagram illustrates the annual impacts for a scenario where the
original boiler is used for 15 years compared to the optimized annual impacts. The peaks
on the graph, represented by unfilled squares for re-manufactured products and filled
circles for new products, show the impacts of production and recycling at each point of
product replacement. In the first case, a gas boiler was initially installed in 2006 (Case2006).
This boiler reaches its design time in 2020. The results show that it should have been
optimally replaced 1 (D0), 7 (D0.5) or even 14 times (D1.5), depending on the maintenance
schedule (Figure 5a,c,e). This means that the OEL would be between 1 (D1.5) and 7 years
(D0) in this case. If the boiler is replaced in line with this schedule, the environmental
impact is up to 11% smaller than in a scenario in which the boiler is used for 15 years;
while a replacement is only proposed with a new product when neglecting efficiency
degradation, a mix of replacements with re-manufactured (O3) and new products (O2) is
recommended by the optimization approach in the cases with efficiency degradation. In this
way, some efficiency gains in the cohort of products are exploited, and such improvements
are retained by re-manufacturing the respective product. The latter only results in tiny
peaks in Figure 5 since impacts due to the re-manufacturing process are minor. The higher
the efficiency degradation is, the more frequently re-manufacturing is recommended, even
if more efficient products are available in the future. In contrast, if a boiler is installed
for the first time in 2020 (Case2020), solely efficiency degradation influences the optimized
replacement scheme, resulting in replacements with re-manufactured products every two
years (D0.5) or every year (D1.5) as the OEL (Figure 5b,d,f). In this case, replacement with
new products is of less advantage because the technology is already mature [64].
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(a) Case2006D0 (b) Case2020D0

(c) Case2006D0.5 (d) Case2020D0.5

(e) Case2006D1.5 (f) Case2020D1.5

Figure 5. Climate change impact optimization results for the selected first installation years 2006
(Case2006) and 2020 (Case2020) with efficiency degradation assumptions depending on the maintenance
schedule scenario (D0: no efficiency degradation; D0.5: annual professional; and D1.5: no or seldom
maintenance) and two replacement options (Ω = 3; O1: further use of the product; O2: newly
evolved gas boiler; O3: re-manufactured gas boiler). The graph shows the impact in each year for the
option where the initial boiler is used for 15 years (red dashed line). This is the baseline for comparing
the impacts of the replacement scenarios. The (black) solid line shows the optimized impacts that
occur each year. Impacts due to the production as well as recycling of a replacement product are also
included and result in peaks every year with an exchange. The exchange is also indicated by arrows
pointing to filled circles for replacement with a new product (O2) and unfilled squares for replacement
with a re-manufactured product (O3). The (gray) area between both graphs is the potentially avoided
impact through optimized replacement, and the integral of it is the cumulative avoided impact.

Cumulative climate change impacts in the baseline without optimization are signif-
icantly lower in Case2020 than in Case2006. This is due to the improved boiler efficiency
of 2.2%points and assumed heat demand reduction of 16%. The gap even widens when
efficiency degradation is also taken into account. Hence, it is important to keep boilers as
maintained as possible, in particular, old boilers in older buildings. The higher the heat
demand (e.g., poor insulation due to housing type), the shorter the optimal environmental
lifespan becomes. However, an optimized replacement schedule can bring cumulative
climate change impacts of all assessed cases closer together no matter how often and how
well the boilers are maintained. This optimization result mainly depends on the mainte-
nance scenario and less on the technological efficiency progression curve (i.e., the possible
efficiency improvement).
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The ReCiPeendpoint (total) indicator for gas heating systems is less dominated by the
use phase than in the case of climate change impacts. The distribution of the OEL results
for the two environmental impact assessment methods are depicted as Tukey boxplots
for all assessed cases (Case2006, . . . , Case2020) in Figure 6. For example, Case2020 with no
efficiency degradation (Figure 5b) is the outlier with an OEL of 15 years in Figure 6a for
climate change impacts. The results are in the same order of magnitude as the previously
selected extreme cases for climate change impacts in Figure 5. As a rule of thumb, the OEL
of gas boilers is 7 years for climate change impacts and 11 years for ReCiPeendpoint (total) if
efficiency degradation is neglected. For an average heat demand, it is around 1 year for
both environmental impact assessment methods if efficiency degradation is considered.
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Figure 6. Distribution of optimal environmental lifespan (OEL) results for climate change impacts
(a–c) and ReCiPeendpoint (total) (d–f) for all 15 considered cases (Case2006 to Case2020) with the respective
maintenance schedule (D0: no efficiency degradation; D0.5: annual professional and D1.5: so or
seldom maintenance) and two replacement options (Ω = 3; O1: further use the product; O2: new,
evolved gas boiler; O3: re-manufactured gas boiler). The boxes show the median with a circle as
well as the lower and upper quartile, and the whiskers indicate the highest/lowest datum within
1.5 times the interquartile range (Tukey boxplot). Outliers are shown with red crosses.)

