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Abstract: A hybrid feature selection (HFS) algorithm to obtain the optimal feature set to attain optimal
forecast accuracy for short-term load forecasting (STLF) problems is proposed in this paper. The HFS
employs an elitist genetic algorithm (EGA) and random forest method, which is embedded in the load
forecasting algorithm for online feature selection (FS). Using selected features, the performance of the
forecaster was tested to signify the utility of the proposed methodology. For this, a day-ahead STLF
using the M5P forecaster (a comprehensive forecasting approach using the regression tree concept)
was implemented with FS and without FS (WoFS). The performance of the proposed forecaster (with
FS and WoFS) was compared with the forecasters based on J48 and Bagging. The simulation was
carried out in MATLAB and WEKA software. Through analyzing short-term load forecasts for the
Australian electricity markets, evaluation of the proposed approach indicates that the input feature
selected by the HFS approach consistently outperforms forecasters with larger feature sets.

Keywords: confidence interval; elitist genetic algorithm; feature selection; short-term load forecasting;
M5P forecaster; machine learning

1. Introduction

Population growth and technology advancements are the primary factors fueling the
historical changes incurred in the electricity demand across the world. Electric power
plays a key role in the overall sustainable development of a region or a country. Due to the
increase in power consumption and rapid electrification across various regions, establishing
a robust framework that could manage the price and consumption pattern of electricity
is of the utmost importance [1]. Since the mid-1980s, the electrical business has been
witnessing a consistent transformation. The electricity market is a client-driven market
and thus forecasting of demand load and cost of electricity serves as a crucial planning
tool for the market players [2]. In the current power sector scenario, new rules and tariff
schemes are being put forward to encourage competitiveness among every generation
station, transmission companies and distribution companies. The aforementioned energy
market players are not bound to sell and purchase the electricity in realtime to the buyer
and seller, respectively, as per their choice. Therefore, it becomes fundamental to perceive
the accurate load demand and electricity prices of a particular region and if this accurate
information is predicted in advance, then the companies can make a substantial profit in
their bid [3]. Predicting the demand accurately and obtaining its pattern well in advance
can also help to optimize available generation efficiently. The seamless connectivity that
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underpins power exchanges encourages the power generation station to sell their electricity
at a higher price whenever energy demand peaks [4]. Transmission and distribution
companies also avoid long-term contracts because current infrastructure flexibility allows
them to purchase the required electricity during peak demand. This ultimately saves a
humongous sum of money that is required to pay generation companies (GENCOs) for their
fixed electricity cost. Another impact on the power system is influenced by the utilization
of power generated from renewable resources whose cost of electricity is now competitive
with respect to their conventional counterpart or even lower than them in some cases. This
scenario induces difficulties for the thermal stations in terms of selling their generated
electricity price at higher margins. Solar energy is abundantly available throughout the
daytime in most habitable regions, which has the potential to force thermal stations to run
at a technical minimum or even to reserve energy by shutting down [5]. Thus, accurately
forecasting the load demand for a given region is vital for the sustainable energy business.

