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Abstract: In the context of the growing emphasis on energy conservation and carbon reduction, the
widespread deployment of smart meters in residential and commercial buildings is instrumental in
promoting electricity savings. In Taiwan, local governments are actively promoting the installation of
smart meters, empowering residents to monitor their electricity consumption and detect abnormal
usage patterns, thus mitigating the risk of electrical fires. This safety-oriented approach is a significant
driver behind the adoption of smart meters. However, the analysis of the substantial data generated
by these meters necessitates pre-processing to address anomalies. Presently, these data primarily serve
billing calculations or the extraction of power-saving patterns through big data analytics. To address
these challenges, this study proposes a comprehensive approach that integrates a relational database
for storing electricity consumption data with knowledge graphs. This integrated method effectively
addresses data scarcity at various time scales and identifies prolonged periods of excessive electricity
consumption, enabling timely alerts to residents for specific appliance shutdowns. Deep learning
techniques are employed to analyze historical consumption data and real-time smart meter readings,
with the goal of identifying and mitigating hazardous usage behavior, consequently reducing the
risk of electrical fires. The research includes numerical values and text-based predictions for a
comprehensive evaluation, utilizing data from ten Taiwanese households in 2022. The anticipated
outcome is an improvement in household electrical safety and enhanced energy efficiency.

Keywords: smart meter data analytics; temporal database; deep learning

1. Introduction

Smart meters were initially developed in the 1970s as devices that utilize digital
signals to measure the amount of household power consumption and transmit the data
to dedicated databases or data storage systems [1]. Unlike traditional mechanical meters,
smart meters offer several advantages, including higher accuracy (with a margin of error
of approximately 0.5%, compared to around 2% for traditional meters) [1], more frequent
access to power consumption data (with the ability to provide data at second or minute
intervals, whereas traditional meters are typically read once a month or every two months),
and data communication capabilities [2]. Indeed, smart meters are part of the broader
framework known as the smart grid, which encompasses a wide range of new technologies,
such as power transmission, distribution, usage monitoring, and pricing, within the power
system [3]. Smart meters play a pivotal role in consumption monitoring, positioning them
as essential tools for power usage pricing for the smart grid [4]. Notably, the installation
of low-voltage smart meters in residential and commercial buildings enables residents to
continuously monitor their power consumption, serving as an initial step toward promoting
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global energy conservation and carbon reduction efforts [5]. For instance, the United
Kingdom has set a policy that by 2025, smart meters will be the exclusive choice for
residential and commercial environments, with traditional meters being phased out [6].
Similarly, other major countries have also formulated deployment plans for smart meters.

While the widespread adoption of smart meters holds great promise, achieving com-
prehensive energy-saving goals might be hindered by low resident participation [7]. To mit-
igate this concern, leveraging smart meters to offer residents valuable information becomes
crucial [7,8]. Smart meters have the capability to gather detailed electricity consumption
data from residents. These data hold the potential to provide valuable insights, including
predicting future electricity usage and assessing consumption safety. Such insights could
significantly enhance the adoption of smart meters [3]. Nonetheless, ongoing research
emphasizes that even sophisticated deep learning techniques such as Convolutional Neu-
ral Networks (CNN) and Long Short-Term Memory (LSTM) models face limitations and
challenges, particularly in achieving accurate forecasts of residents’ impending electricity
consumption [9–12]. Considering these complexities, this study takes a divergent approach,
deviating from the pursuit of precise future consumption predictions. Instead, it focuses on
identifying instances of potentially hazardous electricity consumption and aims to provide
early alerts when households are on the brink of engaging in unsafe electricity usage. This
approach not only ensures the safety of residents’ lives and property but also cultivates a
stronger acceptance and utilization of smart meters.

Hence, this article presents an in-depth analysis of smart meter big data obtained
from both residential and commercial buildings in Taiwan. Specifically, Taiwan’s Ministry
of the Interior’s Fire Department has recorded an average of 2000 fire incidents from
2007 to 2022, with building fires constituting a significant 69% of these cases. Within
building fire incidents, electrical fires account for a substantial 33% of the total. These
fires often result from prolonged exposure of electrical devices or wires to excessively
high currents or sudden surges, triggering ignition of nearby flammable materials and
causing severe damage. In this context, the study utilizes up-to-date smart meter datasets
and employs a series of data pre-processing and customized deep learning techniques to
extract relevant information. These advanced deep learning approaches align with recent
trends in the literature focused on the analytics of smart meter big data [9,13]. Therefore,
the aim of this study is to forecast instances of abnormally high power consumption
within minutes, facilitating prompt notifications to residents for preemptive measures.
Furthermore, this objective encompasses the identification of patterns that signify unsafe
electricity consumption, leading to early recognition and heightened resident awareness.
To this end, the manuscript is structured as follows: Section 2 provides a literature review,
followed by an explanation of the data pre-processing steps in Section 3. Section 4 presents
the analysis results and the evaluation of the deep learning method. Finally, Section 5
concludes the study and provides suggestions for future research.

2. Related Work
2.1. Challenges in the Smart Meter Big Data Analytics

In reality, a smart meter is typically installed at the main power switch of a household,
enabling the measurement and transmission of electricity consumption data at frequent
intervals, ranging from every few seconds to minutes [8]. In certain cases, multiple meters
may be deployed collectively, with each meter capturing the electricity usage of a circuit or
a major electrical appliance, such as a refrigerator, air conditioner, washing machine, and
more [14,15]. Undoubtedly, the aggregation of household electricity consumption data has
catalyzed the rise of big data analytics in recent years [16,17]. Various institutions, such as
the National Science Foundation of the United States, the Engineering and Science Research
Institute of the United Kingdom, and the Smart City Innovation Center of Denmark, have
supported numerous studies on the smart meter big data analytics [18]. The number of
related papers has been steadily increasing since 2012. For example, the following discus-
sion delves into three significant themes drawn from the literature: (1) Load management,



Energies 2023, 16, 6893 3 of 24

which leverages load forecasting as a foundation. The prediction of household electricity
consumption enables the appropriate classification and management of different groups
of households from the demand side [1,19]. For instance, during periods of tight power
supply, households that are more suitable for reducing electricity consumption can be
identified. Alternatively, time-based electricity pricing mechanisms can be employed to
incentivize households to save electricity during specific time slots. (2) Load characteristic
analysis, which involves the grouping of electricity consumption behavior based on the
extensive data derived from household electricity consumption. This analysis facilitates
comparative assessments among peers, enabling a deeper understanding of consumption
patterns [20,21]. Activities such as morning washing or evening meal preparation can be
categorized to identify common trends and patterns. (3) Electricity theft detection, which
is highlighted as a distinct aspect of the smart meter big data analytics. This detection
mechanism focuses on identifying prolonged instances of illicit electricity consumption,
serving as a specialized form of abnormal data detection [22,23]. This analysis requires a
more extensive duration of electricity consumption data, which is of particular interest to
power companies aiming to mitigate losses from unauthorized consumption.

In addition, it is important to note that different brands of smart meters may exhibit
variations in the quality of measurement and/or transmission [24]. Consequently, in the
domain of managing and analyzing smart meter big data, various challenges pertaining to
data storage and pre-processing warrant discussion. To illustrate this, envision a scenario
where a smart meter captures power consumption data every second, resulting in the
generation of 31,536,000 records per year. This underscores the significant data volume
that smart meters can produce. Therefore, it is imperative to devise effective strategies for
data storage, management, data pre-processing, and analysis methods to ensure optimal
analysis outcomes for such a substantial volume of data [24].