When it comes to life cycle cost optimization, replacement is only financially attractive
for old, less efficient gas boilers within the optimization period of 30 years if efficiency
degradation with “no or seldom maintenance” (D1.5) is considered. The median lifespan is
then at about 14 years and deviates accordingly by a power of 10 from the environmental
assessment. In most cases, a break-even exists only after the chosen optimization horizon
of 30 years. Even if damage from climate change impacts is priced in after 2020 according
to the German fuel emissions trading act with 25 EUR2021/tonnesCO2−equ. [77] or for all
years with much higher cost estimates of 180 EUR2016/tonnesCO2−equ. from the German
Environment Agency (UBA) [78], it still makes financially more sense for the end user
to pay the price for the damage caused by the emitted greenhouse gases than to replace
the appliance. The high production and installation costs do not pay off in the chosen
optimization period, especially when future costs are discounted. However, the current
dramatic price increase in 2022 is not included in the long-term gas price time series used,
which could lead to earlier replacement in the other scenarios examined.
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The OEL results differ significantly in regard to the investigated impact assessment methods
and assumed maintenance schedules, as well as the shape of technological efficiency progression.
Further detailed results are, therefore, presented in Supplementary Materials Section S3.4.

Extended Scenario Analysis

The OEL results show that the proportion of resulting impacts from the production
phase to the use phase is decisive. This is the reason why results for climate change impacts
and ReCiPeendpoint (total) as well as costs vary considerably. The latter is also influenced by
the discounting assumed. The results of the extended scenario analysis for climate change
impacts are shown in Figure 7. It shows the reduction potential compared to normal usage
with no replacement over 15 years and no improvement in the infrastructure. Each Tukey
boxplot represents the reduction potential per evaluated scenario (I(n/h/b;r), see Figure 4 for
a scenario overview) of all 15 cases considered (#15: Case2006 to Case2020) with the respective
maintenance plan. The assumed impact reduction potential due to improved infrastructure
is arranged along the y-axis (I(100/0/0;0), I(80/20/0;0), I(70/20/10;0) and I(70/20/10;13)) and the
maintenance scenarios (D0, D0.5 and D1.5) are organized along the x-axis. The results from
the baseline assessment can be found on the x-axis (I(100/0/0;0)D0−1.5). The climate change
impact reduction potential of an optimized replacement schedule (Rrepl.) decreases only a
little with an improved infrastructure per maintenance scenario. It also has only little effect
on the optimal lifespan. The scenario analysis shows accordingly that changed impacts from
production due to different material composition and weight or different selected system
boundaries for EoL would not drastically change the results. This could be of significance
for other products, especially where a scaling relationship matters [71]. Similarly, system
boundaries and methodological choices in LCA, e.g., the allocation method, could influence
results there [79] as smaller impacts from production and EoL favor early replacement and
vice versa.

The scenarios with no or seldom maintenance (D1.5) have the highest reduction poten-
tial through optimized replacement. This is especially true when combining the replace-
ment reduction potential with the infrastructure reduction potential. The combined total
climate change impact reduction potential (RTotal) is graphically represented as the third
axis in Figure 7, a metric that is derived by adapting the approach by Thamling et al. [80]
(see Supplementary Materials Section S3.3.7). Notably, RTotal is then, on average, above
31% for D1.5 and above 23% for D0, again when compared to no change in infrastructure
and normal usage over 15 years but with respective efficiency degradation. However,
absolute impacts are, of course, much higher with efficiency degradation than without
(see Figure S14), emphasizing the statement from before that newer boilers and housing
standards are better than old ones. The same is true without improved infrastructure.