STLF is one of the fields receiving more attention among research scholars, and techno-
logical development has refined STLF to improve its forecasting accuracy. Load forecasting
largely depends on many seasonal factors (such as temperature, relative humidity and sun
availability), economical parameters (such as availability of fuels, i.e., coal, naphtha, etc.)
and availability of other types of generating stations [6]. Electric load demand needs to be
predicted diligently to accommodate for aberrant climatic conditions including extreme
cold conditions or blistering climate [7]. The power sector also needs to precisely monitor
industrial and consumer energy consumption pattern to identify whether an unprecedented
raise or drop in demand that can potentially put the overall power system security at risk
occurs [8]. So, it becomes quite important to forecast the electricity demand block-wise
accurately to minimize the generation demand gap. Thus, due to the above-mentioned
reasons, STLF emerged as one of the attractive research areas and is of great interest for
researchers in the power system domain. The artificial neural network (ANN) method,
the time-series method, the regression method, the semi-parametric method and the non-
parametric method [9–16] are some of the commonly used approaches for forecasting
electricity loads. Grzegorz [17] used a stepwise lasso regression (LR) method and intro-
duced a model which decreases the desired result in the predictor’s number. This model of
STLF uses the LR and daily cycle basis load pattern, and is based on a univariate model
which considers a selection of variables in relationship with local current input. Cecati
et al. [18] emphasize that the calculation provided by decay radial basis function neural
networks (DRBFNNs), extreme learning machines (ELMs) and support vector regression
(SVR) machine enhanced the performance with better error adjustments and with more
improved second-order helpful outcomes for forecasting for a whole day. The study con-
ducted by Zhai et al. [19] utilized the self-closeness of electrical load recorded data, which
yielded a multi-resolution wavelet and then the Hurst parameter values were included to
evaluate the vertical scaling factors in function systems (IFS). The study used this model to
forecast the electricity load in two scenarios: fractal extrapolation and fractal interpolation.
Arora et al. [20] demonstrated ANN-based triple-seasonal auto regressive moving average
(ARMA), exponential smoothing and triple-seasonal Holt–Winters–Taylor (HWT). The
authors also discussed the triple-seasonal intraweek singular value decomposition (SVD),
which was based on exponential smoothing methods. Further, the method proposed in [20]
can be used to predict the model load for particular days. Zeng et al. [21] proposed an
STLF approach based on the cross multi-model and second decision mechanism to improve
the stability and forecasting accuracy. Nose-Filho et al. [22] elaborated on a method that
minimized the input to ANN to perform forecasting with a modified general regression
neural network. They also introduced two methods: one for short-term multimodal load
forecasting for a local load and another one for short-term multimodal load forecasting
for a global load. Zhang et al. [23] proposed a method to integrate the hierarchical struc-
ture and the forecasting model via a novel closed-loop clustering (CLC) algorithm. Rafi
et al. [24] developed a new method for STLF based on a long short-term memory (LSTM)
network and convolutional neural network (CNN). Li et al. [25] proposed a novel model
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that utilizes the theory of extreme learning machines (ELMs), wavelet transform (WT)
and multi-species artificial bee colony (MABC) algorithms. In [25], the authors utilized
the changes in wavelet to break down the load series to obtain complex parameters at
different frequencies which are then estimated independently with a hybrid model based
on MABC and ELM. Kouhi et al. [26] discussed a model for forecasting using the differential
evolutionary (DE) feature with a new multi layer perception (MLP) neural network based
on the hybrid Levenberg–Marquardt (LM) method. In [26], input data reconstruction is
accomplished by employing the Taken embedding theorem using the chaotic intelligent
FS method. Ungureanu et al. [27] developed a new approach for STLF for non-residential
consumers based on market-oriented machine learning (ML) models. Several past research
studies on STLF are summarized in Table 1.

Table 1. Review of several past research studies on STLF.

Sr. No. Year Author [Ref.] Methodology Used
Feature

Selection
Perforemnce Measure

MAPE MAE RMSE EV

1. 2018 Luo et al. [28]
Dynamic Regression Model

(DRM)-based
detection method

No
√

X X X

2. 2018 Jiao et al. [29] Multiple Sequence LSTM
Recurrent Neural Network No

√ √ √
X

3. 2019 Haq et al. [30] T-Copula-IEMD-
DBN Method No

√
X

√
X

4. 2019 Deng et al. [31] TCMS-CNN Algorithm Yes
√ √ √

X

5. 2020 Hong et al. [32]
Iterative Resblocks-Based

Deep Neural
Network (IRBDNN)

No
√ √ √

X

6. 2020 Ahmad et al. [33] SVM-GS, ELM-GA Yes
√ √ √

X

7. 2020 Pei et al. [34] ILSTM network Yes
√ √ √

X

8. 2021 Rafi et al. [24] CNN-LSTM-based
hybrid Network Yes

√ √ √ √

9. 2021 Ungureanu et al. [27] LSTM, LSTMed, GRU,
CNN-LSTM Yes

√ √ √
X

10. 2021 Xuan et al. [35] CNN-BiGRU Algorithm Yes
√

X
√

X

11. 2022 Ijaz et al. [36] Artificial Neural Network
(ANN) layer and LSTM Yes

√ √ √
X

12. 2022 Zhang et al. [37]

