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Abstract: Deploying Internet of Things (IoT) on low-power lossy wireless sensor/actuator networks
(LLN) in harsh industrial environments presents challenges such as dynamic link qualities due to
noise, signal attenuations and spurious interferences. However, the critical demand for industrial
applications is reliability of data delivery on low-cost low-power sensor/actuator devices. To address
these issues, this paper proposes a fully autonomous scheduling approach, called Auto-Sched, which
ensures reliability of data delivery for both downlink and uplink traffic scheduling and enhances
network robustness against node/link failures. To ensure reliability, Auto-Sched assigns retrans-
mission time slots based on the reliability constraints of the communication link. To avoid collision
issues, Auto-Sched creates an upward pipeline-like communication schedule for uplink end-to-end
data delivery, and a downward pipeline-like communication schedule for downlink scheduling. For
enhancing network robustness, we propose a simple algorithm for real-time autonomous schedule
reconstruction, when node or link failures occur, with minimal influence on communication overhead.
Performance evaluations quantified the performance of our proposed approaches under a variety of
scenarios comparing them with existing approaches.

Keywords: IoT networks; LLN; autonomous scheduling; reliability; robustness; real-time

1. Introduction

The Industrial IoT (IIoT) wireless sensor actuator networks (WSANs) can be grouped
into four areas: monitoring, control, optimization, and autonomy [1]. Examples include
complex monitoring and control processes such as factory automation [2], distributed and
process control [3,4] such as smart detection of liquid/gas leakage, and smart buildings.
These applications require low-cost sensor or actuating devices that must operate unat-
tended for years on modest batteries. This fact limits buffering capability, computational
power, and communication range, and accordingly, the data rate is limited to 250 kbps in
the 2.4 GHz band. Consequently, IIoT WSANs are prone to dynamic link quality issues
and spurious interferences, whereas the critical demands in harsh industrial environments
are reliability and resilience to node or link failure.

The networks mentioned above are summarized as low-power and lossy networks
(LLN) exhibiting a set of challenging resource allocation problems. In the light of the
characteristics of LLNs, the Routing Over Low power and Lossy networks Working Group
(ROLL WG) within the Internet Engineering Task Force (IETF) [5] has designed and spec-
ified an IPv6 routing protocol for LLNs (RPL) [6]. RPL consists of a set of metrics and
constraints suitable for routing over limited-memory and limited-energy LLNs. Specifically,
the objective function (OF) in RPL defines a parent selection metric, which enables each
node (or device) to select its preferred parent among the neighbor nodes and forward its
packet toward the gateway. Minimum rank with hysteresis objective function (MRHOF) [7]
is the most commonly used OF that leverages link reliability. In addition, contention-free
IEEE 802.15.4e time-synchronized channel hopping (TSCH) [8] has been established as a
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standard for highly reliable and deterministic time and channel scheduling in LLNs. TSCH
reveals time-slotted frequency hopping potentials for offering stringent timing require-
ments. However, in order to meet application specific constraints, the scheduling algorithm
is left to the vendor.

However, even when using time division multiple access (TDMA), transmission errors
occur because of the signal-to-noise ratio (SNR) changes due to harsh and unstable indus-
trial environments. To tackle this issue, a promising approach is packet retransmission,
which arranges reservations of redundant time and frequency to fulfill constraints given by
reliability and delay. This mechanism has already been built into most existing products,
wireless network standards, and proposed approaches such as [9–18]. The schedulers can
be categorized into centralized approaches [10–12], where a central entity provides opti-
mality periodically, and decentralized and autonomous scheduling approaches [9,13–19]
that enable each node to decide on a reliable schedule autonomously, with minimum
control packet exchange. Our contribution is primarily motivated by multiple drawbacks of
existing approaches. For instance, the exponential computational complexity issues of the
centralized scheduling approaches may result in delay issues for periodic scheduling recon-
structions or when faults are detected. In addition, for a majority of existing autonomous
scheduling approaches, the delay issues are a result of the fact that each node can forward
a single packet in each scheduling period, leading to long end-to-end response times and
packet drops. Additionally, current autonomous approaches exhibit a lack of support
for retransmission mechanisms. By omitting the impact of link reliability on successful
transmissions, these approaches implicitly assume that all links have ideal and flawless
quality, thereby posing risks of packet drops in practical scenarios.

To tackle the above issues, the primary objective of this study is to present an au-
tonomous scheduling approach, denoted as Auto-Sched, that enhances reliability, efficiency,
and resiliency against node and link failures. The main contributions of Auto-Sched can be
summarized as follows.

• Auto-Sched enhances the reliability of data transmissions. To do so, it provides
dedicated slots for autonomous transmission and retransmission scheduling. Each
node autonomously computes its transmission and reception time slot scheduling
based on hop counts to the gateway, its unique identifier (MAC address or a unique
node ID [14]), the current link quality and the worst-case link quality constraints in
the network. For uplink schedules, our methodology to ensure allocating collision-
free time slots is to create parallel pipeline-like communication schedules for all
nodes, where each pipeline in the scheduling table starts from the slot allocated to
the source node and ends at the slot allocated to the gateway. Similarly, for downlink
schedules, parallel downward pipeline-like communication schedules are constructed,
starting from the slot allocated to the gateway and ending at the slot allocated to
the corresponding destination actuator node. Our performance analysis in Section 5
demonstrates that Auto-Sched significantly enhances the packet delivery ratio (PDR)
and mitigates end-to-end delays across varying network sizes and packet generation
intervals, compared with widely adopted techniques in [13,15,17].

• Auto-Sched enhances robustness against network changes. We propose a simple
algorithm that enables a node aimed at changing the parent (due to link or node
failures) or joining the network, delivering its request to intermediate nodes through
the new path to the gateway within, at most, two slotframes. To do so, Auto-Sched
allocates a time slot for each individual node in the network, to receive collision-free
join or parent change requests. Once the request is passed through the intermediate
nodes, the time and frequency scheduling are computed autonomously by Auto-Sched,
enhancing resiliency against faults and minimizing packet drops. This means that, a
multi-path or multicast approach is no longer needed to overcome node or link failure
issues. This feature of Auto-Sched enables each node to flawlessly change parent
and construct new routes in the event of link or node failure, with minimal influence
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on communications and computations. Our analysis shows superior performance in
reducing delay and packet drop compared with approaches in [13,15].

The remainder of this paper is organized as follows. Section 2 describes the related
works. Section 3 introduces the system model and the problem definition. Section 4 de-
scribes our proposed approach. Section 5 presents the evaluation results, with a conclusion
following in Section 6.

2. Related Works

By leveraging network parameters and attributes maintained by all field devices, au-
tonomous scheduling eliminates the need for dedicated communication between neighbors
or reliance on a central entity, thereby mitigating energy and bandwidth consumption over-
head. However, the inherent simplicity of the proposed approaches presents challenging
issues that limit their applicability to restricted domains.

Collision issues in dedicated slots: Orchestra in [14], as the pioneering autonomous
scheduling approach, allocates a dedicated time slot for each node based on its unique
identifier. The sender-based policy of Orchestra allocates a single transmitting slot to
each node, and the receiver-based policy dedicates a single receiving slot to each node.
However, collision and hidden node problems remain prevalent in the receiver-based
model, and delay and packet drop issues arise as inevitable challenges in the sender-based
model. The main reason is that, in the receiver-based model, multiple child nodes may
simultaneously transmit packets to the parent node, while in the sender-based model, each
node is restricted to a single transmitting slot in each scheduling period.