Both levers—improved infrastructure with reduced heat demand as well as decar-
bonized energy carriers and optimized replacement of gas boilers—are needed to minimize
environmental impacts due to heating.
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Figure 7. Total climate change impact reduction potential (RTotal) over 15 years usage due to im-
proved infrastructure (Rin f r.) (e.g., reduced heat demand, decarbonized energy supply) and due to
optimized replacement (Rrepl.) with two replacement options (Ω = 3; O1: further use of the product;
O2: newly evolved gas boiler; O3: re-manufactured gas boiler). Each Tukey boxplot represents
the reduction potential per assessed scenario (I(n/h/b;r), see Figure 4 for a scenario overview) of all
15 considered cases (#15: Case2006 to Case2020) with the respective maintenance schedule (D0: no
efficiency degradation; D0.5: annual professional; and D1.5: no or seldom maintenance). RTotal is
derived according to Thamling et al. [80] and plotted on the third axis. The boxes show the median
with a circle as well as the lower and upper quartiles, and the whiskers indicate the highest/lowest
datum within 1.5 times the interquartile range (Tukey boxplot). Outliers are not displayed. Boxplots
of I(100/0/0;0)D0−1.5 are truncated at the x-axis for illustration purposes but are actually symmetrical
to it. Reading assistance: For example, in scenario I(80/20/0;0)D0.5 with 20%Vol. green H2 in the gas
mix (I(80/20/0;0)) and “annual and professional maintenance” (D0.5), decarbonization of the infras-
tructure (Rin f r.) contributes to 6% reduction. Under these assumptions, an optimized replacement
leads to a median reduction potential of 3% (Rrepl.) with a recommended replacement every 2 years
on average (median). The median total reduction potential in this scenario is around 9% (RTotal : 3rd
axis) compared to usage where the product is used for 15 years and no infrastructure improvements
are made, but the product is annually and professionally maintained. (The reader is referred to the
web version of this article for a figure with higher resolution).

5. Discussion
5.1. Methodological Aspects

The developed generic method is an appropriate approach to analyze the optimal
replacement schedule with multiple irregular replacements over the optimization horizon
and, thus, to determine the optimal lifespan of circular products. It is possible to include all
kinds of dynamic scenarios of efficiency development (technological improvements and
degradation due to usage) as well as dynamic impacts over the entire optimization period
(e.g., in production with circular economy measures such as re-manufacturing or energy
supply as well as maintenance and repair) and still find the optimal global solution. This
advantage is even more evident for cost optimization due to assumed necessary discounting.
Other approaches may require strong simplifications or may require a numerical solution
due to non-linearity, so the global optimum may not be found or path dependencies of
future replacements may not be taken into account correctly, respectively, or not included at
all. The introduced method allows for assessing the best decision pathway in a CE. Not only
the comparison of one option to another at each point in time is then possible to consider
and, thus, only a restricted solution space, but all replacement options at all decision points
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with their path dependencies. Hence, an unordered sequence of replacement decisions
with various sets of products can be assessed.

For comparison, if only two replacement options are considered (Ω = 2; O1: keep
old product; O2: replace with new evolved product) in alignment with the approach by
Kim et al. [31], replacements are recommended less often and the savings potential is lower
(see Supplementary Materials Section S3.5 and Table S29). For example, the average OEL is
2 years and the savings potential is 2.8% for climate change impacts in case of moderate
efficiency degradation (D0.5). In contrast, in the case study, any deterioration in efficiency
was eliminated with fewer investment costs via re-manufacturing, resulting in shorter OEL
and higher savings potential. This is particularly true when no efficiency gains can be
additionally exploited across a cohort of products.

However, the generic formulation of the OEL method results in high computational
needs. The number of possible decision paths is determined by ΩN , whereby Ω is the
number of different options considered each year and N is the number of time steps con-
sidered over the optimization period. It is still computational with a simple dynamic
programming approach in a reasonable amount of time for two replacement options
(Ω = 3). It is quite useful in analyzing decisions if the number of possible states (different
replacement options in the tree) is not too large. Computational needs may be reduced
with more sophisticated dynamic programming approaches. Although it is possible to
reduce the computational efforts with fewer decision points (N) or longer time steps (dt),
it is not recommended due to path dependencies. The latter results in higher uncertain-
ties of the results. For example, with a time resolution of 1 year, a hypothetical “real”
OEL = 3.01 years would already yield in an OEL = 4 years, meaning that the result range is
OEL + (0, dt]. A higher time resolution, therefore, leads to a smaller OEL and, accordingly,
also to a smaller necessary delta in efficiency. A shorter optimization period, on the other
hand, can lead to the result that a replacement does not pay off within the considered time
span. This problem applies, in particular, to the last possible replacement, which, however,
determines the path with minimum cumulative impacts for all previous replacements. This
could be mitigated by adjusting its impacts from production and EoL to the temporal scope,
for example, by linearly allocating these impacts to the remaining lifetime and subtracting
them similar to Ardente and Mathieux [22], which would decrease the total life cycle
impacts from the last product. As without allocation, the OEL results would inevitably still
remain strongly dependent on the optimization period.