Improved Seagull
Optimization Algorithm

and SVM
(ISOA-SVM) Method

No
√ √ √

X

13. 2022 Liu et al. [38] DenseNet-iTCN) Yes
√ √ √ √

One can see that different classifiers based on support vector machine (SVM), ANN,
fuzzy logic, etc., have been employed in the previously published studies. The M5P
method has been used in many problems; however, it has not commonly been used in load
forecasting problems. In this work, the applicability and utility of the M5P forecaster has
been studied using the proposed HFS algorithm (which employs an EGA and random
forest method) to address the load forecasting problem. The key contributions made in this
work are as follows:

1. Proposal of a novel HFS employing an EGA and random forest method for FS meant
for the load forecasting problem;
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2. Implementation of the M5P forecaster with FS and WoFS to analyze the short-term
load forecasts for the Australian electricity markets;

3. Application of confidence interval to fix the margins of error in the forecasted load;
4. Drawing certain insights on the number as well as type of features that affect the load

in different seasons;
5. Comparing the performance of the proposed forecaster (with FS and WoFS) to the

performance of forecasters based on J48 and Bagging.

The remaining sections of the paper are structured as follows. The methodology
adopted for comparison of forecasts with FS and WoFS is discussed in Section 2. Section 3
explains the STLF using the M5P forecaster. Section 4 elucidates the methodology used for
input feature selection using the novel HFS algorithm. The results and performance of the
proposed methodology are presented in Section 5. Conclusions and remarks concerning
findings are provided in Section 6.

2. Methodology Adopted for Comparison of Forecasts with FS and WoFS

In this work, STLF with FS and WoFS for next day was considered. For STLF, the
proposed HFS algorithm is based on EGA and the random forest method. STLF was
implemented using the concept of a similar week for each day and for all seasons on a
half-hourly basis. STLF was performed using the M5P forecaster employing the full input
feature set as well as with the selected (reduced) input feature set. The forecast accuracy
was compared between using the full input feature set and using the reduced input feature
set, validating the utility of STLF with a reduced input feature set.

The performance results obtained from M5P (with FS and WoFS) were also compared
with the forecasts based on J48 and Bagging.

Accordingly, to ascertain the superiority of FS, the methodology adopted meant for
comparison of forecasts with FS and WoFS is shown in Figure 1.
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3. STLF Using M5P Forecaster Model

M5P is an ML algorithm which is a modified version of the M5 tree algorithm [39] and
is used for both classification as well as regression problems. This modification allows it
to deal with attribute missing values and enumerated attributes. M5P gives better results
with longer data series as input since it is more sensitive to data splitting. The M5 tree was
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developed for the prediction of continuous variables and it serves as a flexible prediction
tool since the construction of the tree is based on a multivariate linear model [40]. Generally,
the M5 tree is a three-step process, i.e., construction of tree using input data, tree pruning
and tree smoothing, whereas the M5P model consists of five important steps. M5P is a
binary regression tree that stores a linear regression model at every leaf (last node), which
predicts the class value of incoming instances. It uses the splitting criterion for the best split
of a portion of training data that reaches any node. In the M5P tree, the standard deviation
of the portion is used as a measure of error at that node. The tree of the M5P model is
shown in Figure 2. The five steps of the M5P forecaster model are elaborated as follows:
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Step 1:For the algorithm to maximize the standard deviation reduction (SDR), the
input data (enumerated attributes) are taken and converted to binary variables using
expression (1).

SDR = σ(Cs)−∑
k

|Csk|
|Cs| × σ(Csk) (1)

where Cs is the data set of STLF, Csk is the kth subset of STLF, σ(Csk) is the standard
deviation of the kth subset of STLF as a measure of error and σ(Cs) is the standard
deviation of Cs.