At present, two primary technologies are utilized for storing and managing such
big data [8,19–21,25]. The first is the relational database, which is the most prevalent
and well-established technology. SQL serves as the recognized standard data query and
processing language interface for this database type. The second technology, exemplified
by Apache Hive 3.13, is the distributed database, which is exceptionally suited for man-
aging a substantial and continually expanding volume of data [26]. It leverages Hadoop
Distributed File Systems to seamlessly integrate additional databases as the data size in-
creases [26]. Moreover, when considering the perspective of smart meter manufacturers, it
is important to note that majority of devices currently generate power consumption data
in the CSV format. Consequently, the use of programming scripts is imperative for data
pre-processing, converting CSV records into one of the previously mentioned database
systems [21]. When deciding between a relational or distributed database for smart meter
data, it is essential to recognize that this study focuses on a building with fewer than
100 households, each equipped with a smart meter. Despite the substantial data volume,
managing it typically remains feasible without necessitating multiple database servers
to handle advanced functions, such as load balancing [8]. Therefore, in such a setting,
opting for a relational database such as PostgreSQL, as opposed to a distributed option
such as Apache Hive, might be the most optimal choice for storing smart meter data.
This preference arises from the relational database’s proficiency in handling programming
scripts for diverse data pre-processing tasks [19,20,25]. Additionally, the main focus of
smart meter big data analytics often revolves around electricity consumption records of
individual buildings over a maximum three-year period. Such dataset sizes comfortably fit
within the capacities of a relational database, offering cost benefits, ease of deployment, and
management efficiency. Another prominent tool in the realm of big data analytics is Apache
Spark 3.2.4, an analytics framework built on a database foundation, engineered to expedite
data querying and processing [27]. However, Apache Spark demands a substantial memory
allocation to function optimally [27]. In the context assumed in this study, where a building
might have just one database server for all electricity consumption data, introducing an
additional server to accommodate Apache Spark’s high memory needs might not be the
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most economical approach. In lieu of this, utilizing a relational database with standard SQL
and self-developed data-processing programs seems more than adequate for managing
various tasks across the outlined scenarios.

Furthermore, the time granularity of electricity consumption records, especially gener-
ated by different brands of smart meters, often exhibits significant variation [28,29]. For
example, occasional instances of missing records may occur, leading to situations where
only one or two power consumption records are available per 15 min, despite the intended
frequency of consumption measurement being at the minute level [30]. Consequently,
within a specific time interval, such as 15 min, the quantity of accurately recorded electricity
usage records can fluctuate [30]. The literature often discusses the sampling frequency of
smart meters, which can vary significantly, ranging from as fast as thousands of samples per
second (expressed in kHz) to as long as two hours [28,29]. Instant electricity consumption
data collected over a few minutes are usually sufficient for most analyses, aiding residents
in monitoring and conserving electricity usage. However, higher sampling frequencies are
recommended for electricity bill pricing, considering the varying periods and progressive
tariff structures [7]. In fact, managing the large storage space and complexities associated
with electricity consumption records has been a topic of discussion, with proposed methods
for maintaining accuracy and reducing the data volume [8,31]. Therefore, prior to conduct-
ing the smart meter big data analytics, it is necessary to pre-process the raw data to ensure
the presence of an electricity consumption record on the time axis every 5 or 15 min [32,33].
Moreover, when analyzing the electricity consumption behavior of residents, it may be
necessary to prepare a separate dataset comprising electricity consumption records at
analysis time intervals of 30 or 60 min [32,33]. Essentially, the time granularity of the
data collection should be determined based on the analysis algorithm employed [34]. The
original electricity consumption records should be adequately preserved in the database,
while the generation of electricity consumption data at different time granularities should
be realized in real time through a method akin to a database view.

In summary, analyzing the electricity consumption records for all buildings together
at the city level may raise concerns regarding the potential breach of personal privacy [25].
Further, for electricity consumption records of five years or longer, it seems more suitable
for the power company to store and analyze such huge datasets. For the database server at
the building or household level, it may be better to manage the electricity consumption
records within a three-year timeframe. Hence, it is recommended to deploy a distributed
database on the power company’s side, while the server at the building or household
level, where the household is located, can utilize a contemporary relational database. This
configuration is deemed sufficient for handling the voluminous smart-meter-generated big
data within the given assumptions.

2.2. Difficulties of Predicting Household-Level Power Consumption

It is important to recognize that the mere installation of smart meters does not directly
lead to reduced electricity bills for residents [24]. To achieve significant energy savings, it is
essential to combine smart meters with comprehensive information services that can effec-
tively influence residents’ behavior and promote electricity conservation [35]. One common
example of such services is electricity consumption forecasting, combined with time-of-use
(TOU) rates. This service can suggest optimal usage times for electrical appliances, encour-
aging households to adjust their consumption habits to save money [7,24,36,37]. Indeed,
electricity consumption prediction has long been a focus of research in the field of energy
conservation and carbon reduction [38]. Initially, it emerged from energy consumption
simulations during the building design stage, estimating air conditioning or lighting en-
ergy usage based on building characteristics such as orientation and the window opening
rate [38,39]. With the proliferation of Internet of Things (IoT) sensors, various algorithms
have been developed in the literature to estimate the electricity consumption of buildings
or households using sensed data [30,40–42]. In addition, the rapid advancements in artifi-
cial intelligence technology in recent years have contributed to more accurate household
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electricity consumption prediction models, aligning them better with real-world needs. It is
through the combination of smart meters, advanced prediction techniques, and behavioral
changes that substantial progress can be made in achieving energy savings and promoting
sustainable practices. Certainly, load forecasting entails the prediction of future power
consumption, and this can be accomplished through two primary methods: (1) predicting
household behavior by leveraging various sensors (e.g., motion sensors, and temperature
and humidity sensors) to estimate power consumption, sometimes on a per-appliance
basis [7,31,36,37], and (2) directly utilizing extensive electricity consumption data from
smart meters to project future consumption [19].

Despite the clear demand for load forecasting and the availability of numerous meth-
ods [1], achieving a high forecasting accuracy remains a challenge. Some studies have
shown forecasting errors reaching up to 300% [8]. In fact, there are several metrics available
to assess the accuracy of electricity consumption forecasting, broadly classified into two
categories. The first category is suitable for comparing the accuracy of different forecasting
methods within the same dataset, such as Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE). The second category is applicable
across various forecasting methods, reflecting data collection and expressing the accuracy
of each prediction method as a percentage, for instance, Mean Absolute Percentage Error
(MAPE), as shown in Equation (1):

MAPE =
100%

n ∑n
t=1

∣∣∣∣yt − ypred,t

yt

∣∣∣∣ (1)

where t represents a specific record in the electricity consumption dataset, n represents
the total number of records, yt represents the actual power consumption value, and ypred,t
represents the predicted power consumption value.

Hence, MAPE stands out as an adequate indicator for comparing error levels among
various prediction methods across different electricity consumption datasets. Moreover,
considering the wide array of prediction techniques and metrics utilized in the literature,
the research team conducted a review of three recent articles that employed deep learning
methods for electricity consumption prediction, all of which employed the MAPE metric
to demonstrate prediction performance. The first article employs the LSTM method to
forecast the power consumption of air-conditioning systems in multiple factory settings,
achieving a MAPE value of approximately 10% [10]. The second article utilizes a general
deep learning approach as well as a custom CNN and LSTM method for predicting power
consumption in the well-known IHEPC public household power usage dataset, yielding
a MAPE value of around 30% [11]. The third article applies the LSTM method to predict
real-time electricity consumption in school buildings, resulting in accuracy ranging from
5% to 30% on various occasions [12].