Here, we chose an optimization period of 15 years, which is sufficient to obtain stable
OEL results for environmental impacts in the case of heating systems due to their use phase
intensity. In other cases, a more extended optimization period might be necessary, as in the
case of cost optimization. A long optimization period is recommended in order to ensure
that the results are stable and only slightly affected by it. This requires the collection of
data for long time series, which may be subject to inherent uncertainties. This, in turn,
requires the analysis of different scenarios based on sufficiently large variations in key
parameters, such as by altering technological efficiency progression curves or efficiency
degradation. For example, in this case study, it turns out that replacement makes sense
more frequently with re-manufactured products for both environmental impact assessment
methods with a stepped technological efficiency progression shape considering only the
most efficient product. It simply takes longer until the next efficiency increase can be
exploited so that re-manufacturing can eliminate any efficiency decrease in the meantime
(see Supplementary Materials Section S3.4). Due to the mentioned small possible effects
of efficiency improvements in this case study, the shape of the progression has only a
minor influence on the specific OEL results here. However, a structured sensitivity study
is only possible in terms of an extended scenario assessment with the generic method.
Approaches like Monte Carlo simulation are not suitable due to the high computational
needs. Accordingly, what is missing is a confidence interval for the OEL results that also
reflects the inherent uncertainties of the LCA data used and of the assumed progression
of, for example, efficiency degradation or technology improvement. For example, real-life
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efficiency could be 5%points smaller for condensing and 1%point smaller for conventional gas
boilers [81] than assumed in this case study. In addition, the assumed efficiency degradation
has to be treated with a certain tolerance range. This analysis clearly shows the necessity
to better measure efficiency degradation during operations in order to be able to conduct
more robust assessments. Real-time energy efficiency monitoring with connected boilers
might enable this [66]. Measurements of energy efficiency losses by using chimney sweeps
based on flue gas temperature could and should be used for general guidance for timely
replacement and necessary maintenance with regard to the rule of thumb elaborated here.
However, with their tolerances, they are not sufficient for the application here.

In this case study, the generic dynamic programming method is applied to three
exemplary impact assessment methods, which lead to different results. The cost optimiza-
tion results deviate considerably from the environmental assessment, as already shown
in other studies, e.g., [31,64,82]. Environmental and financial impact dimensions should
be aligned further possibly by pricing in all external effects and not only cost estimates
for damages from climate change. In any case, should the OEL be determined for several
impact assessment methods to give a holistic picture, the choice of which depends strongly
on the product under investigation. Thus, in contrast to lifespan maximization, the objec-
tive, which shall be optimized, must be carefully chosen. Potential benefits in one impact
category must be carefully weighted against other impact categories, which may lead to
a Pareto front. Further impact categories may be resource depletion or exergy, which are
sometimes stated as the minimization goal of CE, e.g., [4].

5.2. Case Study Implications

The OEL results for gas boilers are much smaller than for other products. For ex-
ample, when considering two replacement options and neglecting the potential of re-
manufacturing to eliminate efficiency degradation with low investment, the energy/CO2
results with efficiency degradation for automobiles are 8, 10 or 18 years, depending on
the mileage driven per year in the U.S. [31]. The OEL of refrigerators is similarly long for
ReCiPeendpoint (total) without the consideration of degradation [25] and much shorter (2 to
11 years) for climate change impacts when degradation is considered [32]. These products have
in common that they have significant use phase impacts, though not as much as gas boilers. The
OEL results seem to be in the right range for gas boilers, suggesting that the current legislative
time limit of 30 years under the German Energy Saving Act [57] is far too long. Such long time
limits also contribute to the relatively long existing usage profile, with an average replacement
time of 20 years in Germany (see Supplementary Materials Section S3.3.1 for corresponding
analysis with data from the federation of German heating industry [83–85] and statistics
of building construction work from Destatis [86]). Therefore, this study can serve as a
benchmark for policymakers on how frequently gas heating appliances should be replaced.