Collision issues: The approaches in [17,18] enhance Orchestra’s receiver-based schedul-
ing policy by adapting the static schedule of Orchestra to high traffic load or traffic bursts.
The approach in [17], called OrchEx in this paper, mainly focuses on the gateway-immediate
child nodes that are responsible for forwarding network traffic loads to the gateway. When
the buffer of a child node exceeds a given threshold, it alerts the gateway about potential
congestion. The gateway responds by adding more reception time slots for that particular
child node, by hash function. The quantity of additional allocated time slots is proportional
to the size of the sub-tree rooted at the child node. This approach can lead to scalability
issues, since it mitigates the collision issue solely at the gateway side, while the collision
issue persists in the rest of the nodes in the network. In the approach introduced in [18],
denoted as OSCAR, a super-slotframe consisting of multiple slotframes is defined. In the
initial slotframe, the Orchestra receiver-based scheduling policy is implemented, while
in the k’th slotframe, nodes with a rank of k are excluded from the scheduling allocation,
resulting in higher energy efficiency for low traffic loads. In the RPL standard, rank depicts
the distance of the node from the gateway. The number of reception time slots allocated
for the nodes at each rank is fixed and does not change with traffic load or link reliability.
Therefore, an insufficient number of time slots can be allocated to a node in case of high
traffic load or unreliable links.

ALICE in [16] mitigates the collision and hidden node issues inherent in Orchestra,
by allocating a unique cell for each directional link. The approach in [13] enhances the
reliability of Orchestra, primarily by allocating excess dedicated transmitting slots for
retransmissions by each node. Furthermore, the authors leverage graph routing as an
alternative to the conventional RPL protocol, thereby introducing path diversity and
improving robustness against node or link failures. This approach is called SchedEx in this
paper. Despite the notable improvements in SchedEx, and as demonstrated by simulation
results in Section 5, the challenges of delay and packet drop issues still persist. This fact
stems from the limitation in assigning a single slot for a node to transmit a single packet in
each scheduling period.

Delay and packet drop issues: Escalator in [15] targets the above delay and packet
drop issues by sequential slot assignment along the transmission path, starting from the
source node to the gateway. This strategy ensures that all nodes autonomously possess
slots to forward the received packets, and each received packet is promptly forwarded in
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the next immediate slot. To construct the reception/forwarding schedule of each child node
in the sub-tree, the node uses only the unique identification of child nodes and its hop-
count. Consequently, delay and packet drop issues are effectively resolved as packets are
consistently and sequentially received and forwarded by intermediate nodes throughout
the path to the gateway. This strategy leads to packet delivery to the gateway at the same
scheduling interval as the packet is generated.

Reliability issues for data packets: In most of the above approaches, the retransmission
opportunities for ensuring successful delivery of application data from sensor nodes to
actuator nodes are not investigated. Omitting the impact of link loss implies that the link
quality is assumed to be continuously ideal at each time instant. However, the connectivity
between each pair of nodes can be impacted by external interference or due to path loss
and multipath fading phenomena of wireless links in harsh industrial environments.

Long delay posed on RPL layer configurations: In addition to scheduling application
data traffic, the majority of the aforementioned approaches also address scheduling the
synchronization traffic (i.e., enhanced beacons or EB control packets) and routing update
traffic (RPL control packets). To do so, a prioritized slotframe configuration is proposed,
wherein a slotframe with highest priority is specified for scheduling EB packets, and its
length corresponds to the period of EB packets. Additionally, a slotframe with next priority
is specified for routing control packets, and its length aligns with the RPL update period.
Finally, a data packet slotframe with its length configured to the application data period
has the lowest priority. These slotframes run in parallel and can lead to collisions between
EBs, RPL control packets and application data packets. Consequently, at a time slot where
collisions occur, EB control packets can interrupt the transmission of both routing control
packets and data packets, while routing control packets can interrupt the transmission of
data packets.

Orchestra drops the lower-priority packet when a collision occurs. The autonomous
approach in [13] autonomously defers all traffic with lower priority in conflict to a conflict-
free slot within the slotframe, avoiding forced packet drops. Therefore, the length of the
application data slotframe must be long enough to accommodate deferrals resulting from
all types of collisions. Escalator in [15] addresses this challenge by deferring the colliding
data packets to the subsequent slotframe. In addition, several restrictions are applied to the
length of application data and routing slotframes to ensure that colliding data packets can
be successfully transmitted in the next slotframe, with no collisions.

In all above approaches, despite the high priority of RPL control packets, a single
shared slot within the routing slotframe is allocated for all sensor and actuator devices, to
broadcast or unicast their routing update control packets. In this case, collisions between
control packets increase significantly at network bootstrap or when any changes occur in
the network, considering that in such phases, several control packets are generated to notify
the neighbors about instabilities or joining requests. Such collisions lead to delays in packet
delivery and ultimately cause high packet drops. In addition, an urgent RPL message from
a node (for instance, notifications of congestion, link/node failure or join requests) may
not be received by neighbor nodes, as both sender and receiver nodes select a random
channel within this single time slot to send and listen, respectively. This problem becomes
more significant, as this request must travel through the path toward the gateway using a
shared slot in the RPL slotframe. Consequently, this issue leads to long delays in handling
dynamic network changes or the scalability of the network to accommodate new nodes.

In contrast to the above approaches, Auto-Sched schedules retransmissions for un-
reliable links, thereby taking into account a comprehensive network model specifically
designed for reliability-critical industrial WSANs. In addition, the slot dedicated to RPL
control packets by Auto-Sched mitigates the issues related to collisions and delays, leading
to a minimum in the required time for a node to successfully handle changes in the network.
Our contribution to the handling of network changes is similar to the approach in [19],
wherein a notification is propagated to all nodes responsible for handling the changes in the
network, and then the responsible nodes generate a schedule for handling the disturbance.
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However, in Auto-sched, the nodes autonomously handle the issue, and packet drop issues
are avoided, while the approach in [19] employs a distributive carrier sense multiple ac-
cess/collision avoidance (CSMA/CA)–based approach, leading to contention for network
resources and packet drop issues. Auto-Sched achieves this aim with minimum delay,
as shown in Section 5, an aspect that has not been addressed by prior works and could
potentially lead to long delays when utilizing the single shared slot in a routing slotframe.

Discussions

An overview of all of the discussed schedulers is presented in Table 1. Readers
interested in more details are referred to [20] and references therein. In the subsequent dis-
cussion, we shall examine the performance results achieved in corresponding manuscripts.

Table 1. Overview of the related works.

Scheduler Strong Points Limitations

Orchestra Receiver-based [14] Simplicity, Low bandwidth, Low Energy
consumption

Collision, hidden node, congestion and packet
drop issues.

Orchestra Sender-based [14] Delay, congestion and packet drop issues.

OrchEx [17] Simplicity, Improved collision and packet drop
issues compared to Orchestra Receiver-based.

Collision, delay, congestion and packet drop
issues persists in intermediate nodes that do
not constitute the child nodes of gateway.

OSCAR [18]
Simplicity, Lower bandwidth and energy
consumption compared to Orchestra
Receiver-based.

Fixed amount of time slots are allocated to each
node. Thus, for unreliable links or for high
traffic loads, it may define insufficient resource
allocation, while for high link qualities or for
low traffic load, it may define unnecessary
resource allocation.

ALICE [16]
Improved collision and packet drop issues
compared to Orchestra. Supports both
downlink and uplink traffic.

A single time slot is allocated to each
communication link. Thus, it can result in
insufficient resource allocation.

SchedEx [13]
Improves collision and packet drop issues
compared to Orchestra Sender-based. Higher
reliability in routing layer.

Fixed bandwidth is allocated to each node,
which cannot be adopted to low or higher link
quality constraints.
Not usable with RPL standard.

Escalator [15]
Sufficient amount of bandwidth is granted to
each node to deliver all buffered packets to the
gateway within a single slotframe.

The resource allocation does not deal with links
reliability, and an ideal link quality is assumed.
No support for downlink traffic.

The simulation results, as detailed in [17], show that both OrchEx and Orchestra
achieve 100% PDR in a network consisting of 20 nodes, provided that the packet generation
interval exceeds 12 s. However, when subjected to higher traffic load, OrchEx demon-
strated nearly 10% higher performance. Notably, in comparison to OSCAR, where the
packet generation interval is one packet every minute, OrchEx shows higher performance.
Specifically, within networks encompassing fewer than 60 nodes, OrchEx outperforms
OSCAR in terms of packet delivery delays. However, as network size expands from 80
to 100 nodes, it exhibits the same performance as that of OSCAR. The authors relate this
to less congestion in intermediate nodes in OrchEx, when network size is small enough,
leading to the outperformance by OrchEx.