The studies reported in [10,12] highlighted that when electricity consumption data are
collected in relatively simple environments, such as factory air-conditioning systems or of-
fice settings such as schools, the MAPE values are typically small. However, there still exists
a 10% MAPE error, primarily attributed to high electricity consumption instances [10,12].
In essence, when focusing solely on the high-power consumption records in the dataset,
such as predicting consumption exceeding 3000 W, the MAPE value tends to increase due
to the limited data points available. Conversely, when analyzing electricity consumption
data from typical households, even with the use of enhanced deep learning techniques, the
MAPE value remains high, around 30%. Consequently, it is affirmed in the literature that
predicting electricity consumption for general households presents a difficult challenge. To
effectively address this, it is imperative to devise robust data pre-processing strategies and
formulate predictive algorithms tailored to the specific forecasting needs of households,
ensuring that residents can fully leverage the advantages of smart meters.

Finally, the literature shows that when analyzing electricity consumption at the city
or community level, the overall prediction accuracy tends to be relatively high due to the
larger scale [25]. On the other hand, when the analysis is performed at the household
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level, while it provides the most relevant insights for individual households, the prediction
accuracy is not always ideal [40]. To improve the accuracy of household-level electricity
consumption prediction, it is necessary to augment smart meter data with additional
environmental factors (such as temperature and humidity, illuminance, etc.), building
characteristics (such as orientation, indoor area, building materials, etc.) [41,43,44], and the
information pertaining to residents’ daily schedules and activities [45]. However, collecting
and analyzing additional personal privacy data to enhance the precision of electricity
consumption forecasting may raise concerns and potentially discourage residents from
installing smart meters [24,34]. Further, recent literature indicates that, in order to enhance
accuracy, it is necessary to integrate a greater number of sensors for monitoring buildings,
residential environments, and residents’ behavior [37]. Nevertheless, this raises concerns
about personal privacy, making it difficult for the public to accept such intrusive monitoring
practices [34].

2.3. The Need of Predicting Unsafe Power Usage Events

Overall, the existing literature on the big data analytics of smart meters primarily
focuses on power consumption prediction. Other applications are relatively scarce, possibly
due to the recent implementation of smart meters in developed countries and the gradual
accumulation of electricity consumption data [3]. However, British scholars have explored
the relationship between smart meters and residential fires, indicating a slight correlation
resulting from flaws in the process of replacing old meters with new smart meters, leading
to incomplete wiring and subsequent fire incidents [3]. From the perspective of residents’
concerns, electrical safety is undoubtedly one of the most important issues. Nevertheless,
there is currently limited literature utilizing smart meter big data to predict unsafe electricity
consumption that can lead to electrical fires.

Predicting instances of unsafe electricity usage within a household is comparatively
less complex than the task of household-level electricity consumption prediction, as it can
solely rely on the household’s historical smart meter big data. Moreover, such predictive
capabilities offer significant advantages to households while requiring a lesser amount of
personal privacy information. The underlying assumption for predicting unsafe electricity
consumption is similar to load prediction, assuming no significant changes in residents’
behavior (e.g., prolonged absences or tenant turnover), enabling algorithms to utilize past
electricity consumption data to forecast future patterns. Previous literature has explored
abnormal power consumption from two main perspectives: the power company side and the
user side [46]. The power company side focuses on identifying cases of electricity theft and
detecting discrepancies between actual and measured power consumption [22,46]. The user
side examines abnormal power consumption patterns related to appliances and explores
strategies for power-saving appliance replacements [47]. However, incidents of extremely
high power consumption that lead to actual electrical fires are rare. As a result, it is not
feasible to solely focus on expanding the records of extremely high power consumption.
Similarly, deleting the records of normal power consumption is also not appropriate.

Thus, it is believed that the integration of such warning mechanisms into smart meters
could offer a valuable capability to promptly notify residents about potentially unsafe
electricity usage. This would empower residents to take timely corrective actions, thereby
ensuring the safety of their homes. Prioritizing these advanced predictive features should
be regarded as a fundamental service provided by smart meters [7], ultimately enhancing
residents’ confidence in their effectiveness. This increased trust is expected to stimulate
higher rates of smart meter adoption.

3. Identification of Long-Term Power Consumption Patterns
3.1. Data Format of Smart Meter Data

Although the amount of data generated by a smart meter is usually large, the format
of such data is quite simple. Taking the CSV format of smart meters deployed in Taipei
City as an example, Table 1 lists the four fields with their data types and descriptions.
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Table 1. The table schema for power consumption data generated by smart meters.

Field Name Data Type Descriptions

house_id varchar (50) Representing household ID number

w float Representing the wattage value measured

reporttime datetime Representing the report time

channel_id varchar (10) Representing the circuit ID number. Note that
“0” represents the main switch meter.

In Taiwan, the standard voltage is 110 V, with a frequency of 60 Hz. For this study, the
research team selected several buildings in Taipei City and collected power consumption
data from 450 households spanning the years 2021 and 2022. Using December 2021 as
an example, the electricity consumption records for this period were stored in a CSV file,
which had a size of approximately 468 MB. The CSV data were then transferred to a table in
a relational database, such as open-source PostgreSQL (see Table 1 for the table’s schema).
In total, there were 6,910,393 records stored in the database table, including measurements
from several indoor circuits, in addition to the main switch. If only the power consumption
records of the main switch are considered (represented by channel_id = 0), Table 2 presents
some records of one household on 1 December 2021. It can be observed that the time
intervals at which the smart meter measures the master switch are not fixed, ranging from
approximately 14 s to 130 s between records. Therefore, assuming a fixed time interval
for representing electricity consumption records by a smart meter is not reasonable. It is
crucial to preserve the original electricity consumption records in the database and generate
records with an appropriate time granularity as needed during the analysis process.

Table 2. Sample electricity consumption records of a household on 1 December 2021 in chronological order.

House_id W Reporttime Channel_id

Home01 304.97 2021-12-01 00:00:19.000 0

Home01 304.97 2021-12-01 00:00:34.000 0

Home01 273.44 2021-12-01 00:01:19.000 0

Home01 230.46 2021-12-01 00:01:51.000 0

Home01 305.58 2021-12-01 00:02:25.000 0

Home01 305.58 2021-12-01 00:02:41.000 0

Home01 229.93 2021-12-01 00:02:55.000 0

Home01 229.93 2021-12-01 00:03:11.000 0

Home01 229.93 2021-12-01 00:03:25.000 0

Home01 229.93 2021-12-01 00:03:41.000 0

3.2. Pre-Processing of Time Granularity of Smart Meter Data

Based on the previous review of the literature and the research team’s experience in
analyzing electricity consumption records, the utilization of big data from smart meters to
analyze residents’ electricity consumption behavior often encounters the following issues:

• Time interval variations. While the wattage value of each electricity consumption
record is typically reliable (with an error rate usually below 0.5% [1]), it is important to
note that there can be discrepancies in the time intervals between these records, which
can range from a few seconds to minutes.

