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Abstract: State estimation for distribution systems faces the challenge of dealing with limited real-
time measurements and historical data. This work describes a Bayesian state estimation approach
tailored for practical implementation in different data availability scenarios, especially when both
real-time and historical data are scarce. The approach leverages statistical correlations of the state
variables from a twofold origin: (1) from the physical coupling through the grid and (2) from
similar behavioral patterns of customers. We show how these correlations can be parameterized,
especially when no historical time series data are available, and that accounting for these correlations
yields substantial accuracy gains for state estimation and for the recognition of critical system states,
i.e., states with voltage or current limit violations. In a case study, the approach is tested in a realistic
European-type, medium-voltage grid. The method accurately recognizes critical system states with
an aggregated true positive rate of 98%. Compared to widely used approaches that do not consider
these correlations, the number of undetected true critical cases can be reduced by a factor of up to 9.
Particularly in the case where no historical smart meter time series data is available, the recognition
accuracy of critical system states is nearly as high as with full smart meter coverage.

Keywords: Bayesianstate estimation; distribution system; distribution system state estimation; load
correlations; medium voltage grid; smart meter

1. Introduction

The accelerated addition of distributed energy resources (DERs) such as electric vehicle
charging infrastructure, heat pumps, and photovoltaic (PV) installations drives distribu-
tion systems to their limits [1]. With a high share of DERs, these systems are expected
to frequently be in critical states where branch capacity is limited or voltage limits are
exceeded. An important aspect of operating these systems is state estimation, as it provides
knowledge of the grid state and enables the operator to make informed decisions about
how to control the system and identify faults and critical system states.

Unlike the transmission level of a power system, the primary distribution (at medium
voltage (MV)) and, more so, the secondary distribution have a low coverage with real-time
measurements [2–4]. This poses a challenge for state estimation, which relies on real-time
measurements to process them into accurate estimates of the grid state. An approach to
meet this challenge is to include additional data sources that, while not available in real-
time, provide more accurate characterizations of past and expected system states. These
data sources might include, e.g.,:

• Time-resolved Smart-Meter (SM) measurements from customers in the low voltage
(LV) grids [5];
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• Time-resolved power recordings (RLM), which are mandatory for large customers
with annual energy demands larger than 100 MWh (typically directly connected to
MV nodes) [6];

• Annual energy demand data available through the billing system from analog or
digital meters from customers without time-resolved measurements;

• Standard load profiles (SLP), representing the average behavior of a consumer group [7];
• Data from exogenous sources like solar irradiance or wind velocity measurements to

estimate generation from photovoltaic (PV) or wind turbines.

An approach particularly suited to process data from different sources and at such
different levels of detail is Bayesian state estimation [8–15]. Before processing real-time
measurements, Bayesian state estimation models any prior knowledge of the system state
using a prior probability distribution. The above data sources are then used to accurately
parameterize this distribution, characterizing the expected values of the state variables, such
as voltages and currents, and their covariance. As real-time measurements are obtained,
the prior distribution is updated using the Bayes rule to incorporate the new information.

In applying Bayesian probability theory, it is important to note that state variables are
not statistically independent. If, for instance, the voltage magnitude at one node increases,
the voltage at the neighboring nodes also increases. These correlations are valuable for
state estimation because they allow one to use data from one node to infer information
about other nodes, particularly unmeasured ones. Two origins of these correlations can
be distinguished:

Physical correlations are caused by the grid’s physical coupling, for example, that a high
voltage at one grid node is transmitted through a line to another node.

Behavioral correlations or load correlations are caused by similar (correlated) behavior
of grid customers independent from the grid, i.e., even for electrically unconnected
customers: As an example, if it is a warm day, electricity consumption for air con-
ditioning will be higher than the historical average for all households at the same
time, causing the voltage to drop in different grid segments, which might not even be
physically connected.