Step 2: The tree is constructed with these binary variables. Overfitting increases as the
size of the tree grows. Here, the data overfitting problem will be overcome.

Step 3: To reduce the problem of overfitting, there is a pruning process and discontinu-
ities are compensated.

Step 4: The tree smoothing process is included to balance sharp discontinuities that
take place between linear adjacent models at the end nodes (leaf) of the pruned tree.

Step 5: Output is produced as a tree model.

4. Input Feature Selection Using the Proposed HFS Algorithm

Based on Darwin’s theory of natural evolution and the genetics of survival of the fittest,
the genetic algorithm (GA) is one of the elite and heuristic search techniques and is used to
produce useful solutions to optimization problems. The assumption of the relationships
between characteristics involved was not considered in this approach when searching the
space for FS. GA can easily encode decisions as Boolean value sequences, permitting the
feature space to be explored by retaining the choices that support the classification task.
Due to its inherent randomness, it also prevents local optimums concurrently. To solve
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optimization problems, it also makes use of operators inspired by natural evolution viz.
selection, mutation and crossover.

Regression trees are traditionally used to predict data provided by the values of the
function. A novel HFS algorithm based on EGA and the random forest method was used in
this work. In EGA, 20% of the elite population is transferred to the next generation, through
which the next generation has a feature set population whose classification accuracy is no
less than that of the previous generation. The stratified 10-fold cross-validation (10-FCV)
classification accuracy of a given dataset is used as the fitness function. In the present
problem, strings of 1 s and 0 s are taken as chromosome segments, with 0 signifying that the
feature corresponding to the index is not selected and 1 signifying that the relevant feature
is selected. The length of the string is equal to the number of features in the dataset. The
stratified 10-FCV classification accuracy (which is measured by means of the WEKA data
mining workbench), using a random forest classifier, is all the fitness function computation.
Classification accuracy refers to an approximation of the correctly identified number of
instances. Roulette wheel selection is used here, and then a single-site crossover is carried
out with a probability of 0.7 at each step. Mutation also occurs with a probability of 0.005.
In addition, 20% of the elite population is transferred to the next generation. The best
collection of features selected through final combination or encoding of chromosomes is
given for STLF. The flowchart of the proposed novel HFS algorithm is depicted in Figure 3.
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5. Results and Discussions

For STLF, half-hourly historical load data for New South Wales, Australia, and weather
data for Sydney for the period January 2014 to June 2016 were obtained from the Australian
Energy Market Operator (AEMO) and weatherzone.com.au, respectively. Humidity, wind
speed and temperature have been considered as weather data. The EGA algorithm is run
in MATLAB, while the formation of optimal tree is carried out in WEKA software. WEKA
software is interfaced with MATLAB to perform all regression tree calculations. Final
forecasting is carried out using MATLAB. Table 2 lists the input variables affecting the
half-hourly STLF.

Table 2. Input features affecting half-hourly STLF.

Class of Input Feature Timing of Input Feature Name of Input Feature

Load (Ld)

Ld(K-00.30) Ld1
Ld(K-01:00) Ld2
Ld(K-01:30) Ld3
Ld(K-24:00) Ld4
Ld(K-23:30) Ld5
Ld(K-23:00) Ld6

Wind speed (Ws)

Ws(K-00.30) Ws1
Ws(K-01:00) Ws2
Ws(K-01:30) Ws3
Ws(K-24:00) Ws4
Ws(K-23:30) Ws5
Ws(K-23:00) Ws6

Temperature (Tem)

Tem(K-00.30) Tem1
Tem(K-01:00) Tem2
Tem(K-01:30) Tem3
Tem(K-24:00) Tem4
Tem(K-23:30) Tem5
Tem(K-23:00) Tem6

Humidity (Hy)

Hy(K-00.30) Hy1
Hy(K-01:00) Hy2
Hy(K-01:30) Hy3
Hy(K-24:00) Hy4
Hy(K-23:30) Hy5
Hy(K-23:00) Hy6