• Long-term behavior analysis. To accurately analyze long-term behavior, such as air
conditioner usage, power consumption records with larger analysis time intervals,
such as one record per hour, are needed. Conversely, for activities such as entertain-
ment, power consumption records with shorter analysis time intervals, such as every
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15 min, are required. Here, the term time interval is defined in this research as the time
difference between two actual power consumption records, while the term analysis
time interval refers to the time span covered by the two power consumption records
used for analysis (typically derived from multiple actual power consumption records).
Hence, due to the disparity between the analysis time interval required for power
consumption behavior, which is typically larger (e.g., one record per hour), and the
smaller time interval at which electricity consumption records are actually captured
(e.g., one record per minute), decision makers must determine the number of actual
power consumption records required to establish a representative value for the anal-
ysis time interval. For instance, if there are 45 power consumption records between
3 PM and 4 PM with an average value of 150 W, and a threshold of more than 40 power
consumption records is set, it can be concluded that the power consumption remained
constant at 150 W during that hour. However, if there are only 10 power consumption
records within the interval, the decision-maker must provide a conversion formula,
such as dividing the average wattage value of the 10 power consumption records
by 6, to estimate the electricity consumption value for this analysis time interval. In
other words, in cases where the number of electricity consumption records within an
analysis time interval is inadequate, decision-makers must offer a conversion formula
to estimate the average electricity consumption for that specific analysis time interval.

• Managing missing records. Certain analysis time intervals may lack any electricity
consumption records [48]. During analysis, it is necessary to account for these intervals,
displaying zero as the electricity consumption value.

The data pre-processing method proposed in this study is described as follows: To
begin, the decision-maker analyzing the big data from smart meters needs to determine
the analysis time interval, such as requiring an aggregated electricity consumption record
every 15 min. The decision-maker then establishes these time points at intervals equal to
the analysis time interval, based on the start and end dates of the analysis, as shown in the
database table, dt. For instance, assume that the analysis starts at 0:0:0 on 1 October 2021,
and ends at 0:0:0 on 1 November 2021. In dt, the second column of each record represents
the time value, with a difference of 15 min, while the first column of each record is the serial
number, which is recommended to start from 1, with an increment of 1 for each record.

Subsequently, the decision-maker determines the required number of power con-
sumption records (referred to as a) within the analysis time interval. This enables the
average wattage of these records to be considered as the representative wattage value for
the analysis time interval. In cases where the number of electricity consumption records is
below a during the analysis time interval, the average wattage of these records is adjusted
by multiplying it with a reduction factor b to represent the representative wattage value
within the analysis time interval. Algorithm 1 illustrates the SQL command for creating a
database view that lists all power consumption records between the specified analysis start
and end dates, adhering to the defined analysis time interval.

In essence, Algorithm 1 is divided into three separate SQL statements that are executed
individually, and their results are combined (via SQL union) to create the final view. The
first sub-SQL (Line 2) categorizes the original power consumption records based on the
analysis time interval specified in the dt table. If the number of records within the interval is
equal to or greater than a, the average value is directly considered as the wattage value. The
second sub-SQL (Line 4) operates in a similar manner to the first sub-SQL, but for intervals
with a smaller number of records, the coefficient b is multiplied. The third sub-SQL (Lines
6–7) consists of two instructions, where Line 7 identifies all the analysis time intervals that
contain corresponding power consumption records, and Line 6 performs the set difference
operator to identify the analysis time intervals without any power consumption records.

Once the original power consumption records have been pre-processed using Algo-
rithm 1, it can be observed that each analysis time interval is assigned a wattage value,
making it more suitable for subsequent analyses without concerns about interval inter-
ruptions or data gaps. Furthermore, the inclusion of various SQL ‘where’ commands
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in Algorithm 1 ensures that the wattage value must be greater than or equal to zero,
thereby mitigating the risk of incorporating highly biased power consumption records into
subsequent analysis considerations.

Algorithm 1. Creating a database view to pre-process all power consumption records between
the specified analysis start and end dates for a given household.

Input:

dt: The database table containing all the time points between the analysis start and end
dates, with each interval equal to the given analysis time interval.
a: The minimum number of power consumption records within the analysis time interval,
necessary for utilizing their average as the representative wattage value.
b: The reduction factor to be applied to the average wattage of the power consumption
records within the analysis time interval, in cases where the number of records is less than a.
houseID: The identification of the household.
tblName: The name of the database table containing the actual power consumption records,
typically imported from a CSV file.

Output:

A database view consisting of three columns: (1) the first column represents the time point,
indicating the start time of each analysis time interval, (2) the second column denotes the
number of actual power consumption records within each analysis time interval, and (3) the
third column contains the representative wattage value for each analysis time interval.

SQL:

1. create view houseID_view as (
2. select d1.t as t, COUNT(*) as iCount, AVG(o.w) as w from dt as d1, dt as d2, tblName as

o where o.house_id = ‘houseID’ and d1.id + 1 = d2.id and o.w > = 0 and
o.reporttime > = d1.t and o.reporttime < d2.t and o.channel_id = 0 group by d1.t,
o.channel_id having count(*) > = a

3. union
4. select d1.t as t, COUNT(*) as iCount, AVG(o.w)*b as w from dt as d1, dt as d2, tblName

as o where o.house_id = ‘houseID’ and d1.id + 1 = d2.id and o.w > = 0 and o.reporttime
> = d1.t and o.reporttime < d2.t and o.channel_id = 0 group by d1.t, o.channel_id
having count(*) < a

5. union
6. select d1.t as t, 0 as iCount, 0.0 as w from dt as d1, dt as d2 where d1.id + 1 = d2.id and

d1.t not in (
7. select d1.t as t from dt as d1, dt as d2, tblName as o where o.house_id = ‘houseID’ and

d1.id + 1 = d2.id and o.reporttime > = d1.t and o.reporttime < d2.t and o.channel_id = 0
group by d1.t, o.channel_id

8. ))

3.3. Temporal Coalescing: Long-Term Power Consumption Patterns

In the realm of smart meter big data, instances of extremely high power consumption
(e.g., 4000 W) within a specific analysis time interval can pose a significant risk of electrical
fires, particularly when preceding periods also exhibit somewhat high consumption (e.g.,
2000 W) patterns. The following section will delve into the prediction of extremely high
power consumption, but before that, it is imperative to identify such prolonged periods
characterized by long-term high power consumption from the vast power consumption
dataset. The advantage of identifying these prolonged periods of high power consumption
lies not only in alerting residents to prioritize electrical safety but also in utilizing these
periods, along with subsequent periods (whether exhibiting extremely high power con-
sumption or not), as training or testing datasets for the deep learning model described in
Section 4. Such identification could help enhance the prediction model’s accuracy.

In this study, a prolonged period is defined as a duration lasting for a minimum of
two minutes or a specified number of minutes. During this period, there must be at least
one actual electricity consumption record captured within each minute, and its wattage
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value surpasses a predetermined threshold, such as 2000 W. In other words, within the
same minute, there may be multiple electricity consumption records, and at least one
record must exceed the threshold value, while other records may or may not exceed the
threshold. Subsequently, if these one-minute intervals are adjacent to each other, they will
be combined to form longer time intervals. Such database operations can be referred to as
temporal coalescing, which is the process of merging multiple rows with equivalent values
into a single row when their validity periods overlap. Consequently, for these periods
lasting two minutes or more, each minute along the time axis contains at least one record of
electricity consumption surpassing the threshold value. This indicates a prolonged period
of high electricity consumption in households, which is significant and should be noted.
Algorithm 2 describes the steps to identify all prolonged periods from the original power
consumption records, and Figure 1 shows the sample output of such prolonged periods,
based on the actual power consumption records of a household in October 2021.