Properly accounting for these correlations in the context of state estimation can drasti-
cally improve the accuracy of the results, as will be shown in this paper. In the Bayesian
framework, behavioral correlations are encoded in a prior probability distribution for the
customers’ loads—the load probability distribution (LPD), specifically in the covariance
matrix of the LPD. Physical correlations are explicitly modeled using a power system model
to obtain the prior probability distribution for the state variables [8].

Distribution system state estimation (DSSE) methods that are based on the Weighted-
Least-Square (WLS) approach [16], which is the state-of-the-art method for higher voltage
levels, compensate for the lack of real-time data by processing the above-mentioned data
sources about expected states into so-called pseudo-measurements [17,18]. These pseudo-
measurements are then treated in the same way as the real-time measurements, but by
giving them lower weights, one ensures that they have a smaller influence on the estima-
tion result. WLS approaches assume these pseudo-measurements to be uncorrelated, like
the real-time measurements. As a consequence, they do not take into account behavioral
correlations as described above. Papers that adjust the WLS algorithm to consider load
correlations [19] show that the consideration improves the state estimation results. A com-
plementary set of works [20–23] has developed optimal planning and control approaches
for energy systems in the presence of uncertainty.

In [8], the basic principle for a Bayesian Linear DSSE is demonstrated. The parameters
for the LPD are taken from historical SM time series, and loads are assumed to be uncor-
related. There is also a proposal for three-phase Bayesian DSSE [9], in which the authors
use a machine learning model to get forecast data for the background LPD distribution,
and the authors in [11] used probabilistic graph models for state estimation. They do not
use behavioral correlation information. The simplification of zero correlations in [8] is
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addressed in [12], where the authors use correlation information between loads calculated
from historical data assuming full SM coverage. In [13], the correlation coefficients for
active power are sampled randomly, while a full correlation between active and reactive
power is assumed. As in [12], the authors assume full meter coverage. Another approach
combines deep learning with the Bayes rule using grids with full SM coverage to learn
the LPD [14]. In [15], the authors explicitly investigated correlation coefficients between
different types of loads for a historical data set. Their focus is on the impact of the correla-
tion coefficients on the standard deviations of state variables. A more recently proposed
Bayesian approach [10] combines varying input sources with different time resolutions
and considers load correlations. In particular, it considers real-time measurements, smart
meters, and historical load data, which are at least 30 min time-resolved.

All the above approaches that consider LPD correlations have in common that they
assume complete availability of historical time-resolved power measurements (e.g., Smart
Meter data or recorded power measurements) across the entire grid to parameterize corre-
lation coefficients.

However, only a few European countries or US states have 100%-SM coverage [24–26].
While with the Third Energy Package (European Union, 2009), European member states
are required to implement SMs in the future, currently, a mixed situation is found. Sweden,
Norway, Spain, and Italy have a high SM coverage of over 97%. Conversely, Poland,
Hungary, and Slovakia have a coverage smaller than 10% [24,25]. Similarly, in the US,
the SM coverage for Utah and New Mexico is below 20% while California, Nevada, Georgia,
and Maine achieve high coverage rates over 80% [26].

In summary, for both US- and European grids, only a few real-time measurements
are available, and only a few countries have 100% SM coverage. In most countries, there
is a substantial share of customers for which only annual energy consumption data are
available. While this is sufficient to characterize expectation values for load profiles, data
are lacking to parameterize the correlation between load profiles accurately. This paper
shows that accounting for behavioral correlations in the load profiles improves the state
estimation accuracy (confirming findings for WLS-based approaches [19] also for Bayesian
state estimation) and how to relax the assumption of complete SM coverage. A method
is developed to synthesize LPDs from mixed sources of input data while adequately
accounting for correlations between different loads, regardless of the available type of
load measurements. This paper focuses on MV grids, where most nodes represent the
aggregated load of multiple customers. The topology and line parameters of the grid are
assumed to be known.