ALICE performance was simulated against Orchestra, in a network comprising
68 nodes, when traffic load increased from one packet to six packets per minute. AL-
ICE maintains higher PDR under a heavy traffic load, since it provides more transmission
and less contention and collisions. It provides slightly longer latency than Orchestra under
light traffic load due to a larger slotframe size. However, as the traffic load increases,
ALICE incurs better latency. The resulting lower packet drops in ALICE enable RPL to
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provide stable topology, resulting from less parent switches (high packet drops initiate
parent switch) and lower routing control packet communications.

The conducted simulations in [13] assess the performance of SchedEx in comparison to
Orchestra within a network comprising 150 nodes. The network involved 20 data flow sets,
and the packet generation interval was set at 10 s. The results revealed that, on average,
SchedEx achieves 16.3% higher PDR than Orchestra. This is mainly attributed to the
provision of additional transmission slots assigned to each node, which serves to mitigate
link unreliability. Furthermore, the utilization of a graph played a key role in enhancing the
performance. In a network consisting of 36 nodes, Escalator shows 100% PDR with packet
generation intervals of both 20 and 5 s. However Orchestra, with a slotframe containing
37 time slots, exhibited a significant packet drop, decreasing from 90% to 50%, respectively.

Overall, different protocols excel in different scenarios. For example, Orchestra, Or-
chEx and OSCAR achieve reasonable PDR ratios in low traffic settings or smaller networks.
ALICE, SchedEx and Escalator demonstrate higher scalability to network size or traffic
loads, as they offer enhanced reliability in more demanding networks. The simulation
results in Section 5 shows that Auto-Sched results in higher performance compared to
SchedEx and Escalator, since it is designed to ensure end-to-end delivery of each individual
packet under a generalized system model that supports unreliable links.

3. Preliminaries
3.1. System Model and Notations

In TSCH, the communication takes place identically in periodic cycles called slotframes.
Each slotframe is divided into NS number of 10 ms-sized time slots, and the total length
of the slotframe is LS = NS. The total number of timeslots that have elapsed since the
start of the network or an arbitrary start time determined by the Personal Area Network
(PAN) coordinator is called the Absolute Slot Number (ASN). It increments globally in
the network at the beginning of each time slot, and is used globally by devices as the slot
counter. Each slot is long enough for the transmitter to send a maximum-length packet
and for the receiver to send back an acknowledgment. Initially, nch ≤ 16 different channels
are available for communication. Each channel is identified by a channel-offset, which is
an integer value in the range [0, 15]. Each field device is assumed to be equipped with a
half-duplex radio transceiver that cannot transmit and receive concurrently. As each device
supports communications on multiple channels, multiple node pairs communicate at the
same time slots using different channel offsets, thereby increasing the network capacity.

Auto-Sched partitions the slotframe into two distinct sections, as seen in Figure 1b: the
first section, called the uplink section, is allocated for uplink traffic scheduling, enabling
convergecast communications from sensor nodes to the gateway (or controller). The length
of this section is denoted by LS

Up. Similarly, the second section, called the downlink section,
is designated for downlink traffic scheduling, facilitating the distribution of the control
data generated by the controller to the actuators¸ and the length of this section is denoted
by LS

Dn.
We adopt the system architecture of a typical WSAN modeled as a directed acyclic

graph (DAG) A = (V,E), where V = {G, v1, v2,. . ., vN} is the set of all sensor and actuator
devices, arcs in E are communication links, and G is the gateway node that acts as a
controller, as seen in Figure 1a. In the rest of this paper, we will use the terms gateway and
controller interchangeably. This DAG is constructed by the RPL protocol, the procedure of
which is explained in Section 3.2. All sensor and actuator devices are wirelessly connected
to a controller node directly or through multi-hop routing. Each link in E is identified by
an ordered pair of nodes, e.g., vivj, where vi and vj are the transmitting receiving nodes,
respectively. The link vivj has an error rate (or loss rate) ε(vi,vj), which is the probability that
a transmission over link vivj does not succeed. Thus, ETX

(
vi, vj

)
= 1

1−ε(vi ,vj)
represents the

number of expected transmission/retransmissions for successfully transmitting a packet
between vi and vj. We assume that the maximum ETX value is given from the worst possible
link quality between two nodes, and we denote it by ω = max

(
ETX(vi, vj)

)
.
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consisting of NS
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Dn time slots in uplink and downlink sections, respectively.

A sensor node periodically collects sensing information and sends the generated data
to the central controller, an actuator device periodically receives the optimum course of
actions from the controller, and both devices support multi-hop routing. Two links conflict
with each other if they share a common sender or receiver. The conflicting links cannot
share the same time slot. We shall denote by CNF(vi,vj) the set of all links conflicting with
vivj, e.g., CNF(v1, G)={v2v1, v4G, Gv5} in Figure 1a. Two links interfere with each other if
the receiver or transmitter node of one link can overhear transmissions by the sender of the
other link. The interfering links cannot share the same communication cell. We shall denote
by INF(vi,vj) the set of all links interfering with vivj. The parent node of vi is denoted by
Pr(vi), and the set of child nodes in the sub-tree of the network rooted at node vi is denoted
by SG-Tree(vi).

Each source sensor node vS with HS hop-counts from the gateway periodically gener-
ates a packet τS. τS is periodically released at the beginning of each slotframe and travels
through its designated uplink path to controller node G. The deadline for delivery of this
packet is at the end of LS

Up. The transmission of τS along the edge vpvq, where vp is k hops
away from G, is denoted by τS,G

k. In Figure 1a, the transmissions of packets generated by
sensor nodes are inserted in the corresponding links. Accordingly, the controller node (or
gateway) periodically generates the controlling data packet τD destined for the actuator
node vD. This packet is periodically released at the beginning of LS

Dn, and it travels through
the downlink path toward vD. The deadline for delivery of this packet is at the end of LS

Dn.
The transmission of τD, along the edge vpvq, where vq is k hops away from G, is denoted
by τG,D

k.

3.2. Overview of RPL DODAG Construction

RPL is a distance vector protocol that constructs a destination-oriented DAG (DODAG)
based on a metric called rank, defined in OF. Specifically, rank depicts the accumulative cost
of each node toward the gateway. MRHOF defines link reliability as the metric for a node
to select its preferred parent among the neighbor nodes. To do so, the gateway initiates
the DODAG construction by broadcasting a DODAG information object (DIO) message
consisting of rank = 0, periodically. Upon receiving a DIO message, a node selects a parent
with highest link reliability among neighbors with lowest hop-count to gateway. Then, the
node broadcasts its DIO with its own accumulated rank with that of its selected parent.
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This process repeats at each node and continues until all of the nodes in the network join
DODAG to form a tree-structured topology.

The DIO broadcast period is controlled by trickle timer [21] to maintain a balance
between control message overhead and the freshness of routing information. A timer
varying from Imin to Imax is used to control the interval between two consecutive DIO
messages. Specifically, the trickle algorithm uses Imin as the first interval and then doubles
the size of the interval until it reaches Imax. If a node detects a change of its parent, selects a
new parent node, or receives a DODAG information solicitation message (DIS), it resets its
trickle timer to Imin to quickly update its rank to its neighbors. When a new node joins the
network and does not receive a DIO for a time out, it may send a DIS message to request a
DIO and discover the network metrics and constraints.

Upon selecting the parent, the sensor or actuator node initiates the transmission of
a destination advertisement object (DAO) message to its parent through the route to the
gateway. When changing the preferred parent due to link variation, a node sends a DAO
to the new preferred parent to set up a route and a no-path DAO to the old preferred
parent to remove the old downward route [16]. The DAO generated by node vi contains its
unique identifier. In Auto-Sched, this fact enables each intermediate node to autonomously
construct the reception and forward slots for packet τi. In Section 4.1, the construction of
uplink schedules is detailed after reception of a DAO. Subsequently, Section 4.2 describes
the procedure of constructing downlink schedules after receiving a DAO.