Algorithm 2. Identifying all prolonged periods with high wattage values in the power
consumption records.

Input:

c1: In the definition of a prolonged period, its length of time must be greater than c1 min.
The default value is 1.
c2: In the definition of a prolonged period, it is required that there exists a power
consumption record for each minute, and the wattage value of that record must exceed a
specified threshold value of c2.
houseID: The identification of the household.
tblName: The name of the database table containing the actual power consumption records,
typically imported from a CSV file.
v3: The name of a temporary database view for the temporal projection operation. v3 can be
deleted after Algorithm 2.
vv3: The name of a temporary database view for the temporal coalescing operation. vv3 can
be deleted after Algorithm 2.

Output:

A table (see Figure 1) representing all the prolonged periods and consisting of two columns:
(1) the first column, fromT, represents the beginning time point of each prolonged period,
and (2) the second column, toT, denotes the end time point of each prolonged period.

SQL:

1. create view v3 as select DATETIMEFROMPARTS (DATEPART (yy,t1.reporttime),
DATEPART (mm,t1.reporttime), DATEPART (dd,t1.reporttime), DATEPART
(hh,t1.reporttime), DATEPART (mi,t1.reporttime), 0,0) as z, count (t1.w) as c from
tblName as t1 where t1.w > c2 and t1.channel_id = 0 and t1.house_id = ‘houseID’

2. group by DATETIMEFROMPARTS (DATEPART (yy,t1.reporttime), DATEPART
(mm,t1.reporttime), DATEPART (dd,t1.reporttime), DATEPART (hh,t1.reporttime),
DATEPART (mi,t1.reporttime), 0,0)

3. create view vv3 as select v11.z as fromT, v12.z as toT from v3 v11, v3 v12 where
DATEDIFF (mi, v11.z, v12.z) = 1

4. select F.fromT, L.toT from vv3 F, vv3 L where DATEDIFF (mi,F.fromT,L.toT) > c1 and
F.fromT < L.toT and not exists (select * from vv3 M where F.fromT < M.fromT and
M.fromT < = L.toT and not exists

5. (select * from vv3 M1 where M1.fromT < M.fromT and M.fromT < = M1.toT)) and not
exists (select * from vv3 M2 where ((M2.fromT < F.fromT and F.fromT < = M2.toT) or
(M2.fromT < = L.toT and L.toT < M2.toT))) order by F.fromT
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In Algorithm 2, the primary purpose is to pre-process the actual power consumption
records. In Line 1, the seconds part of the records is removed, while considering criteria
such as household ID and exceeding the threshold for high power consumption wattage.
Line 3 creates a database view that presents all 1 min intervals. Finally, Lines 4–5 execute
the temporal coalescing operation, where adjacent records are merged into longer intervals
for further analysis [49].

Figure 2 provides a visual representation of time intervals, analysis time intervals, and
prolonged periods. Each time interval is determined solely by the electricity consumption
records and can vary significantly in duration. In contrast, the analysis time interval is
defined based on specific analysis requirements and maintains a fixed duration throughout
the analysis process. However, decision-makers have the flexibility to adjust the length
of the analysis time interval to generate new datasets for subsequent analysis, such as for
sensitivity analysis or trial and error. The prolonged period, derived from the original
electricity consumption data, allows decision-makers to set a threshold for high power
consumption and determine the minimum duration necessary to qualify as a long-term
time segment for such high power consumption events.

In summary, in the analysis of smart meter big data, different time granularities are
often employed. For instance, when predicting abnormal electricity consumption, it is
desirable to have forecasts at intervals of 15 min or less. Another example is examining
the correlation between electricity consumption and outdoor temperature, which requires
hourly data aggregation. While the raw data from smart meters must be stored for electricity
billing purposes [24], storing the averaged or aggregated consumption records at various
time granularities for varied analysis would consume significant disk space. Hence, the
recommended approach is real-time calculation, dynamically generated through techniques
such as using a database view, as shown in Algorithms 1 and 2. Although the calculation
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formula for such analysis is not complex, parameter adjustments are necessary based on
the actual analysis requirements.
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4. Prediction of Extremely High Instantaneous Power Consumption Using Deep Learning
4.1. Data Transformation

Previous research has indicated the challenges associated with predicting residents’
electricity consumption behavior. Striking a balance between accuracy and privacy preser-
vation is crucial since excessive collection of personal information may deter residents from
adopting smart meters. Nonetheless, from a home safety perspective, leveraging the big
data of electricity consumption from smart meters to forecast the likelihood of upcoming
instances of extremely high power consumption could prevent electrical fires and enhance
resident safety. By providing timely reminders, residents may have greater confidence in
the information services offered by smart meters.

In fact, the prediction of imminent extremely high electricity consumption can be viewed
as a binary classification problem, i.e., distinguishing between extremely high electricity
consumption and not extremely high electricity consumption. This fundamentally differs
from predicting the numerical value of future electricity consumption, the challenge that
has been discussed in the literature review section. Furthermore, similar to electricity theft
analysis, predicting instances of extremely high electricity consumption is not a common
occurrence. Therefore, it requires a substantial accumulation of electricity consumption
records spanning longer analysis time intervals preceding these historical events to effectively
forecast the likelihood of imminent occurrences of extremely high power usage. To address
this, the current study proposes a novel approach to transforming numerical electricity
consumption records into text format. By employing deep learning algorithms such as RNN
(Recurrent Neural Network), LSTM (Long Short-Term Memory), or GRU (Gated Recurrent
Unit), the study aims to predict the occurrence of future extremely high power usage events
based on the textual representation of past electricity consumption records.

The research team initiated the analysis of the acquired electricity consumption data,
which encompassed the records from 450 households residing in various buildings within
Taipei City during the period of 2021–2022. Among these records, the highest recorded
wattage was 21,845.03 W in August 2022. Subsequently, an analysis time interval of five
minutes for such predictions was defined, and a random selection of ten households
was performed. These households demonstrated a consistent population count between
2021 and 2022, and their smart meter records exhibited no long-term anomalies. For the
training process, the research team chose one household’s power consumption data from
a three-month period of 2021, while the data of the corresponding months in 2022 were
utilized as the test dataset. Using the conversion formula specified in Table 3, the electricity
consumption records underwent the following procedures: (1) calculation of the average
electricity consumption value and the maximum value within each analysis time interval,
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and (2) conversion of the average and maximum values into two-letter codes followed by a
space, such as ‘AA’.

Table 3. The power consumption records conversion table: mapping numerical values of power
consumption records to corresponding characters.