The main methodological contributions of this paper are as follows:

1. We highlight the role of behavioral correlations and provide a deeper understanding
of their effects on state estimation accuracy (Section 2);

2. We develop a flexible approach to derive background probability information for
parts of the network with different levels of smart meter coverage (Section 3.2);

3. We present a method to estimate covariance data for the derived background probabil-
ity information and validate this approach by a statistical analysis of load correlations
between LV grids (Sections 3.3 and 3.4);

4. We demonstrate the accuracy improvement in state estimation and detecting critical
system states that can be achieved by accounting for load correlation in Bayesian state
estimation in general and by using the approach presented in this article in particular.

Our contributions extend the well-established Bayesian state estimation framework
by a method to parameterize load probability distributions in different, practically relevant
levels of data availability ranging from complete time-resolved measurement sets to yearly
power consumption data only, rendering unnecessary the constraint of having a full set
of time-resolved power measurements for all customers. The application of the presented
method is demonstrated in a case study using the example of Bayesian DSSE, but the
synthesis of accurate load profile correlations can also be applied to WLS-based methods.
The application of the presented method is demonstrated in a case study using the example



Energies 2023, 16, 7180 4 of 21

of Bayesian DSSE, but the synthesis of accurate load profile correlations can also be applied
to WLS-based methods.

In Section 2, the modeling of the grid and system states is outlined, followed by a
brief introduction of both WLS and Bayes approaches, focusing on how these approaches
treat load correlations. Subsequently, the principle of the Bayesian linear state estimator
is outlined. Section 3 starts with the proposal of the Correlation-Aware LPD Synthesis
Method and details its integration into a state estimation framework. In Section 4, the ac-
curacy gains of considering behavioral correlations for recognizing critical system states
are demonstrated for a 107 bus, 20 kV MV grid under different measurement instrumenta-
tion scenarios.

2. State Estimation
2.1. Modeling Power Grids and System States

The distribution grid is modeled with N + 1 nodes, N non-slack buses marked with
index “ns”, and one slack bus with index “0”, and B branches, including lines and trans-
formers. The vector of system state variables is denoted by x. Throughout the remainder
of the paper, matrices and vectors are printed in bold to distinguish them from scalar
values. The complex node voltage V ∈ CN+1 are used as state variables. It is distinguished
between true and estimated state variables, xtrue and x̂, respectively. Complex-valued
variables can alternatively be represented in cartesian form (real and imaginary part of
the variable: xre, xim) or in polar form (magnitude and phase: xmag, xang). The asterisk ∗ is
used to denote complex conjugation. The transpose operation of matrix A is denoted by
AT and the Hermitian conjugation by AH = AT∗.

2.2. Bayesian and WLS Approaches

State estimation generally describes an approach to processing raw measurement data
and topology information to an estimate of the current state of a power system. The process
can consist of a number of steps linked with each other, including grid topology processing,
observability analysis, a state estimation algorithm, and bad data detection [27]. In this
paper, we focus on the role of (load) correlations when using non-real-time data for state
estimation in settings with low availability of real-time measurements. While all of the
above steps can play a role in addressing this challenge, Bayesian and WLS-based state esti-
mation approaches deal with the issue of non-real-time data in a fundamentally different
way, which has implications for how load correlations can be handled. To highlight these
differences and set the framework for the load probability distribution synthesis method
presented in Section 3, we briefly re-visit the basic algorithm approaches of Bayesian state
estimation below and put it into the context with WLS-based approaches. For this, the fol-
lowing part focuses on the state estimation algorithm, assuming the grid topology and
measurement data are already processed and available (Large measurement errors are not
considered in this paper. Hence, no bad data are included in the state estimation method).

For most state estimation tasks, firstly, a measurement model is assumed mapping the
system state. The conventional measurement model is given by [3]

z = h(x) + e (1)

where z is an M-dimensional measurement vector, h is the measurement function, and e
is the measurement error. The measurement errors are assumed to be independent and
normally distributed with mean vector µe = 0 and standard deviation vector σe.