3.3. Problem Definition

The problem defined in this paper is to find a feasible and reliable schedule for all
of the transmissions of each packet along their respective designated paths. This means
that all packets must be scheduled before the end of the slotframe, and the hop-to-hop
retransmissions must ensure successful packet reception. Given the TSCH network A, the
length of slotframe LS, the set of transmissions of each packet in U, and the set of ETX of
the links in R, we would like to solve the following problem:

argminΓE(A, LS, R, U, nch) (1)

ASN
(

τk+1
vs,G

)
< ASN

(
τk

vs,G

)
, ∀vs (2)

ASN
(

τk
G,vD

)
< ASN

(
τk+1

G,vD

)
, ∀vD (3)

Di ≤ LUp
S , ∀τS, Di ≤ LDn

S , ∀τD (4)

Xp,q(t, ch) + Xm,n(t, ch) ≤ 1, ∀vmvn ∈ INF
(
vpvq

)
(5)

Yp,q(t) + Ym,n(t) ≤ 1, ∀vmvn ∈ CNF
(
vpvq

)
(6)

Zp,q(τi) ≤ ETX
(
vp, vq

)
, ∀τi, ETX

(
vp, vq

)
∈ R (7)

where Γ represents a schedule with maximum reliability. The constraints in Equations (2) and (3)
state that the transmission τi,j

k+1 must occur earlier than τi,j
k if it is uplink traffic, and the

transmission τi,j
k must occur earlier than τi,j

k+1 if it is downlink traffic. Equation (4) restricts
the end-to-end delays to the end of slotframe. The constraints in Equation (5) and Equation
(6) state that two interfering links cannot be scheduled in the same communication cell (t, ch)
(i.e., t’s time slot and ch’s channel) in the TSCH slotframe, and two conflicting links cannot
be scheduled in the same time slot t. The variable Xp,q(t,ch) is a binary decision variable
that is set to 1 when the transmission on the link vpvq is allocated to the communication
cell (t, ch), and 0 otherwise. Similarly, Yp,q(t) is a binary decision variable that is set to 1
when the transmission on the link vpvq is allocated to the time slot t, and 0 otherwise. The
constraint in Equation (7) ensures the successful delivery of each packet τi on the link vpvq,
where Zp,q(τi) denotes the number of retransmissions on link vpvq.
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4. Autonomous Scheduling for Control Systems

This section introduces the autonomous scheduling Auto-Sched to solve the problem
defined in Section 3.3. Auto-Sched defines two variations: Auto-SchedU and Auto-SchedD

for autonomous reliable transmissions and retransmissions for uplink and downlink sched-
ules, respectively. In the uplink direction, each intermediate node vi allocates 2ω timeslots
for each source sensor node vS ∈ SG-Tree(vi), where ω slots are allocated for receiving the
packet generated by vS and ω immediate next slots to forward it toward G. Similarly in the
downlink direction, each intermediate node vi allocates 2ω timeslots for scheduling the
packet generated by controller node G, where the first ω slots are allocated for receiving the
generated packet and ω immediate next slots to forward it toward vD. In both scenarios,
this consecutive allocation of reception and transmission slots results in a pipeline-shaped
schedule for each packet along its path.

This pipeline orientation along with ω autonomously allocated slots for transmis-
sion and retransmissions minimizes collisions and contention for resources, as shown in
next section, and enhances reliable data flow for critical applications where data accuracy
and integrity are crucial for making correct decisions. More importantly, as described
in Section 4.3, nodes can adjust their RPL paths based on change in the network, with-
out changing the pipeline shape or its position in the slotframe, resulting in minimum
communication, computation and route re-construction delay overhead.

4.1. Autonomous and Reliable Time Slot Allocation for Uplink Traffic

The notations used in this section are listed in Table 2.

Table 2. Definition of notations used for uplink scheduling.

Symbol Meaning Symbol Meaning

S(vS)

Set of time slots allocated to the
source sensor node S, to transmit
τS,G

1, to receive join requests and to
broadcast EBs.

RxR (vp, τS,G
k)

The set of time slots allocated to
intermediate node vp for receiving packet
τS, due to the worst-case link quality.

TxR (vS)
The subset of time slots in S(vS)
reserved for re-transmitting τS,G

1 to
pr(vS), in the worst-case link quality.

Rx(vp, τS,G
k)

The subset of time slots in RxR(vp, τS,G
k)

allocated to intermediate node vp for
receiving packet τS, due to the current
actual link quality.

Tx (vS)

The subset of time slots in TxR (vS)
used for re-transmitting τS,G

1 to
pr(vS), due to the current link
quality.

FdR (vp, τS,G
k)

The set of time slots allocated to
intermediate node vp for forwarding
packet τS, due to the worst-case link
quality.

J(vS)
The subset of time slots in S(vS) that
are utilized to receive join requests
such as DAO and DIS.

Fd (vp, τS,G
k)

The subset of time slots in FdR (vp, τS,G
k)

allocated to intermediate node vp for
forwarding the packet τS, due to the
current actual link quality.

B(vS)
A time slot in S(vS) that is utilized
to broadcast EB control packets.

Ch_Tx(vi)
The channel offset allocated to each node
vi to transmit the buffered packets.

Ch_Rx(vi)
The channel offset allocated to each node
vi to receive the data packets from child
nodes.

As Figure 2 illustrates, the upward pipeline-like schedule starts from the slots assigned
to source node vS. Each source sensor node reserves 2ω + 1 consecutive time slots in the
TSCH slotframe, where the first ω time slots for receiving unicast RPL control packets such
as DAO, the next slot is reserved to broadcast enhanced beacon (EB) control packets, and
the next ω time slots for transmission/retransmissions of the generated packet. For this
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purpose, Equation (8) defines the set of slots autonomously allocated to node vS, based on
the node identifier (S), the hop-count of vS to gateway (HS) and the value of ω:

S(vS) = {(2ω + 1)·S− HS·ω + mS |−(ω + 1) ≤ mS ≤ ω− 1}. (8)Energies 2023, 16, x FOR PEER REVIEW 11 of 22 
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Within the set S(vS), the slots in the set TxR(vS) are allocated for the purpose of
transmitting/re-transmitting the packet τS,G

1 to pr(vS) in the worst-case link quality:

TxR(vS) =
{
(2ω + 1)·S− HS·ω + mR

Tx(vS)
∣∣∣0 ≤ mR

Tx(vS) ≤ ω− 1
}

, (9)

Tx(vS) = {(2ω + 1)·S− HS·ω + mTx(vS)|0 ≤ mTx(vS) ≤ ETX(vi, pr(vi))− 1}, (10)

while the slots in the set Tx(vS) are utilized due to the actual link quality. The first ω slots
are utilized to receive join requests such as DAO and DIS, and the next slot for broadcasting
EB control packets. These designated slots are given in the set J(vS) and β(vS), respectively,
as follows:

J(vS) =
{
(2ω + 1)·S− HS·ω + mJR(vi)

∣∣−ω ≤ mJR(vS) < −1
}

, (11)

β(vS) = (2ω + 1)·S− HS·ω− 1 . (12)

The slots assigned for J(vS) enable reliability and determinism for DAO control pack-
ets, facilitating RPL operations in managing join or parent change requests. Section 4.3
elaborates on the utilization of J(vS) for reliable and deterministic parent change policy.

The gray colored slots in Figure 2 are the additional slots that each node reserves to
ensure collision-free communication for β(vS). This fact is elaborated later in Theorem 3.
Additionally, from Equations (11) and (12), it can be concluded that each node can calculate
J(vj) and β(vj) of each neighbor node vj, to receive and transmit EB and RPL control
packets, respectively.