ASCII# Character Value Range (W) ASCII# Character Value Range (W)

65 A 0 ≤ v < 500 33 ! 13,000 ≤ v < 13,500

66 B 500 ≤ v < 1000 34 “ 13,500 ≤ v < 14,000

67 C 1000 ≤ v < 1500 35 # 14,000 ≤ v < 14,500

68 D 1500 ≤ v < 2000 36 $ 14,500 ≤ v < 15,000

69 E 2000 ≤ v < 2500 37 % 15,000 ≤ v < 15,500

70 F 2500 ≤ v < 3000 38 & 15,500 ≤ v < 16,000

71 G 3000 ≤ v < 3500 39 ‘ 16,000 ≤ v < 16,500

72 H 3500 ≤ v < 4000 40 ( 16,500 ≤ v < 17,000

73 I 4000 ≤ v < 4500 41 ) 17,000 ≤ v < 17,500

74 J 4500 ≤ v < 5000 42 * 17,500 ≤ v < 18,000

75 K 5000 ≤ v < 5500 43 + 18,000 ≤ v < 18,500

76 L 5500 ≤ v < 6000 44 , 18,500 ≤ v < 19,000

77 M 6000 ≤ v < 6500 45 - 19,000 ≤ v < 19,500

78 N 6500 ≤ v < 7000 46 . 19,500 ≤ v < 20,000

79 O 7000 ≤ v < 7500 47 / 20,000 ≤ v < 20,500

80 P 7500 ≤ v < 8000 48 0 20,500 ≤ v < 21,000

81 Q 8000 ≤ v < 8500 49 1 21,000 ≤ v < 21,500

82 R 8500 ≤ v < 9000 50 2 21,500 ≤ v < 22,000

83 S 9000 ≤ v < 9500 51 3 22,000 ≤ v < 22,500

84 T 9500 ≤ v < 10,000 52 4 22,500 ≤ v < 23,000

85 U 10,000 ≤ v < 10,500 53 5 23,000 ≤ v < 23,500

86 V 10,500 ≤ v < 11,000 54 6 23,500 ≤ v < 24,000

87 W 11,000 ≤ v < 11,500 55 7 24,000 ≤ v < 24,500

88 X 11,500 ≤ v < 12,000 56 8 24,500 ≤ v < 25,000

89 Y 12,000 ≤ v < 12,500 57 9 25,000 ≤ v < 25,500

90 Z 12,500 ≤ v < 13,000 58 : 25,500 ≤ v < 26,000

For instance, during the period from October to December 2021, a total of 26,496 anal-
ysis time intervals (every five minutes) were created. Considering that each analysis time
interval results in two characters and one space character during the transformation process,
the resulting text file size for the converted electricity consumption records amounts to
79,488 bytes. The actual electricity consumption records for the 450 households over the
3 months range from approximately 120,000 to 600,000. However, the conversion process
is remarkably efficient, with the conversion of each household’s records being completed
within 20 to 50 s. Figure 3 shows a sample output text file after the conversion process.
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4.2. Deep Learning for Predicting Extremely High Power Consumption

This study tackles the prediction problem of identifying potential occurrences of
extremely high power consumption events in the near future by employing a two-stage
approach. The first stage employs deep learning techniques for text prediction, where the
converted text from electricity consumption records serves as input, in order to predict
subsequent text. In the second stage, binary classification is performed as post-processing
for the first stage. This involves examining the output text from the previous prediction and
determining if any characters exceed the threshold for extremely high power consumption.
Although the threshold value for extremely high power consumption can be adjusted, it
is typically set to a value above 3500 W for a small or medium-sized household. In the
context of the converted characters, this corresponds to characters after ‘H’. Thus, if any
such characters are detected, the result is true; otherwise, it is false.

The deep learning program used in this research is based on Python 3.10.2 with
TensorFlow 2.10, utilizing an RTX-3070 GPU for efficient performance. The complete source
codes can be provided upon request. It should be noted that the analysis time interval for
this prediction is assumed to be five minutes. If decision-makers wish to modify the analysis
time interval, they will need to begin with the data pre-processing and transformation steps
outlined in the previous section. Essentially, the prediction will be in string format, and the
length of the input string, which is customizable by users, will be three times the length of
the output string. The default length for the input string is set to 99, which corresponds to
165 min (99/3 × 5).

The prediction program follows the typical workflow of deep learning. Firstly, the
data pre-processing codes for transforming numeric power consumption values into the
text format are performed. Each analysis time interval is transformed into three characters:
an average character, a highest-value character, and a space character. Considering the
large amount of data in the input file (a total of 79,488 characters), TensorFlow processes
the characters in multiple steps. In the prediction program, with the ‘BATCH_SIZE’ of 64,
each step handles 64 × (99 + 1) characters, resulting in 12 steps (79,488/64/100) to finish
the analysis. Any remainder of the characters is disregarded.

Figure 4 shows the proposed architecture of the deep learning model. In this model, the
first layer is ‘Embedding’, which encodes each string using the ‘embedding_dim’ parameter
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set to a value of 256. The second layer is the ‘Bidirectional’ layer, internally utilizing ‘GRU’
with 1024 units to capture both the forward and backward context of the string, which may
have mutual influence. The third layer employs ‘GRU’ with 256 units to determine the
impact of previous strings on subsequent strings. The fourth layer gradually narrows down
the model’s prediction range, while the fifth layer ensures that the prediction results remain
within ‘vocab_size’. It should be noted that the ‘embedding_dim’ parameter represents the
number of independent variables used for prediction. The ‘EPOCHS’ parameter indicates
the number of times the deep learning method will iterate over the dataset during training.
Typically, increasing the number of epochs can improve the prediction performance up to a
certain limit, after which the benefits may diminish. The ‘Dropout’ parameter, set to a value
of 0.2 in this case, can be used to release some variables to prevent overfitting the training
dataset. Finally, the ‘temperature’ parameter, commonly utilized in LSTM-like algorithms,
is used to regulate the level of randomness in the predictions. This parameter plays a
crucial role in adjusting the balance between high- and low-probability terms within the
output distribution. Higher temperature values introduce more randomness and diversity
in predictions, whereas lower temperature values enhance predictability by emphasizing
high-probability terms and suppressing the influence of low-probability ones.
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The deep learning model depicted in Figure 4 achieves a training result with a loss
value of 0.0026 and a total of 9,656,339 variables, representing the electricity consumption of
a specific household during the period from October to December 2021. The model utilizes
only 11 distinct characters from Table 3. Essentially, this deep learning model predicts the
next character based on the input string, with a total of 11 possible choices. This process is
repeated multiple times to generate a complete output string.

It is worth noting that when analyzing different months or households, the electricity
consumption records can vary significantly, leading to potential differences in the characters
used (from Table 3). In this study, a three-month dataset of electricity consumption records
was selected as the training data. This duration provides a substantial volume of smart
meter data that correspond to a specific season. For application to other households or
months, decision-makers have the flexibility to adjust various parameters, such as the
analysis time interval, ‘analysisTimeIntervalSize’ value, and other common parameters
in deep learning. Furthermore, with the current combination of datasets and parameters,
TensorFlow requires approximately three minutes to complete the training of this model.
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If decision-makers are willing to invest more analysis time, they can include additional
months to analyze a larger set of electricity consumption records. By doing so, the deep
learning method will be able to uncover more intricate power consumption patterns. The
extended analysis period allows for the discovery of power consumption patterns that
may occur infrequently in the original data, enabling residents to receive early warnings
and adopt safer electricity consumption practices. As previously mentioned, not every
household has an equal number of unsafe electricity usage records within the designated
interval. To address this, the research team employed the generated deep learning model to
randomly populate records, ensuring each household had 10 instances of unsafe electricity
usage events. These events, along with the electricity consumption records from the
preceding 165 min, collectively constitute all the attributes of a node in this configuration.