In a Bayesian framework, according to Bayes theorem, the conditional probability of x
given evidence z is

p(x | z) =
p(z | x)p(x)

p(z)
. (2)
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The left side of the equation (p(x | z)) is called posterior probability. p(z | x) is the likeli-
hood probability for z given x, p(x) is the prior probability, and p(z) is the measurement
probability [28]. The Bayes theorem can be stated more explicitly using probability density
functions for states and measurements. Let Φa denote the probability density of the (mul-
tivariate) Gaussian distribution of a D-dimensional random variable a with expectation
value µa and covariance matrix Σa:

Φa = N (a | µa, Σa) =
1

(2π)
D
2 |Σa|

1
2

exp
{
−1

2
(a− µa)

TΣ−1
a (a− µa)

}
(3)

We assume that both the prior distribution of voltage phasors ΦV,pr (which represents
our belief about the system state based on information available prior to receiving measure-
ments, see Section 2.3 for a more detailed explanation) and the likelihood distribution Φz|x
(which represents the distribution of measurement errors) are normally distributed as

ΦV,pr = N
(

V | µV,pr, ΣV,pr

)
and Φz|x = N

(
z | h(x), Σz|x

)
, (4)

where µV,pr and ΣV,pr are the expectation value and the covariance matrix of the voltage
prior distribution. The covariance matrix of the likelihood distribution Σz|x is built from the
standard deviations of the measurement devices σz: Σz|x = diag( 1

σz
)2. Then (according to

Equation (2)) the posterior probability distribution of voltage phasors ΦV,po is proportional
to their product

ΦV,po ∝ Φz|x ×ΦV,pr. (5)

A derivation of the explicit form of the posterior, Equation (5), is given in Appendix A,
together with the relevant sources for the derivation.

In Bayesian state estimation, one typically computes a Maximum-A-Posterior esti-
mate for x, i.e., a value x that maximizes the posterior density function [10,11]. This is
equivalent to finding x that minimizes the negative sum of the exponent of the likelihood
density function (z− h(x))TΣ−1

z|x(z− h(x)) and the exponent of the prior density function

(x− µV,pr)
TΣ−1

V,pr(x− µV,pr):

x̂MAP = arg min
x

[
(z− h(x))TΣ−1

z|x(z− h(x)) + (x− µV,pr)
TΣ−1

V,pr(x− µV,pr)
]

(6)

Note that the Maximum-A-Posterior estimate for Gaussian distributions is equal to the
expectation of the posterior distribution µx,po and is hence equal to the Minimum Mean
Square Error (MMSE) estimate defined by

x̂MMSE = E[x | z] = µxpo
= x̂MAP. (7)

In contrast, state estimation approaches based on the Weighted-Least-Squares ap-
proach minimize the squared sum of residuals (r = z− h(x)) weighted by the standard de-
viation of measurement errors [3,17,29]. It is assumed that all measurement errors are uncor-
related, and hence the covariance matrix is, in fact, a diagonal matrix, i.e., W−1 = diag( 1

σe
)2:

x̂WLS = arg min
x

[
(z− h(x))TW−1(z− h(x))

]
(8)

Viewed in this way, x̂WLS is actually a special case of the Maximum-Likelihood estimator
(x̂ML), which maximizes the conditional probability for x given z (Note that the Maximum-
Likelihood estimator can in turn be seen as a special case of the Maximum-A-Posterior



Energies 2023, 16, 7180 6 of 21

estimator where the prior distribution is assumed to be uniform and thus p(x) is a constant
for all x):

x̂ML = arg max
x

p(z | x) = arg min
x

[
(z− h(x))TΣ−1

z|x(z− h(x))
]

(9)

As can be seen, the Weighted-Least-Squares estimate is actually a Maximum-Likelihood
estimator for normally distributed measurement errors under the additional assumption
that Σz|x is diagonal (and hence all measurement errors are independent).