The set of transmission time slots defined by Equation (9) implies that pr(vS) must
reserve all of the slots in TxR(vS) to receive τS,G

M from vS, where M = Hs. But pr(vS)
only turns on its receiver in the slots defined by Tx(vS), due to actual retransmissions
given from link ETX. Consequently, pr(vS) reserves the next consecutive ω slots, in order
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to forward τS,G
M. In general, each intermediate node vp, which is k hops away from

vS (Hp = k), autonomously allocates ω slots by Equations (13) and (14), in order to receive
the transmission τS,G

k+1 of packet τS:

RxR
(

vP, τk+1
S,G

)
=
{
(2ω + 1)j− k·ω + mR

Rx

(
vP, τk+1

S,G

)∣∣∣−ω ≤ mR
Rx

(
vP, τk+1

S,G

)
≤ −1

}
, (13)

Rx
(

vP, τk+1
S,G

)
=
{
(2ω + 1)S− k·ω + mRx

(
vP, τk

S,G

)∣∣∣−ω ≤ mRx

(
vP, τk

S,G

)
≤ −ω + ETX(vP, pr(vP))− 1

}
(14)

Therefore, the intermediate node vp forwards τS to the next ω slots defined by the set
Fd(vP, τS,G

k), as follows:

FdR
(

vP, τk
S,G

)
=
{
(2ω + 1)S− k·ω + mR

Fd

(
vP, τk

S,G

)∣∣∣0 ≤ mR
Fd

(
vP, τk

S,G

)
≤ ω− 1

}
, (15)

Fd
(

vP, τk
S,G

)
=
{
(2ω + 1)S− k ·ω + mFd

(
vP, τk

S,G

)∣∣∣0 ≤ mFd

(
vP, τk

S,G

)
≤ ETX(vP, pr(vP)) − 1

}
, (16)

From the above discussion, it can be seen that each sensor node vi autonomously
allocates six types of slots: (i) ω slots for transmission of its own generated packet by
Equation (9), (ii) ω − 1 slots for receiving join requests by Equation (11), (iii) one slot for
broadcasting EB control packets by Equation (12), (iv) ω slots for receiving a packet from
a child sensor node in SG-Tree(vi) by Equation (13), (v) ω slots for forwarding this packet
toward the gateway by Equation (15), and (vi) ω slots for join request and broadcast slots of
neighbor nodes by Equations (11) and (12). The following theorems analyze the interference
and collision conditions caused by Auto-SchedU.

Theorem 1. Auto-SchedU results in interference-free autonomous slot scheduling, if every two
nodes with a distance of 2- hops away employ distinct channels for transmissions.

Proof. Suppose the neighbor nodes vi and vj receive a packet from source nodes
vp ∈ SG-Tree(vi) and vq ∈ SG-Tree(vj), respectively. The transmissions/reception slots
allocated for nodes vp and vq in the intermediate nodes vi and vj interfere if one of the
following cases occur:

Case. 1. The reception slots in vi and vj overlap. In this case, we have (2ω + 1)·p−
ki·ω + mR

Rx
(
vi, τp

)
= (2ω + 1)·q− k j·ω + mR

Rx
(
vj, τq

)
. Hence, the following relationships

between the hop counts of nodes vi and vj can be deduced:

((2ω + 1)| p− q| + M)/ω =
∣∣Hj − Hi

∣∣ , (17)

where 0 ≤ M =
∣∣mR

Rx
(
vi, τp

)
−mR

Rx
(
vj, τq

)∣∣< ω . According to Equation (17), Hj − Hi has
minimum value when we have p− q = 1, which means that the nodes vp and vq have
consecutive identifications (e.g., p = 2, q = 3), and M = 0, which implies that the first
reception slots are overlapped. In this case, we have Min

(∣∣Hj − Hi
∣∣ ) = 2, which means

that the node vi must be 2 hops away from node vj.
Case. 2. Applying the same justification as in Case 1, the reception slots of node vi

overlap with the transmission slots of node vj, if we have (2ω + 1)·p− ki·ω + mR
Rx
(
vi, τp

)
= (2ω + 1)·q − k j·ω + mR

Fd

(
vj, τq

)
¸ where ki = Hi and k j = Hj. Hence, the following

relationships between the hop counts of nodes vi and vj can be deduced:

(2ω + 1)| p− q| +
∣∣Hp − Hq

∣∣ω + M′/ω =
∣∣Hj − Hi

∣∣ , (18)

where 0 ≤ M′ =
∣∣mR

Rx
(
vi, τp

)
−mR

Fd
(
vj, τq

)∣∣< 2ω . In this case, Hj − Hi has minimum value
when p− q = 1, Hp−Hq = 0 and M′ = 0. In this case, again we have Min

(∣∣Hj − Hi
∣∣ ) = 2.�

Thus to ensure interference-free slot scheduling, each channel n ≤ 16 is allocated for
the transmission of all of the nodes positioned 2n + 1 or 2n + 2 hop counts from the gateway.
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This means that channel 0 is allocated for transmission in the nodes 1 and 2 hop counts
away from the gateway, while channel 1 is assigned for transmission in the nodes 3 and 4
hop counts away from the gateway, and so forth, in accordance with the allocation scheme.
Thus, we apply the following equations for transmission, reception and broadcast slots for
each node vi:

Ch_Tx(vi) = b(Hi − 1) / 2c , (19)

Ch_Rx(vi) = b(Hi) / 2c , (20)

where Ch_Tx(vi) denotes the channel assigned to node vi for its transmissions, including
transmitting its own generated packets and transmitting packets received from
vj ∈ SG-Tree(vi). Ch_Rx(vi) denotes the channel assigned to node vi for receiving pack-
ets from vj ∈ SG-Tree(vi), for broadcasting its EB packets, and for receiving join requests.
The allocation of channels by Equations (19) and (20) ensures that each node tunes its
receiver to the channel utilized by its child node in the join request slots, reception slots
and broadcast slots.

For example, Figure 3 presents the schedule of the packets generated by the network
shown in Figure 1a, constructed by Auto-SchedU. It can be seen that the node v2 utilizes
channel 0 for transmission, while channel 1 is used for reception. The following theorems
demonstrate the collision-free characteristics of Auto-Sched.
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Theorem 2. Auto-SchedU results in collision-free autonomous slot scheduling.

Proof. Collision occurs if at least one slot allocated to the links in the set CNF(vi,vj) overlaps
with the slot assigned to the link vivj. Thus, one of the following cases occur:

Case 1. A reception slot of vi, wherein vi receives a packet from vp ∈ SG-Tree(vi), over-
laps with its transmission slot in link vivj, wherein vi forwards a packet from
vq ∈ SG-Tree(vi). In this case, we have (2ω + 1)·p− kp·ω +mR

Rx
(
vi, τp

)
=(2ω + 1)·q− kq·ω +

mR
Fd
(
vi, τq

)
. Hence, the following relationships between the hop counts of nodes vi and vj

can be deduced:

(2ω + 1)| p− q| +
∣∣Hp − Hq

∣∣ω =
∣∣∣mR

Rx
(
vi, τp

)
−mR

Fd
(
vi, τq

)∣∣∣ , (21)

where 0 ≤
∣∣mR

Rx
(
vi, τp

)
−mR

Rx
(
vj, τq

)∣∣ ≤ 2ω . However, the minimum value of the lefthand
side of the above equation is 2ω + 1, when p− q = 1, Hp − Hq = 0. This implies that the
condition stated in Case 1 cannot occur. The same line of reasoning can be applied for
reception and transmission slots of node vj.

Case 2. A transmission slot of vj, wherein vj transmits a packet from vp ∈ SG-Tree(vj),
overlaps with a reception slot in node vi, wherein vi receives a packet from vq ∈ SG-Tree(vj).
Then, we have:

(2ω + 1)| p− q| +
∣∣Hp − Hq

∣∣ω =
∣∣∣mR

Fd
(
vj, τp

)
−mR

Rx
(
vi, τq

)∣∣∣ (22)
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where 1 ≤
∣∣mR

Fd
(
vj, τp

)
−mR

Rx
(
vi, τq

)∣∣ ≤ 2ω . However, the minimum value of the lefthand
side of the above equation is 2ω + 1. This implies that the condition stated in Case 2 cannot
occur. �

Theorem 3. Auto-SchedU results in collision-free broadcast slot.