Finally, the research team leveraged three-month electricity consumption data from
five households to construct their individual deep learning models and knowledge graphs.
Figure 5 was constructed using Neo4j’s knowledge graph tool and portrays the five house-
holds (depicted as pink nodes) within a community (indicated by the green node). For the
three households (Home02/Home03/Home04) experiencing incidents of unsafe electricity
usage, their electricity consumption data are denoted by brown nodes. Their maximum
power consumption surpassed the 4000 W threshold, represented by the blue node. The
remaining two households did not record such exceedingly high power consumption
during the specified three-month period. It should be noted that not every household
had an equal number of unsafe electricity usage records within the designated period. To
address this imbalance, the research team employed the generated deep learning model to
randomly generate records, ensuring each household had 10 instances of unsafe electricity
usage events. These events, combined with the electricity consumption records from the
preceding 165 min, collectively form the attributes of one node within this knowledge
graph configuration.
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Furthermore, based on the knowledge graph and the tool, the research team utilized
the Fast Random Projection (FastRP) algorithm to reveal nearby nodes that share similar
electricity consumption patterns, as demonstrated in Figure 6 [50–52]. FastRP allows for
aggressive dimensionality reduction while preserving most of the distance information.
FastRP operates on graphs, which involve nodes, edges, and attributes, and tries to preserve
similarity between nodes and their neighbors. This means that two nodes that have similar
neighborhoods should be assigned similar embedding vectors. Conversely, two nodes
that are not similar should not be assigned similar embedding vectors. Despite the small
number of nodes, FastRP identifies nodes with similar attributes and represents their
positions in a two-dimensional plane with x/y coordinates ranging from −1 to +1. In
Figure 6, Home03 and Home04 are positioned closest to each other because their attribute
values, which represent extremely high power usage, were similar. Consequently, the
residents of Home03 and Home04 can be organized to participate in the same electricity
safety education and training, or their unsafe electricity usage warning conditions can be
collectively monitored. In the event of a future warning condition triggering within the
specified range, the residents should be able to receive notifications accordingly.
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4.3. Prediction Results and Evaluations

The previous section described the utilization of the deep learning method to predict
the converted strings of electricity consumption records for the subsequent 55 min (33 char-
acters), based on the converted strings of the current electricity consumption records for the
previous 165 min (99 characters). In fact, this model was built upon the electricity consump-
tion data of a certain household in Taipei City during the period of October–December 2021.
For model testing, as there were no changes in the selected household’s family members or
daily schedule from 2021 to 2022, firstly, the research team obtained the CSV file containing
the original smart meter electricity consumption records for this household from October to
December 2022. Subsequently, the CSV file was imported into the PostgreSQL database, and
Algorithm 1 was executed with the analysis time interval set to 5 min, the input parameter
a set to 2, and the input parameter b set to 0.2. The pre-processed data can be accessed at
any time through the database view defined in Algorithm 1. Then, referring to Table 3, the
database data were exported into a text file in the character format. Within this file, the
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research team randomly selected two distinct strings, each representing 220 min (165 + 55)
of electricity consumption records during the period of October to December 2022.

It is important to highlight that both such strings had the same length of 132 characters
and that within their first 99 characters, there was no occurrence of the character ‘H’ or any
subsequent characters. This indicates that the household did not experience any instances
of extremely high electricity consumption in the 165 min leading up to the given time point.
However, it is noteworthy that the first string exhibited extremely high power consumption
within 55 min following the given time point, whereas the second string did not exhibit any
extremely high power consumption events within 55 min following the given time point.

Figure 7 illustrates the input and output of the deep learning prediction program,
where the first input string commences with ‘AA’ and concludes with ‘CE EE EE’. In the
original electricity consumption records, an immediate occurrence of extremely high power
consumption was recorded, indicated by the presence of the character ‘H’ in the subsequent
position. Following the prediction by the program, the generated output string is displayed
in the second line of Figure 7. The first 99 characters of the output string match the input
string precisely, while the remaining 33 characters are entirely generated by the program.
This sequence represents the predicted future electricity consumption. Taking the second
line of Figure 7 as an example, the 33 characters are ‘HH B AB B GH B AD D FI BF F F CF’,
encompassing both the ‘H’ character and ‘I’ characters. This indicates that the program
successfully predicts future instances of extremely high power consumption.
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Moving to the third line in Figure 7, it represents an input string that starts with ‘BB’
and ends with ‘BB AB AA‘. In the original electricity consumption record, no instances of
extremely high power consumption were expected within the subsequent 55 min. After
the input string is subjected to prediction by the program, an output string is generated,
as depicted in the fourth line of Figure 7. The initial 99 characters of the output string
match the input string, and the subsequent 33 characters are completely generated by the
program. This output can be regarded as the predicted outcome for the future electricity
consumption scenario. Taking the fourth line of Figure 7 as an example, the 33 characters
are ‘A BB B AB B B BD B B B A A A A A ‘, and no character ‘H’ or any subsequent characters
are present, indicating the absence of extremely high power consumption.

The research team selected another 10 households from the smart meter big data
and analyzed their electricity consumption patterns, and Table 4 provides an overview
of these households. In the second column, the power consumption data of the specified
months in 2021 were identified as the training dataset, while the corresponding months in
2022 served as the test dataset. The third column represents the total number of original
electricity consumption records during the specified three-month period in 2022. Dur-
ing the three-month period, assuming one electricity consumption record per minute,
there would theoretically be 129,600 records. However, as shown in Table 4, the smart
meter records of these 10 households indicate an average time interval of approximately
4 to 5 records per minute.

In the fourth column, the number of strings extracted from each household’s elec-
tricity consumption records of extremely high wattage values is indicated. As previously
explained, the first 99 characters of each string do not exhibit extremely high power con-
sumption, while the rest of the characters do include extremely high power consumption.
Identifying a period without extremely high power consumption was relatively straight-
forward. However, identifying a period with extremely high power consumption, which
may exhibit sustained rather than short occurrences, posed a greater challenge. To address
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this, the research team employed Algorithm 2 in order to identify the periods that meet the
specified criteria. Subsequently, the relevant text strings of electricity consumption records
were extracted for further analysis and prediction. Lastly, the research team utilized the
deep learning prediction program to classify each text string, and the fifth column shows
the accuracy of each prediction for the 10 households. These assessments reveal that the
model’s predictive capability exceeds 90%. In practical terms, it can provide residents with
warnings up to 165 min before the occurrence of unsafe electricity usage incidents, enabling
them to take preventive measures and avoid such incidents.

Table 4. The evaluation results of the 10 households spanning the years 2021 and 2022 using the
proposed two-stage approach.

House ID Months # of Original
Records in 2022

# of High-Wattage Records
for Testing Accuracy

Home01 1–3 519,041 28 0.964

Home02 7–9 519,847 30 0.967

Home03 10–12 518,694 32 0.938

Home04 1–3 508,964 34 0.941

Home05 4–6 508,837 28 0.964

Home06 4–6 508,882 30 0.967

Home07 7–9 508,710 36 0.944

Home08 10–12 508,403 34 0.941

Home09 1–3 508,374 36 0.972

Home10 4–6 508,347 30 0.967

The research team also employed common Conv1D and LSTM methods to directly
predict the numeric values of electricity consumption records. For Conv1D, the filter
parameter is configured at 256, and the ‘kernel_size’ parameter is set to 34, corresponding
to a time span of (165 + 5) minutes divided into 5 min intervals. The activation function
is specified as ‘relu’, and the final two layers are defined as ‘Dense’. In the case of LSTM,
the unit parameter is set to 256, and the ‘return_sequences’ parameter is set to ‘True.’
The activation function used is ‘relu,’ and the final layer is ‘Dense’. This prediction was
performed using the same dataset of electricity consumption from the 10 households.
It includes records from the preceding 165 min as input and aims to iteratively predict
electricity consumption for the subsequent 5 min, resulting in a total of 55 min of output.
In the quantitative analysis, the predicted results were directly compared with actual
electricity consumption records, and the highest predicted consumption value was checked
for indications of unsafe electricity usage events. The results are summarized in Table 5.
Column 2 presents the prediction results for 30 randomly selected electricity consumption
records from each household’s dataset using the Conv1D method. The MAPE index
was used to assess the prediction performance, facilitating comparisons with methods
from previous literature. Column 3 utilized the same approach but employed the LSTM
method for prediction. From the data presented in Columns 2 and 3 of Table 5, it is
evident that the MAPE values for the numerical predictions made using Conv1D and
LSTM methods fall within the range of 10% to 15%, which is consistent with findings in the
existing literature. However, the challenge arises from the limited number of extremely
high electricity consumption records in each household’s dataset, making it impractical to
predict occurrences of extremely high electricity consumption.