Bayesian and WLS DSSE differ in how they approach a low measurement coverage,
i.e., unavailable real-time data, and how they use additional offline data. In Bayesian DSSE,
data from additional offline sources were used to parameterize the prior state distribution,
in particular, accounting for load and physical correlations. In WLS DSSE, in contrast,
additional data sources are used to parameterize pseudo-measurements, which (like all
measurements) are treated as uncorrelated by default. Load correlations can, however,
be included in the WLS approach by relaxing the assumption that measurement errors
are uncorrelated (and hence, the weighting matrix is diagonal), which leads to the full
Maximum-Likelihood estimator as described above.

Finally, note that even most Bayesian DSSE approaches only consider the (determin-
istic) Maximum-A-Posterior estimator (x̂MAP as the result of the state estimation process.
As demonstrated in [30], however, there is additional information contained in the full
posterior distribution (e.g., its variance) that can be leveraged for use cases such as the
identification of critical system states. An example of such a use case is also given in the
case study below (Section 4).

The following section examines how load correlations impact the prior distribution in
Bayesian Linear State Estimation.

2.3. Correlation in Bayesian Linear State Estimation

Multiple papers have shown how the posterior distribution can be analytically calcu-
lated in the context of state estimation [8,12,30]. The state estimation workflow performed
in this paper is given below. For the initial setup, the prior distribution is computed via the
following steps:

1. Determine the (multivariate) background load probability distribution ΦS;
2. Re-write the background load probability distribution ΦS = N (µS, ΣS) in complex

form of a normal distribution ΦC
S = N (µS, ΓS, CS) to incorporate the load correlations

(For the detailed steps to calculate ΓS and CS from ΣS, see Equations (A1) and (A2));
3. Calculate the prior voltage distribution ΦC

V,pr using linearized power flow calculation
(see, Equations (A5)–(A8));

4. Re-transform the complex form of ΦC
V,pr to the real component form of a normal

distribution ΦV,pr (see Equation (A9)).

After the initial set-up, the following step is performed whenever a new estimate of the
system state is required (e.g., whenever real-time measurements are available):

5. Combine the real-time measurements and the prior distribution to derive the poste-
rior voltage distribution ΦV,po (For the explicit calculation of expectation value and
covariance matrix of ΦV,po, see Equations (A12) and (A13));

The workflow starts in step 1 with determining a background distribution for loads ΦS,
which is the LPD for the complex power S ∈ CN of load and generation units at the non-
slack nodes. µS and ΣS are the expectation value and covariance matrix of the background
distribution. When using the multivariate normal distribution, the real and imaginary parts
of the complex-valued vectors and matrices are stacked as shown in Equation (10).

ΦS = N (S | µS, ΣS) = N
((

Sre
Sim

)
|
(

µS,re
µS,im

)
,
(

ΣS,rr ΣS,ri
ΣS,ir ΣS,ii

))
(10)
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Here, the covariance matrices ΣS ∈ R2N×2N is composed of blocks for the real and imagi-
nary parts, which are denoted by a combination of indices r and i. The elements ΣS,nm for
n, m ∈ 2N of the covariance can be written more explicitly:

• The diagonal elements (n = m) represent the marginalized variances ΣS,nn = σ2
S,n,

which are equal the squared standard deviations σS,n.
• The non-diagonal elements (n 6= m) can be determined from load correlations rS,nm

and standard deviations, where the relation is given by equation for Pearson correla-
tion coefficient: ΣS,nm = rS,nm ·

√
ΣS,nn ·

√
ΣS,mm.

As mentioned in the introduction, these covariance matrices represent correlations
between active and reactive power at an individual load and correlations between different
loads due to similarities in consumer behavior (e.g., household loads) or caused by weather
patterns (e.g., for PV and Wind power generation). The voltage prior distribution is
obtained from the LPD by a linearized power flow transformation (see step 3 above and
Equations (A5)–(A8)) and includes the correlation between the voltages at different nodes
in the non-diagonal covariance matrix elements. The node voltage correlation results from
the physical correlation (resulting from the coupling through the grid) and the behavioral
correlations from the background distribution.