Proof. To prove conflict-free B(vS), we consider three cases as follows:

Case 1. β(vS) overlaps with the transmission/reception slots of a neighbor vi with
hop count Hi = HS + 1. In this case, we have (2ω + 1)·p − (HS + 1)·ω + mR

Rx
(
vi, τp

)
=

(2ω + 1)·S− HS·ω− 1, which means that (2ω + 1)·(p− S) + mR
Rx
(
vi, τp

)
= ω− 1. How-

ever, this equality is invalid, since −ω ≤ mR
Rx
(
vi, τp

)
≤ −1, even if p − S = 1 and

mR
Rx
(
vi, τp

)
= −ω. This indicates that the neighbor nodes with next hop count would not

collide with this slot.
Case 2. β(vS) overlaps with the transmission/reception slots of a neighbor vi with

identical hop count Hi =HS. Thus we have (2ω + 1)·(p− S) + mR
Rx
(
vi, τp

)
= 0, which is

invalid again. In fact, all of the nodes that utilize the channel Ch_Tx(vi) have sequential
schedules, each separated by a fixed interval of 2ω + 1 slots, as Figure 3 presents.

Case 3. β(vS) overlaps with the transmission/reception slots of a neighbor vi with
hop count Hi = HS − 1. Thus, we have (2ω + 1)·(p− S) + mR

Rx
(
vi, τp

)
= −ω which is

invalid again. Because the closest value of the lefthand side of the equation to –ω is when
p− S = −1, and mR

Rx
(
vi, τp

)
= −1, which results in the lefthand side being equal to −2ω.

In fact, the intention behind resrving 2ω + 1 slots by Auto-SchedU, while utilizing only
2ω slots by each node, is that the neighbors in Case 3 have no transmission/reception
in the gray-colored slots in Figure 2. Then, they cannot interfere with broadcasts by
vS. For instance, in the 5th slot in the schedule shown in Figure 3, the node v1 has no
transmissions/reception to interfere with β(v2). �

The total number of slots required for scheduling uplink transmissions is (2ω + 1)·NU ,
where NU denotes the number of sensor source nodes that have data packets to deliver
to the gateway. The reason is that the gateway, which receives all of the uplink packets,
reserves 2ω + 1 time slots for each packet.

4.2. Autonomous and Reliable Time Slot Allocation for Downlink Traffic

The notations used in this section are listed in Table 3.
As seen in Figure 4, Auto-SchedD enables each actuator destination node vD to au-

tonomously allocate ω slots for receiving the controlling data generated by the gateway
and destined for vD, ω slots to receive join requests, and a single slot for broadcasting EB
control packets. The reserved slots for reception and the slots actually used for packets
destined for node vD are given by:

RxR(vD) =
{
(2ω + 1)·D + HD·ω + mR

Rx(vD)
∣∣∣−ω ≤ mR

Rx(D) ≤ −1
}

, (23)

Rx(vD) = {(2ω + 1)·D + HD·ω + mRx(vD)|−ω ≤ mRx(vD) ≤ −(ETX(vD, pr(vD)− 1)}, (24)

The ω slots to receive join requests and the slot for broadcasting EB are formulated as
follows, respectively:

J(vD) =
{
(2ω + 1)·D + HD·ω + mJR(vD)

∣∣1 ≤ mJR(vD) ≤ ω− 1
}

(25)

β(vD) = (2ω + 1)·D + HD·ω (26)
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Table 3. Definition of notations used for downlink scheduling.

Symbol Meaning Symbol Meaning

RxR(vD)

The set of time slots reserved for receiving
the control packet generated by gateway and
destined for destination actuator vD, in the
worst-case link quality.

RxR(vp, τS,G
k)

The set of time slots allocated to
intermediate node vp for receiving packet
τS, due to worst-case link quality.

Rx(vD)

The subset of time slots in RxR(vD), used for
receiving the control packet generated by the
gateway and destined for vD, due to current
actual link quality.

Rx(vp, τS,G
k)

The subset of time slots in RxR(vp, τS,G
k)

allocated to intermediate node vp for
receiving packet τS, due to current actual
link quality.

J(vD) The set of time slots that node vD utilizes for
receiving join requests such as DAO and DIS. FdR (vp, τS,G

k)

The set of time slots allocated to
intermediate node vp for forwarding the
packet τS, due to the worst-case
link quality.

B(vD) A time slot that that node vD utilizes to
broadcast EB control packets. Fd (vp, τS,G

k)

The subset of time slots in FdR (vp, τS,G
k)

allocated to intermediate node vp for
forwarding the packet τS, due to the
current actual link quality.
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Auto-SchedD enables each intermediate node to forward the controlling data generated
by the controller node toward its destined actuator. Following the same line of reasoning
in the previous section, we can derive the following equation for node vi to forward the
controlling data from the gateway toward the actuator node vD:

FdR
(

vi, τk+1
G,D

)
=
{
(2ω + 1)j + k·ω + mR

Fd

(
vi, τk+1

G,D

)∣∣∣0 ≤ mR
Fd

(
vi, τk+1

G,D

)
≤ ω− 1

}
, (27)

Fd
(

vi, τk+1
G,D

)
=
{
(2ω + 1)·D + k·ω + mFd

(
vi, τk+1

G,D

)∣∣∣ 0 ≤ mFd

(
vi, τk+1

G,D

)
≤ ETX(vi, pr(vi))− 1

}
, (28)

where τG,D
k+1 is the transmission of the packet τG,D, which is k + 1 = Hi + 1 hops away from

the gateway. The following equation can be derived for node vi to receive this controlling
data packet from its parent node:

RxR
(

vi, τk
G,D

)
=
{
(2ω + 1)j + k ·ω + mR

Fd

(
vi, τk

G,D

)∣∣∣−ω ≤ mR
Fd

(
vi, τk

G,D

)
≤ −1

}
, (29)
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Rx
(

vi, τk
G,D

)
=
{
(2ω + 1)j + k ·ω + mFd

(
vi, τk

G,D

)∣∣∣−ω ≤ mFd

(
vi, τk

G,D

)
≤ −(ETX(vi, pr(vi))− 1)

}
(30)

An example of an uplink schedule is given in Figure 5. It is noteworthy that Theorems
1, 2 and 3 can be applied to both interference and collision conditions in Auto-SchedD. As a
result, Auto-SchedD applies the Equations (19) and (20) to define the channel assignments
for transmission and reception of each node.
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4.3. Schedule Re-Construction after Link/Node Failure in Auto-Sched

Algorithm 1 describes the schedule reconstruction for the uplink schedule after a node
fails to transmit/re-transmit to its parent. NB(vi) denotes the set of neighbor nodes of vi.

Algorithm 1: Auto-SchedU Schedule Reconstruction (NB(vi))

1: If (parent node failure), then
1.1: Find the best parent vj ∈ NB(vi).
1.2: Send DAO to J(vj).
2: End If
3: If(received DAO in J(vi))
3.1: Delay the current packet to next slotframe.
3.2: Send the DAO within Auto-SchedU data slot to gateway, instead.
3.3: Construct the new schedule for the new child, by Equations (11), (12), (15) and (16).
4: End If.
5: If(received DAO in Auto-SchedU data slot)
5.1: Send the DAO within Auto-SchedU data slot to gateway.
5.2: Construct the new schedule for the new child, by Equations (13)–(16).
6: End If.

Line 1 states that when node vi selects node vj ∈ NB(vi) as parent, then vi uses a slot in
J(vj) to send DAO to vj. When vi receives a DAO, it delays its generated message to next
slotframe and utilizes the corresponding slots to send the DAO packet, line 3. Thus, the
main idea is to delay the current generated packet to next slotframe and instead send the
DAO to the gateway to construct the new schedule for the requesting node within one
slotframe. When vi receives a DAO in a Auto-SchedU data slot, vi then configures new slots
for forwarding the packets generated by the requesting source node, by Equations (13)–(16).