As shown in Columns 4 to 7 of Table 5, when specifically analyzing the records of
extremely high electricity consumption (approximately 30 records) from these households,
the prediction outcomes significantly differ. Column 4 reveals that using the Conv1D
method to predict extremely high power consumption resulted in a notably high MAPE of
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around 70%. Employing binary classification directly to determine whether it constitutes an
unsafe event yielded an error rate of approximately 80%. Similarly, when LSTM was utilized
for prediction, the MAPE remained high at around 60%, and the binary classification error
rate was approximately 70%. In essence, relying on the direct predictive values from
such methods is inadequate for providing early warnings of unsafe electricity events to
households. Finally, the MAE and RMSE values of the aforementioned prediction for the
extremely high power consumption records are listed in Table 6. It is evident that directly
predicting future extremely high electricity consumption values from past records results
in significant errors. This underscores the importance of the data pre-processing steps
proposed in this study for achieving accurate results.

Table 5. The numerical predictions and binary classification error rates for the 10 households using
common Conv1D and LSTM models.

(1) House ID
(2) MAPE of Using
Conv1D for 30 Randomly
Selected Records

(3) MAPE of Using LSTM
for 30 Randomly Selected
Records

Using Conv1D for the Extremely High
Power Consumption Records

Using LSTM for the Extremely High
Power Consumption Records

(4) MAPE (5) Error of Binary
Classification (6) MAPE (7) Error of Binary

Classification

Home01 0.12 0.11 0.78 0.79 0.58 0.79

Home02 0.11 0.09 0.73 0.79 0.53 0.67

Home03 0.16 0.15 0.81 0.82 0.61 0.64

Home04 0.14 0.14 0.62 0.79 0.62 0.79

Home05 0.13 0.12 0.66 0.67 0.56 0.67

Home06 0.10 0.08 0.77 0.82 0.57 0.64

Home07 0.15 0.13 0.67 0.79 0.67 0.64

Home08 0.13 0.11 0.83 0.88 0.63 0.79

Home09 0.16 0.14 0.89 0.91 0.69 0.67

Home10 0.13 0.10 0.69 0.79 0.59 0.64

Table 6. The MAE and RMSE values for the 10 households using the Conv1D and LSTM models.

(1) House ID
Using Conv1D for the Extremely
High Power Consumption Records

Using LSTM for the Extremely
High Power Consumption Records

(2) MAE (3) RMSE (4) MAE (5) RMSE

Home01 1372.46 1517.20 938.18 1113.74

Home02 1209.09 1315.99 872.73 1060.02

Home03 1136.36 1248.64 897.27 1042.41

Home04 1013.64 1147.03 1009.09 1149.90

Home05 1000.82 1198.49 882.64 1073.23

Home06 1081.82 1189.73 781.82 890.35

Home07 1045.46 1192.02 1075.46 1187.65

Home08 1172.73 1313.91 909.09 1059.16

Home09 1354.55 1465.05 1104.55 1261.04

Home10 1081.73 1239.72 940.91 1094.30

5. Conclusions

This research focused on the utilization of smart meter big data, simulating the power
consumption forecasting process, and explored other value-added services of smart meters.
The main application discussed is predicting whether households are about to experience
unsafe electricity events. Therefore, besides energy and cost considerations, the general
population is primarily concerned about their own safety. With the completion of smart
meter deployments, it is expected that each household’s distribution box (i.e., main switch)
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will be equipped with smart meters, indicating the possibility of investigating any traces
of past electricity usage that may have led to electrical fires. By incorporating the latest
prediction technology, early warnings can be provided to households, prompting them to
take necessary actions, such as turning off electrical appliances [47,53], thereby reducing the
likelihood of fire incidents. This perspective, which focuses on safety, is rarely addressed in
the existing literature but formed the core of this study.

Considering that Taiwan has already initiated its smart meter deployment policy, it
is believed that improved information security regulations and protection mechanisms
related to smart meter big data will contribute to enhancing daily life quality to some
extent. This study employed state-of-the-art deep learning algorithms to explore the
prediction of unsafe electricity events. It is expected that once databases and servers
are installed in each building, the big data analytics of smart meters can be conducted,
and this research method can be implemented again. Consequently, TensorFlow-based
deep learning applications have gained prominence across various industries in recent
years. Deep learning necessitates high-quality big data, and with suitable parameters, it
demonstrates predictive capabilities comparable to or even superior to those of humans.
The widespread installation of smart meters has become a paramount task for energy
conservation and carbon reduction in many countries [54]. However, for smart meters to be
truly beneficial, they need to be accompanied by robust information services, such as past
electricity consumption forecasting and that proposed in this paper, to incentivize behavior
change and reduce the occurrence of residential electrical fires.

In this study, electricity consumption was converted into electricity grade letters, and
the parameters of the deep learning model were adjusted to ensure model convergence.
The accuracy of the model in the test phase for the 10 households exceeded 93%. In terms
of research prospects, the following suggestions are made:

1. Considering the significant generation of big data by smart meters, early planning
is crucial for designing data formats and management practices that cater to future
information service requirements. While the cost of storage media is decreasing and
computing power is improving, it may be more feasible to allow for smaller time
intervals between electricity consumption records. This is because once the records
have been stored in the format of a longer time interval, it is difficult to transform
them into a smaller time interval.

2. Currently, the system developed through this research processes real-world electric-
ity consumption records from smart meters, which entails a large amount of data.
However, the database system itself has not been fully optimized, leaving room for
improvement in system performance. For instance, this study utilized a relational
database without the establishment of an index. Once an index is implemented, it is
expected that the system performance will be enhanced. This is because the electricity
consumption record data are only added once, while there are multiple query actions
in subsequent operations. Considering the infrequent updates to the electricity con-
sumption records, it is advantageous to establish a database index to accelerate the
query process.

3. Unsafe electricity usage is a major concern for residents, fire protection agencies,
and property insurance providers. The rapid advancements in disaster prevention
technologies, smart homes, artificial intelligence, and the Artificial Intelligence of
Things (AIoT) are currently hot trends [55]. The early-warning method proposed in
this study can be integrated with security and fire departments or residents’ personal
apps to ensure the safety of lives and property.

4. For residential buildings with unique usage behaviors, such as long-term care institu-
tions or elderly nursing centers, prioritizing the establishment of this early-warning
system is advisable. Their electricity consumption patterns are more regular and
predictable, leading to more significant disaster avoidance effects [56].
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5. Building tax registration data can provide a list of buildings of a certain age. Buildings
with aging internal wiring may have a slightly higher fire occurrence rate, making it
recommendable to introduce such disaster prevention practices first [57].

6. Issues concerning information security and privacy rights related to smart meter
big data should be assigned top priority. The government should expedite the de-
velopment of local regulations by referencing laws and regulations from advanced
countries in Europe and the United States.
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