The following section focuses on estimating the LPD for incorporating load correla-
tions, which is the input for state estimation approaches.

3. Correlation-Aware Load Probability Distribution Synthesis

In this section, the aim is to estimate the LPD parameters (µS, ΣS) by combining
non-real-time inputs with varying levels of detail. The input data

• Contains recorded power measurements at MV nodes or 15 min time-resolved SM [5]
and RLM [6] measurements as well as annual energy demand values and SLP classes
of LV nodes;

• Can be extended by further exogenous measurements like solar irradiation mea-
surements for power estimation of PV modules or wind velocity measurements for
estimated power of wind turbines.

Further external inputs are required: the measurement type and the index of the MV
node, the assignment of connected LV nodes to the corresponding MV node given by grid
topology, and the smart meter coverage of the underlying LV grid.

The correlation-aware LPD synthesis method consists of the following steps:

1. Classifying every MV node into a Measurement Instrumentation Scenario (MIS),
the scenarios are explained in detail in Section 3.1;

2. Determination of load time series (apparent power) for every MV node according to
its assigned MIS as described in Section 3.2;

3. Determination of LPD parameters µS and ΣS, which is explained in Section 3.3.

3.1. Measurement Instrumentation Scenario

A classification for MV nodes into different Measurement Instrument Scenarios (MIS)
is proposed in Table 1.

Table 1. Classification of MV nodes into different measurement instrumentation scenarios (MIS).

MIS Description

MVmeas Measurement at MV node
SM100% 100% SM coverage in underlying LV grid

SM≥αthres SM coverage ≥ αthres in LV grid
SM<αthres SM coverage < αthres in LV grid

The first scenario (MVmeas) covers all MV nodes with recorded real-time measurements
or with RLMs. Here, the meter devices are directly installed into the MV nodes. This usually
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only applies to the primary substation, central MV nodes, or MV nodes with directly
connected large customers. Most of the MV nodes are not equipped with a metering
device. However, historical data from the SMs of the underlying LV grids can be used as an
information source: If all customers in an LV grid are equipped with SMs, their summed-up
demand would be approximately the demand at the connected MV node (neglecting the
line and transformer losses).

Three scenarios are defined for the underlying LV grids, corresponding to full, sub-
stantial, or low SM coverage. Here, a low SM coverage means that the set of customers
with SMs cannot be assumed to be statistically representative of the behavior of all con-
sumers. The scenario where the LV grid is fully covered with SMs is denoted by SM100%.
To differentiate between LV grids with substantial and low SM coverage, a threshold fraction
αthres is defined (e.g., αthres = 60%). Using this threshold fraction, the measurement instru-
mentation scenario SM≥αthres represents grids where SM measurements are available for
at least αthres of all customers. Analogously, the scenario SM<αthres represents grids where
SM measurements are available for less than αthres of all customers. Figure 1 shows an
exemplary MV node for each proposed MIS. Green points mark the placement of SMs.

MV grid

open ring

HV-grid
LV grid

LV grid

LV grid

MVmeas SM<αthres

SM100 % SM≥αthres

Figure 1. Exemplary MV nodes are given for proposed measurement instrumentation scenarios with
green points marking SM placement. LV grids shown represent full (bottom left), incomplete but
substantial (bottom right), and low (top right) SM coverage.

To estimate the power consumption of non-metered grid users, system operators often
conventionally use SLP [7]. In the proposed method, it is also possible to take SLPs for
the LV grid profiles SLVcomp of MV nodes assigned to SM<αthres . However, using SLPs does
not correctly reproduce correlations between groups of customers. Simply calculating the
sample correlations between two MV nodes using the same SLP time series results in an
unrealistically high correlation value of 100%. One way to avoid such unrealistic correlation
values is to consider correlations between comparable LV grids. Hence, exemplary synthetic
power time series are used. A more detailed description is given in Table 2.
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Table 2. The determination of time series values SMV,n,t for MV nodes according to MIS classification
is given. In the case of SM<αthres a set of K exemplary, synthetic time series is created to achieve
correlation-aware LPD parameters.