Hour timing (HTo) HTo(K-00.00) HTo

Each data set for STLF has 25 input features and a total of 2016 data sets were used in a
training set to forecast the electricity load. The results derived from the proposed study are
explained in two parts—the importance of FS is discussed in the first part and the various
performance measures to compute the forecast accuracy is presented in the second part.
The input features set for FS, which affects STLF, are taken from Table 2 and forecasting
is carried out on the concept of similar week. Data sets were considered on the basis of
similar weeks. Each data set consists of six weeks, i.e., for a given week to be forecasted,
the preceding and successive two weeks along with the same week corresponding to
the previous year were considered, while one preceding week of the same year was also
included. For instance, if the input FS or forecasting of the electricity load is to be done for
the week of 15–21 January 2016, the training set would consist of the data corresponding to
8–14 January 2016, 15–21 January 2015, 8–14 January 2015, 1–7 January 2015, 22–28 January
2015 and 29 January–4 February 2015. To obtain the FS, the accuracy of the data set for the
proposed HFS was computed using 10-FCV. All the data were tested with this algorithm at
least once. Thus, FS is the only algorithm that can be used to perform feature analysis.
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Table 3 shows the number of times a particular input feature was selected out of the
total 36 times for which the input FS was made.

Table 3. Input feature selected (year-wise) for STLF.

Name of Input Feature Number of Times
Input Feature Selected Name of Input Feature Number of Times

Input Feature Selected

Ld6 17 Tem6 11
Ld5 12 Tem5 08
Ld4 12 Tem4 12
Ld3 22 Tem3 18
Ld2 29 Tem2 12
Ld1 36 Tem1 13
Ws6 02 Hy6 07
Ws5 07 Hy5 10
Ws4 09 Hy4 12
Ws3 12 Hy3 12
Ws2 11 Hy2 14
Ws1 07 Hy1 12

HTo 36

It is clear from Table 3 that the input feature load of the present-day (Ld1), (Ld2) and
(Ld3) are significant variables and are selected 36, 29 and 22 times, respectively. The variable
wind speed of the present day (Ws3) is selected more often than the previous day. Moreover,
the input feature temperature of the present day (Tem3) is often selected as compared to the
previous day of the present day. On the other hand, the humidity of the present day (Hy2)
was found to be selected more often than the previous day. The input feature hour type
(HTo) is selected in all the runs, i.e., 36 times.

The effects of features can also be analyzed according to seasons. Table 4 shows the
season-wise significance of different features. From Table 4, it can be seen that Ld2, Ld1,
Ws2, etc., are the features that assume more significance during the winter season. Ld2,
Ls3, etc., are the features that assume higher priority during the spring season. Ld2, Tem3,
etc., are the features that assume higher priority during the summer season. The input
feature load of the present day Ld1 and hour type HTo seems to be a feature, regardless
of the season. These analyses point out the relative significance of the feature in terms of
seasonal variations.

Table 4. Input feature is selected (season-wise) for STLF.

Name of Input Feature Summer Winter Spring

Ld6 06 06 05
Ld5 03 03 06
Ld4 03 03 06
Ld3 06 07 09
Ld2 09 09 11
Ld1 12 12 12
Ws6 00 01 01
Ws5 03 04 00
Ws4 02 05 02
Ws3 02 06 04
Ws2 03 07 01
Ws1 02 02 03
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Table 4. Cont.

Name of Input Feature Summer Winter Spring

Tem6 03 03 05
Tem5 02 05 01
Tem4 04 06 02
Tem3 08 06 04
Tem2 02 05 05
Tem1 06 02 05
Hy6 01 04 02
Hy5 03 02 05
Hy4 05 04 03
Hy3 04 05 03
Hy2 06 05 03
Hy1 02 06 04
HTo 12 12 12

Performance measures viz. mean absolute percentage error (MAPE), error variance
(EV), root mean square error (RMSE) and mean absolute error (MAE) were used to assess
the numerical accuracy of the load forecasting [41].