In addition, this study can also be valuable for product designers, indicating that the
design time of 15 years [56] is set far too long. A shorter design time would mean that
less strict tolerances or materials with less strict requirements (for example, regarding the
corrosion resistance of aluminum) can be used, potentially resulting in cheaper products
and enabling earlier replacement. In the end, it could even enable the use of more secondary
resources and, ultimately, support the transition toward a more circular economy. After all,
materials may degrade during recycling processes through contamination and lose their
purity, which leads to the deterioration of technical properties, such as corrosion resistance.
However, the aim of reducing material requirements should not be misconstrued as a
justification for deliberately designing products with a limited lifespan, a practice known
as planned technical obsolescence, to stimulate continuous consumer demand for newer
models [87]. Instead, the focus should be on avoiding over-engineering products, which
eventually places more burden on the environment. This is not consistent with our general
understanding of quality, as we tend to equate high-quality products with durability or
with other functionalities, such as comfort, aesthetics or luxurious design. Quality could
also be defined in terms of the environmental impact a product causes, in which case the
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minimum impact at OEL is considered as high quality. This means that replacement at
the right time is not hindered and policies to improve the energy efficiency of products,
such as the Ecodesign Directive [88], are promoted. To be able to implement such “quality”
requirements already in the design phase requires a prospective OEL assessment with a
presumed efficiency progression curve like it was conducted for Case2020 in the case study
here. One way to achieve this could be, for example, a systematic approach that combines
patent analysis and environmental aspects [89] to determine what future developments
might look like.

Users expect investment goods like heating systems to last long, especially when
replacing them earlier is not financially attractive, and tend to slow replacements due
to context dependencies [90]. They would likely not accept recommendations of shorter
replacement intervals, neither with a new nor with a re-manufactured product. This social
acceptability presumption makes it even more important to prioritize proper maintenance
over optimal replacement [33] and install a high-efficiency product from the outset, which
may be more expensive than a less efficient one but can reduce environmental impacts.
To improve overall environmental performance while making it affordable at the same
time, investment costs are already reduced with an updated funding policy of the Federal
Office of Economics and Export Control (BAFA) in Germany. It increasingly aims to create
incentives for faster market diffusion of renewable technologies [91] in order to make the
best economic use of financial resources for decarbonizing heating. The amendment to the
federal subsidy for efficient buildings (BEG) has also made it possible since 2021 to subsidize
smart home systems to monitor and optimize use in order to reduce consumption [92].
Another lever for impact reduction is behavioral changes by the user. Contrary to the
discussed technical measures of building renovation or boiler replacement, they do not
require financial resources. A lower demand for comfort, for example, could lead to lower
room temperatures or living space, which may still be sufficient for the user. This would
oppose the historical trend, as a large part of the insulation efficiency gains has been
eaten up by the increase in (per capita) living space [86]. Such a resulting lower heat
demand then also leads to a longer optimal lifespan (compare, for example, Case2001 and
Case2020 in Figure 5). Pérez-Belis et al. [36], for example, studied the behavioral use on
recommendations for replacements of repaired vacuum cleaners in more detail.

Rational use of energy contributes strongly to environmental protection and climate
change mitigation [50]. The most environmentally friendly use of energy is when energy
is not needed at all or when it is used for the correct application where only minimum
energy losses occur. Energy losses are generally measured in exergy or exergy destruction.
In the case of heating systems, particularly those using fossil-fuel-based energy carriers,
like gas boilers, most exergy destruction occurs during primary energy conversion and in
the boiler itself [93]. Efficiency improvements of the boiler, thus, reduce exergy destruction.
In addition, a lower heat demand due to good insulation, tight building envelopes and the
use of passive gains directly results in less exergy destruction.