MIS Determination of Time Series for MV Nodes

MVmeas Recorded MV node measurements SMV,n,t = SMVmeas,n,t

SM100% Sum up SM data from the underlying LV grid SMV,n,t ≈ S∑SM,n,t
=

NSM,n

∑
l=1

SSM,n,l,t

SM≥αthres Sum up data from SM nodes & scale up to
meet total annual energy consumption

SMV,n,t ≈ S∑SM,n,t
· fscale,n

with fscale,n =
E∑ LV,n
E∑SM,n

SM<αthres Calculate K exemplary, synthetic time series
from sum of SM-data for SM nodes & sum of
comparable profiles for non-SM nodes

SMVsynth,n,t,k = S∑SM,n,t
+ S∑LVcomp ,n,t,k

with k ∈ {1, ..., K}

3.2. Determination of Time Series Values

The MV node time series are denoted by SMV,n,t at every MV node n ∈ {1, .., N} for
every time step t ∈ {1, ..., T}. In Table 2, the calculation steps for the determination of time
series values are shown for each MIS.

For MV nodes in scenario MVmeas, the recorded measurements SMVmeas,n,t at the MV
nodes can directly be used as time series input. The other scenarios use the power time
series from the SMs of the underlying LV grid. The SM power time series for LV node
l ∈ {1, ..., NSM,n} connected to MV node n are denoted by SSM,n,l,t. NSM,n is the number of
the LV nodes equipped with smart meters of a corresponding MV node n. For the scenario
with the assumption of 100% coverage of SM in LV grids, the active and reactive power of
the SM are summed up for the corresponding MV node n and result in a time series S∑SM,n,t
with a quarter-hourly resolution. This approximation neglects distribution losses. These
typically amount to no more than 5% for active power and 10% for reactive power, which
justifies this simplification.

For LV grids with larger SM coverage than the set threshold αthres, it is assumed that
the summed-up time series S∑SM,n,t of the SM measured grid users is representative for
the behavior of this LV grid. To achieve correct energy demand values at the MV node,
the aggregated SM time series are multiplied with a scaling factor fscale,n compensating for
the missing power contributions from unmeasured customers. This factor is calculated as
the ratio of the summed-up annual energy demand of all LV nodes of this grid E∑ LV,n and
the summed-up energy demand recorded by SM E∑ SM,n.

In the last scenario SM<αthres , the SM information cannot be assumed to be represen-
tative of the non-SM nodes due to the small sample size. Therefore, a set of K exemplary,
synthetic time series SMVsynth,n,t,k for k ∈ {1, ..., K} is created. These exemplary time se-
ries will be used to estimate the parameters of an LPD representing this MV node (see
Section 3.3). The number of power profiles K should be high enough to achieve sufficient
sampling. A residential profile from comparable grids is randomly assigned for every
LV node which is not an SM node. The profiles are scaled to the LV nodes’ annual con-
sumption. For each k, the synthesized time series SMVsynth,n,t,k is now defined as the sum
of the aggregated SM profiles S∑SM,n,t for the SM nodes and of the aggregated comparable
profiles for the non-SM nodes S∑LVcomp ,n,t,k. In the extreme special case where no smart
meter measurements are available at all (i.e., NSM,n = 0), each synthesized time series
SMVsynth,n,t,k consists only of aggregated, synthesized time series and S∑SM,n,t = 0. This case
will be evaluated in detail in our case study in Section 4.
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3.3. Determination of LPD Parameters

The mean µS,n is calculated from the time series values as the sample expectation value
µS,n,samp. This is equivalent to the annual energy consumption divided by the number of
time steps T ( 1

T · E∑ LV,n). As the synthetic time series are scaled to the annual consumption,
the mean is always the same for every exemplary K.