This enables reliability and determinism for DAO control packets, facilitating RPL
operations in managing join or parent change requests. Specifically, when a node changes
its parent, the DAO packet is forwarded through the new path and constructs the new
schedule before the end of the current slotframe, enhancing robustness of the network.

Algorithm 2 describes the schedule reconstruction for the downlink schedule after
a node vi sends DAO to its new parent. Since in the downlink graph, an actuator node
does not have an uplink route toward the gateway, the main idea is to only use J(vj) of each
intermediate node to forward the DAO. In this case, Hi slotframes are required to construct
the new schedule.
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Algorithm 2: Auto-SchedD Schedule Re-Construction (NB(vi))

1: If (no packet received after a time out), then
1.1: Find the best parent vj.
1.2: Send DAO to J(vj).

2: End If
3: If(received DAO in J(vi))

3.1: Forward the DAO within J(P(vi)).
3.2: Construct the new schedule for the new child, by Equations (27)–(30).

4: End If.

In the best scenario, when the unique identifiers of the nodes in the downlink network
are allocated sequentially from top to bottom of the network in descending order, the DAO
packet will arrive to the gateway within one slotframe. This is due to the fact that the
J(P(vj)) of each intermediate node is allocated after J(vj). Thus, for applications that require
real-time schedule re-construction in the downlink, it is preferable to apply ID assignment
approaches. This problem is out of the scope of this paper and can be found in [22] and
references therein.

5. Experimental Results
5.1. Simulation Parameters

This section investigates the performance of Auto-Sched compared to SchedEx in [13],
OrchEx in [17] and Escalator in [15], in terms of delay bounds and reliability. The end-
to-end delays are measured with respect to the average delay for end-to-end response
times of generated packets within a packet generation time interval, while the reliability is
measured in terms of PDR and the robustness of the approaches against failures. PDR is
defined as the ratio between the number of packets delivered to the destination compared
with the number of packets generated in the network within a packet generation interval.

To enhance reliability, SchedEx adopts graph routing, facilitating path diversity and
enhancing robustness in the event of node/link failure. To do so, during the network initial-
ization phase, each node selects two preferred parents to serve as forwarding nodes. When
transmission to the primary parent fails, the node forwards the packet to the secondary
parent. Each node, autonomously and based on its identifier, allocates two dedicated time
slots to transmit/retransmit a single packet to the best parent, with an additional dedicated
time slot to retransmit it to the second-best parent. In addition to SchedEx, within this
section, we evaluate the efficiency of our refined autonomous scheduling derived from
SchedEx, denoted as SchedEx-M. In the event of successful delivery of the packet in the
first or second slot, SchedEx-M enables the node to utilize the remaining slots to transmit
and retransmit the second or third packet.

OrchEx, as explained in Section 2, introduces adaptive mechanisms, in order to manage
high traffic load or traffic bursts. By default, all of the nodes are allocated a reception time
slot and a channel offset by a hash function. When the buffer of a child node exceeds a
given threshold (5 packets is defined as threshold in reference [17]), it initiates a notification
to the gateway. This notification is embedded within the data packet of the respective child
node. In this case, the gateway node adds more reception time slots to the respective child
node, with the number of added slots being proportional to the size of its sub-tree. In
accordance with [17], when sub-tree size falls between 3 to 5 nodes, then the gateway adds
two more reception time slots for that particular node, through a hash function. However,
when the sub-tree size exceeds 5 nodes, then the gateway includes 3 additional reception
time slots for that node.

Similarly to Auto-Sched, the scheduling approach by Escalator provides sequential
packet transmission, but Escalator assumes a network with reliable links and thus does
not provide retransmission opportunities to nodes. Additionally, Auto-Sched uses the
joining slot, i.e., J(vi), for receiving DAO, as stated in Section 3. However, both Escalator
and SchedEx utilize a single shared slot for all RPL control packets. This shared slot
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is defined within a separate slotframe specified for RPL routing control packets. Such
configuration might be optimal at the network steady state, as it minimizes the number
of timeslots allocated for control messages [23]. But, as our experiments show, it might
increase significantly the number of collisions under any network change scenario, as
several DIO and DAO control packets are generated in a short interval.

In Escalator, when a collision occurs between the application data and the routing
control packet, the data packet is delayed to the subsequent slotframe. However, SchedEx
autonomously defers all data traffic at conflict to a conflict-free slot within the slotframe.
However, OrchEx does not elaborate on this collision problem. Thus, similarly to Orchestra,
we assume that OrchEx drops the data packet when collision occurs. Similarly to Escalator
and SchedEx, Auto-Sched adopts the concept of this shared slot within the routing slotframe.
However, in contrast to Escalator and SchedEx, where this single slot serves for various
purposes in the RPL layer, Auto-Sched employs this shared slot exclusively for broadcasting
DIO messages. In the event of a collision between the shared slot and the application data
schedules, Auto-Sched applies the strategy defined by Escalator to delay the conflicting
data packet to the subsequent slotframe.

The simulation was conducted using the Cooja simulator [24], a Java-based tool
that operates in conjunction with the Contiki operating system, developed for resource-
constrained IoT devices. In all of the experiments, Tmote sky devices, comprising a CC2420
radio transceiver with a data transfer rate of 250 kbit/s using IEEE 802.15.4 MAC and
physical layer specification, were randomly deployed, with one device designated as the
gateway. The nodes were assumed to employ RPL as the routing protocol for the Auto-
Sched and Escalator protocols, while the approach in SchedEx utilized the graph routing
protocol, as defined in [13]. For the link between each pair of neighbor nodes, we assigned
a random packet reception rate in the range [25–100]%, based on the distance between them.
In all routing protocol scenarios, the ETX reliability constraint of the candidate parent node
was configured to a maximum threshold, permitting a maximum of three retransmissions.

To conduct fair experiments, the length of the slotframe for each approach was defined
to ensure that the slotframe contained all of the slots required by each approach. For
example for n nodes, slotframe lengths of 2n, 3n and 7n slots were defined for Escalator,
SchedEx and Auto-Sched, respectively. As for OrchEx, the size of the slotframe was
defined by n + 3nc, where nc is the number of child nodes of the gateway. This was due
to the consequence of the gateway’s response to the high-traffic load scenarios, wherein it
allocated three additional time slots to each of its immediate child nodes. In all experiments,
the transmission range was 50 m, while the interference range was 60 m, and at most
20 hop counts were allowed. The length of the routing slotframe was set to 47 time slots,
as specified by SchedEx. Unless otherwise noted, the reported results are averages of the
results with 100 randomly generated networks.

5.2. Performance under Interference

Figure 6 illustrates the PDR as the number of field devices varied in the network
from 50 to 250 nodes, with the packet generation interval in all nodes set to 5 s, 10 s and
20 s, respectively. In the context of the IEEE 802.15.4e TSCH standard, where each slot
length is 10 ms, the aforementioned specified packet generation intervals corresponded
to 500, 1000 and 2000 time slots, respectively. From the results in Figure 6a, we observe
that Auto-Sched obtained 100% PDR in the networks with 50 nodes in all experiment
iterations. This is due to the fact that 350 out of 500 available time slots were utilized for
complete delivery of all packets. Therefore, before the next packet generation period, all
of the current generated packets were delivered to the gateway. However, with a packet
generation interval of 5 s, as the number of nodes increased, the efficiency of Auto-Sched
diminished to 30% for a network with 250 nodes. This is mainly due to the insufficient
number of available time slots to guarantee the reliable delivery of packets, which led to
packet drop in intermediate nodes.
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The poor efficiency exhibited by SchedEx shown in Figure 6 is attributed to its slot
allocation strategy, where each node had only one opportunity to reliably forward a single
packet in each slotframe. For 50 nodes, when the packet generation interval was 5 s, SchedEx
provided a maximum of 500/150 ≈ 3 opportunities for each intermediate node to forward
the packets. This fact restricted the immediate neighbor of the gateway to forwarding
only three packets to the gateway. The PDR was about 25%, and as the number of nodes
increased, there was a noticeable rise in packet drops. Therefore, despite leveraging multi-
path routing in the RPL layer, the poor slot allocation restricted the reliability and scalability
of the approach. However, SchedEx-M displayed higher PDR in each experiment, as the
node utilized the allocated slots for transmitting second or third buffered packets.
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OrchEx demonstrated slightly lower PDRs in comparison to SchedEx. This is mainly
because OrchEx adopted the receiver-based policy of Orchestra, which led to increasing
collisions. Additionally, OrchEx utilized RPL for routing, while SchedEx leveraged graph
routing and took advantage of rout diversity. Furthermore, in OrchEx, the additional
reception time slots were only assigned to immediate child nodes of the gateway. Conse-
quently, as the network scaled with the increasing number of nodes, the packet drop ratio
worsened due to the inadequate number of time slots allocated to each individual node
in the network. Another reason is that, in OrchEx, when a collision occurred between a
data packet and the routing slotframe, the data packet was forced to be dropped. However,
a slight improvement in OrchEx’s performance was observed when packet generation
intervals were extended from 5 s to 10 s and 20 s. For instance, for a network comprising
50 nodes, the PDRs demonstrates an increase, rising from 10% when employing a 5 s packet
generation interval to approximately 50% when the packet generation interval was 20 s.