Maintaining a heating system and reversing possible unavoidable efficiency degra-
dation (e.g., through lime scaling) by cleaning or replacing the causing components (e.g.,
the heat cell) is also essential to reduce energy loss. Re-manufacturing these components
and upgrading them, if technically possible [12], to the best available technology could also
reduce resource-related environmental impacts during production. With our case study, we
specify that re-manufacturing is environmentally beneficial not only when the technology
is mature [64,94] but, more precisely, if the efficiency progression of a cohort of products
is only minor within a specific period. Therefore, the approach might support defining
a time scale and efficiency progression range in which EuPs can be considered mature.
However, we assumed that the initial efficiency of the product is completely restored during
re-manufacturing, which might not always be the correct assumption [15]. If an efficiency
drop is considered, results might alternate from our case study such that re-manufacturing
shall be pursued less often.
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The scope of this study is to assess the OEL of gas heating appliances to analyze
the maximum environmental improvement potential of only this product category with
maintenance and replacement. Just replacing the gas boiler with a more efficient boiler,
whether it is a new one or a re-manufactured and upgraded one, could significantly hinder
the switch to a low exergy heating technology [93] with better environmental performance,
such as a heat pump, and, thus, severely limit the environmental improvement potential
of heating. Heat pumps have a much better environmental performance than gas boilers
when an electricity mix with high renewable share is used [95,96]. Including the technology
switch to heat pumps in the assessment may, therefore, lead to a phase out of gas boilers
and dramatically reduce the OEL of them. Examining this should, therefore, be the next
step in the application of the generic dynamic programming method for heating systems,
especially when contrasted with the more stringent use of green power to hydrogen. Only
then, is it possible to study the best use of financial resources in order to minimize both the
environmental and financial burden. In general, it is possible to include more than just two
replacement options (Ω > 3), even if not yet conducted in the first application here; the
method does allow it though.

6. Conclusions

The introduced generic dynamic programming method is suitable to analyze the
overlapping effects of efficiency improvement and efficiency degradation simultaneously, as
well as further dynamic impacts induced by CE measures or dynamic energy infrastructure;
while a switch in overall technology to, for example, heat pumps was not considered
in this case study to keep it simple, the method can also be used to accommodate for
more disruptive scenarios. The strength of this method lies precisely in the multitude of
possible dynamic scenarios that can be considered and allows several irregular, unordered
replacements with circular measures over the optimization horizon. It is particularly useful
for those products where the best CE pathway cannot be determined by a superficial
analysis due to dynamic path dependencies and particularly where efficiency degradation
has a big effect. The latter case concerns all kinds of EuPs, especially those with an
(environmentally) significant use phase.

In order to improve the environmental performance of circular products in its entirety
and to make an optimized replacement schedule affordable at the same time, innova-
tive business models and further technical developments should enable an optimized
replacement in a CE [97]. In practice, it requires clear communication of OEL results,
as the recommendation of shorter lifetimes might contradict consumer perceptions that
long-lifetime products are superior to short-lifetime ones.

This research, therefore, sets out that a lifespan indicator is important to develop
(not only) for EuP. Simple longevity indicators measuring material circularity or resource
efficiency [98,99] may provide misleading results because they fail to consider the interplay
of various influencing factors. An LCA-based approach, as presented in this paper, is
needed [100] to enhance CE metrics with a product-centric lifespan indicator [101]. Such a
lifespan indicator could be based on the product-specific OEL [30] and allows for consider-
ing various alternative replacement options in a CE. It accounts for the waste of resources
and unsustainable throughput of materials if a product is used shorter than its OEL. The
same applies if a product is used for too long.

Only within the range of the derived OEL does it make sense to repair a broken
product and to make spare parts available to avoid negative environmental side-effects
from lifetime extension processes. This should be considered when implementing the
“right to repair” in the EU [2]. An increased lifetime would delay the replacement with
more energy-efficient alternatives. Even if this results in an increased waste volume, which
then enters the recycling system, as of 2014, heating systems already accounted for about
10% of the collected waste of large household appliances in Germany [102]. This is expected
to increase under the conditions discussed here.
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Products should have a clearly defined lifetime and not be durable per se. Only
optimized and not maximized lifespans can help ensure sustainable consumption and
production patterns. This should be supported by optimal and predictive maintenance
of a product to fully exploit the potential for improvement. The transition toward a
sustainable circular economy, therefore, requires assessment methods, like the generic
dynamic programming method, which can provide additional, and sometimes unexpected,
insights and help to better understand a system in order to find optimal solutions. In some
cases, the lifespan of circular EuPs might be reduced, not maximized, in a circular economy
with measures such as re-manufacturing to eliminate unavoidable efficiency degradation.
Such replacement policies can, thus, minimize cumulative impacts over several life cycles,
even when new, more efficient products are available.
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