The average error of each method was calculated week-wise for all seasons. Table 5
depicts the comparison between the M5P + FS approach and five other approaches (J48,
Bagging, J48 + FS, Bagging + FS, and M5P) in terms of various performance measures viz.
MAPE, MAE, EV and RMSE. The overall average performance for each method is also
summarized in the last column. The results show that the M5P + FS method performs
better than the rest of the methods used for comparison.

The error of electricity load is evaluated for the four prior weeks and at regular
intervals of half an hour to calculate the confidence interval for one day. Afterward, half-
hourly standard deviations (∆) and (2∆) were computed for 95% confidence interval. The
lower and upper limits are computed as follows:

Lower Limit = Forecast value − 2∆

Upper Limit = Forecast value + 2∆

Results corresponding to the proposed methodology for the winter, spring and sum-
mer for the Australian electricity market are shown in Figures 4–6, respectively. Table 5
clearly shows that the proposed method (M5P + FS) performs better than other methods in
terms of all performance measures in all seasons.

Table 5. Performance of proposed methodology in terms of various performance measures.

Sr. No. Methodology Name of Performance
Measures

Season

MeanWinter (1–7
August 2015)

Spring (1–7
September 2015)

Summer (1–7
February 2016)

1

J48

MAPE

1.66 1.82 1.42 1.63
J48 + FS 1.37 1.53 0.95 1.28
Bagging 1.21 0.98 0.83 1.01

Bagging + FS 1.16 0.93 0.80 0.96
M5P 1.07 0.99 0.64 0.90

M5P + FS 0.67 0.70 0.61 0.66

2

J48

MAE

147.39 138.43 108.40 131.41
J48 + FS 120.43 114.05 73.79 102.76
Bagging 106.51 78.28 64.05 82.95

Bagging + FS 102.43 74.52 62.02 79.66
M5P 93.73 80.15 49.50 74.46

M5P + FS 56.54 55.42 47.76 53.24
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Table 5. Cont.

Sr. No. Methodology Name of Performance
Measures

Season

MeanWinter (1–7
August 2015)

Spring (1–7
September 2015)

Summer (1–7
February 2016)

3

J48

RMSE

215.63 221.77 140.64 192.68
J48 + FS 190.14 164.95 95.13 150.07
Bagging 151.66 108.72 81.76 114.05

Bagging + FS 147.97 100.75 78.41 109.04
M5P 131.17 107.06 63.91 100.71

M5P + FS 73.00 73.75 60.33 69.03

4

J48

EV

0.00033 0.00055 0.00013 0.00034
J48 + FS 0.00029 0.00026 0.00006 0.00020
Bagging 0.00016 0.00009 0.00004 0.00010

Bagging + FS 0.00015 0.00007 0.00004 0.00009
M5P 0.00011 0.00008 0.00003 0.00007

M5P + FS 0.00003 0.00004 0.00002 0.00003
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Table 6 shows the percentage improvement attained with the proposed method
(M5P + FS) over the other approaches. It is noted that the proposed methodology re-
sulted in a 59.51% improvement compared to J48. It is also worth noting that M5P + FS has
enhanced forecast accuracy over all considered methods.

Table 6. Improvement of different performance measures using M5P + FS compared to other
approaches for STLF.

Sr. No. Methodology Mean MAPE Percentage Improvement (%)

1. M5P +FS 0.66 -
2. J48 1.63 59.51
3. J48 + FS 1.28 48.44
4. Bagging 1.01 34.65
5. Bagging + FS 0.96 31.25
6. M5P 0.90 26.67

Sr. No. Methodology Mean MAE Percentage Improvement (%)

1. M5P +FS 53.24 -
2. J48 131.41 59.48
3. J48 + FS 102.76 48.19
4. Bagging 82.95 35.81
5. Bagging + FS 79.66 33.16
6. M5P 74.46 28.50

Sr. No. Methodology Mean RMSE Percentage Improvement (%)

1. M5P +FS 69.03 -
2. J48 192.68 64.18
3. J48 + FS 150.07 54.01
4. Bagging 114.05 39.48
5. Bagging + FS 109.04 36.70
6. M5P 100.71 31.46

The daily MAPEs corresponding to M5P and M5P + FS are calculated in Table 7. The
graphical representations of daily MAPE for the all seasons are depicted in Figures 7–9.
These results show that the performance of M5P+ FS is completely superior to the perfor-
mance of M5P.
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Table 7. Daily MAPE for all seasons corresponding to M5P and M5P + FS.