Despite the sequential forwarding strategy by Escalator, its efficiency fell slightly
lower than that demonstrated by SchedEx. In scenarios where a node’s link necessitates
retransmissions, the sequential forwarding of the packets generated by children was dis-
rupted and delayed for the subsequent slotframe. In the worst-case scenario, when all of
the links through a path that consists of k hops need m retransmissions for guaranteeing
reliability, the number of slotframes required to deliver a packet becomes k.m slotframes.
When the packet generation interval is less than k.m, the intermediate nodes experience
buffer overload and ultimately packet drop.

As Figure 6c shows, with a packet generation interval increased to 20 s, the perfor-
mance of all approaches increased strongly for less than 100 nodes in the network. However,
for more nodes, these approaches attained low performance. SchedEx provided better
performance, as it ensures reliable hop-by-hop transmission at each slotframe and takes ad-
vantage of multi-path routing. Regarding Auto-Sched, it achieved a flawless PDR of 100%
across all network sizes. Furthermore, Auto-Sched consistently maintained a 100% PDR for
a packet generation interval of 10 s within all networks containing fewer than 150 nodes.

Figure 7 illustrates the cumulative density function (CDF) of the average end-to-end
delay of delivered packets in the network with 50 nodes, where the packet generation
period in all nodes is 5 s, 10 s and 20 s, respectively. Escalator performance was eliminated
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from this result, as it showed significantly higher end-to-end delays. This delay was mainly
due to the long length of each slotframe, while retransmission slots were not allocated at
each slotframe. From Figure 7a, it can be seen that when the packet generation interval was
5 s, SchedEx resulted in an average end-to-end delay of 5 s for almost 10% of packets, while
SchedEx-M delivered around 20% of packets within 5 s. However, OrchEx delivered less
than 1% of packets in 5 s. When the packet generation interval was 10 s, approximately
25% of the packets had an end-to-end delay of 10 s by SchedEx, while that it was 30%
for SchedEx-M and 10% for OrchEx. For a packet generation interval of 20 s, SchedEx
and SchedEx-M delivered 70% and almost 85% of packets, respectively, within 20 s, while
OrchEx resulted in an average end-to-end delay of 20 s for almost 30% of the packets.
Auto-Sched provided consistent, predictable average end-to-end delays, which were less
than the packet generation intervals (or deadlines). This was mainly due to its deterministic
scheduling to guarantee reliability constraints within each slotframe.
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5.3. Performance under Node Failure

Within the randomly generated networks consisting of 50 nodes operating under a
packet generation interval of 20 s, in Figure 6c, 2–4 nodes located on randomly selected
routing paths were turned off. We repeated the experiments 100 times with different
sets of failing nodes. Figure 8 shows the CDF of the PDR and end-to-end delays for
path reconstruction by each approach. Notably, a consistent 100% PDR was observed for
Auto-Sched, due to its deterministic schedule provided for DAO packets. Furthermore,
as mentioned in Section 3, Auto-Sched facilitates forwarding DAO throughout the new
path and constructs a new schedule within a single slotframe. However, the approaches
in SchedEx and Escalator provided a single shared slot for all control packets of RPL.
In addition, in scenarios when a node sends a DAO to the preferred parent by utilizing
a channel within the shared slot, the parent transceiver could be tuned to an alternate
channel. Such latency issues are introduced for each intermediate node forwarding the
DAO, causing increased packet drops and delays for nodes further from the gateway. In
addition, collisions between DAO packets with data packets in SchedEx caused frequent
schedule deferral by the nodes, which ultimately leading to increased packet drops.

Evidently, when a sensor or actuator node joins the network or when a node detects
that a link to the parent is unreliable, our results as shown in Figure 8 imply that Auto-
Sched handles it autonomously with minimum latency, packet drops and perfect PDR. This
property of Auto-Sched shows a significant improvement over existing approaches, which
incur data packet drops and delay issues due to utilizing a single shared slot in the routing
slotframe. This key feature positions Auto-Sched as an empowering option for facilitating
the scheduling of network changes in real-time applications.
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5.4. Discussion

In our simulations, we assumed that the end-to-end deadline of each packet equaled
its generation period. This means that when a packet is generated, it must be delivered to
the gateway prior to the generation of its next instance. The significance of this assumption
is attributed to real-time applications, wherein end-to-end delays are constrained by upper
bounds (i.e., deadlines), e.g., tens of milliseconds for discrete manufacturing, seconds for
process control, and minutes for asset monitoring [25]. However, ensuring hop-by-hop
schedule reliability introduces a trade-off wherein the pursuit of higher reliability results in
longer delays due to the allocation of additional time slots.

For all simulated network configurations, the high performance of Auto-Sched was
notable, as Auto-Sched effectively managed data reliability and real-time response times
of varying network sizes and packet generation intervals. For instance, for a tight packet
generation interval of 5 s, under Auto-Sched, a network comprising 50 nodes is schedulable
(i.e., all packets meet the deadlines); for an intermediate packet generation interval of 10 s,
a network comprising 150 nodes is schedulable; and for a large packet generation interval
of 20 s, a network comprising 250 nodes is schedulable, since Auto-Sched achieves opti-
mal PDR within the deadlines. This makes Auto-Sched a potentially attractive choice for
enabling real-time applications to take advantage of the simplicity of autonomous schedul-
ing while guaranteeing hop-by-hop reliability, end-to-end deadlines, and handling of all
network dynamics autonomously with negligible communications or control overhead.
Specifically, as demonstrated by our performance analysis, Auto-Sched has the capacity to
manage large-scale networks with packet generation intervals of multiple seconds, which
makes it an optimal option for managing process control and asset monitoring applications.
In conclusion, in an industrial environment where timeliness and reliability are critical
constraints, our proposed approach is a promising solution to facilitate the scheduling and
management of packet deliveries and network changes.

6. Conclusions

This paper introduced an autonomous scheduling approach named Auto-Sched, which
exhibit the following key features: First, Auto-Sched is designed to enhance autonomous
and reliable data delivery. It achieves this by enabling each node to autonomously allocate
transmission/retransmission time slots for all buffered packets. Second, our performance
analysis demonstrated that Auto-Sched ensures real-time end-to-end data delivery, such
that each packet is delivered to its destination within its generation period. Third, Auto-
Sched is designed to enhance robustness against potential node or link failures. A simple
yet efficient algorithm is proposed to facilitate the propagation of join requests through
the new path. Fourth, Auto-Sched provides autonomous and reliable scheduling of both
downlink and uplink schedules. Our simulation results demonstrate the reliability and
real-time response times for networks with 250 nodes when the packet generation interval
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is 20 s, for networks with 150 nodes when the packet generation interval is 10 s, and for
networks with 50 nodes when the packet generation interval is 5 s. This demonstrates
that Auto-Sched is an optimal option for managing process control and asset monitoring
applications, where end-to-end delays are constrained by multiple tens of seconds.
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