Sr. No.
(1–7 Aug 2015) Winter (1–7 Sep 2015) Spring (1–7 Feb 2016) Summer

M5P M5P + FS M5P M5P + FS M5P M5P + FS

1 0.95 0.69 1.12 0.53 0.66 0.63
2 1.60 0.92 0.98 0.54 0.61 0.54
3 1.26 0.94 1.00 0.66 0.48 0.49
4 0.92 0.60 0.92 0.60 0.58 0.63
5 1.09 0.58 0.80 0.71 0.71 0.65
6 0.90 0.48 0.83 0.82 0.65 0.61
7 0.79 0.46 1.26 1.07 0.75 0.73

5.25 1.07 0.67 0.99 0.70 0.64
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To validate the proposed model, the MAPE values presented in this work were com-
pared with those reported in [42] using another method and considering similar data sets.
This will certainly help readers to enhance their understanding of this work since MAPE is
one of the most commonly used key performance indicators to measure forecast accuracy
(i.e., the lower the MAPE, the higher the forecast accuracy). The results listed in Table 8
clearly show that the proposed method performed better than previously reported methods.

Table 8. Validation of proposed method.

Sr. No. Duration Methodology MAPE

1
1–7 December 2015

Random Forest [42] 1.02
2 Proposed Algorithm (M5P + FS) 0.70

6. Conclusions

In this paper, a day-ahead STLF employing M5P and a novel HFS approach based
on EGA and the random forest method was presented. STLF was implemented for a
whole year (in a week-wise manner for each day and for all seasons) with FS and WoFS.
Performance measures such as MAPE, MAE, EV and RMSE were computed season-wise,
week-wise and day-wise. The proposed methodology (M5P + FS) consists of two stages;
i.e., in the first stage, FS is performed using the HFS algorithm and then in the second
stage, forecasting is carried out by forecasters (M5P, Bagging and J48). For STLF with FS
and WoFS, the results obtained with the M5P forecaster model were been compared with
those obtained with J48 and Bagging. It is evident from the simulation results that the
FS approach provides better short-term load forecasts over the WoFS approach and M5P
outperforms J48 and Bagging. It is also evident that M5P + FS can offer improved accuracy
(MAPE) in the range of 34.65 (for Bagging) to 59.51 (for J48).
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Abbreviations

AEMO Australian Energy Market Operator
ANN Artificial Neural Network
ARMA Auto Regressive Moving Average
CLC Closed Loop Clustering
CNN Convolutional Neural Network
DE Differential Evolution
DRBFNNs Decay Radial-Basis Function Neural Networks
DRM Dynamic Regression Model
ELM Extreme Learning Machine
EGA Elitist Genetic Algorithm
EV Error Variance
FCV Fold Cross-Validation
FS Feature Selection
GA Genetic Algorithm
GENCOs Generation Companies
HFS Hybrid Feature Selection
HWT Holt Winters Taylor
IEMD Improved Empirical Mode Decomposition
IFS In Function Systems
LM Levenberg Marquardt
LR Lasso Regression
LSTM Long Short Term Memory
MABC Multi-Species Artificial Bee Colony
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multi Layer Perception
ML Machine Learning
NSW New South Wales
RMSE Root-Mean Square Error
SDR Standard Deviation Reduction
STLF Short-Term Load Forecasting
SVD Singular Value Decomposition
SVR Support Vector Regression
SVM Support Vector Machine
WoFS Without Features Selection
WT Wavelet Transform
10-FCV 10 Fold Cross Validation
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