µS,n,samp =
1
T

T

∑
t=1

SMV,n,t (11)

The elements ΣS,nm for the LPD covariance are calculated according to Table 3: For
n, m-pairs, where neither n or m are assigned to scenario SM<αthres , the covariance matrix
elements are calculated as the sample covariance ΣS,nm,samp. If at least one of the nodes is
classified as SM<αthres (i.e., no sufficient measurement coverage), then the sample covariance
is calculated for every k and then averaged over all k resulting in ΣS,nm,comp. To calculate
the sample covariance for k ∈ 1...K, the k-th synthesized time series SMVsynthn,k,t is used for
every n ∈ SM<αthres and the measured time seriesSMV,n,t for every n 6∈ SM<αthres . To validate
this approach, a statistical analysis of an exemplary set of residential active power profiles
was performed in the following Section 3.4.

Table 3. Determination ΣS element for (n, m)-pairs and included MIS.

MIS of n and m Calculation of Elements for ΣS

n, m 6∈ SM<αthres ΣS,nm,samp = 1
T−1 ∑T

t=1

(
SMV,n,t − µS,n,samp

)(
SMV,m,t − µS,m,samp

)
n ∈ SM<αthres or m ∈
SM<αthres

ΣS,nm,comp = 1
K

K
∑

k=1

1
T−1

T
∑

t=1

(
Sn,t − µS,n,samp

)(
Sm,t − µS,m,samp

)
Sn,t =

{
SMVsynthn,k,t , if n ∈ SM<αthres

SMV,n,t , else

The steps of the Correlation-Aware LPD Synthesis Method, described in the sections
above, are summarized in Figure 2.

Classification
of MV nodes

MV nodes assigned
to scenarios

Determination
of time series
for MV nodes

SMV,n,t
∀t ∈ {1, ..., T}

ΣS, µS

Determination of LPD parameters
(see (11) and Table 3)

ΣS,nm =

{
ΣS,nm,samp n, m 6∈ SM<αthres

ΣS,nm,comp n ∈ SM<αthres or m ∈ SM<αthres

µSn = µS,n,samp

Recorded power
& energy demand

measurements,
SLP classes of LV nodes,

grid topology

Start

End

Figure 2. Flow Chart for Correlation-Aware LPD Synthesis Method.

3.4. Correlation Analysis Between LV Grids

For the statistical analysis of an exemplary set of residential active power profiles,
the profiles are exemplary taken from OpenEI for Washington state. OpenEI provides a
“publicly available dataset of calibrated and validated 15-minute resolution load profiles
for all major residential and commercial building types and end uses, across all climate
regions in the United States” [31]. This database has previously been used by other authors
for state estimation methods [12]. Overall, 4947 individual residential profiles were chosen.
The correlation coefficient between the individual power profiles is, on average, 11%.
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For the analysis of correlations between sub-grids with a varying number d of house-
holds, for each pair of sub-grid sizes (d1 and d2), one thousand samples of d1 and d2 are
randomly chosen. The required power profiles are taken from over 4900 Washington state
profiles. They are summed up to obtain MV node time series (SMV,n,t). Based on these
profiles, the correlation coefficients are calculated. As a result, 1000 correlation coefficients
are obtained for each pair d1 and d2 of sub-grid sizes. The resulting mean and standard
deviations of the correlation coefficients are plotted as heat maps in Figure 3. Already,
for subgrids consisting of only 20 customers each, the variance in correlation values drops
to ∼4%. This indicates that the correlation of two similarly sized subgrids taken from a
comparable region provides a reliable estimate for the correlation coefficient of two indi-
vidual subgrids. Furthermore, if the size of the subgrids increases, so does the accuracy of
the estimate: For a sufficiently large number of households in the subgrids (>80), the mean
of correlation coefficients µr is an accurate estimation of the correlation as the standard
deviation for correlation coefficients σr is lower than 1%.

(a) Mean µr (b) Standard deviation σr

Figure 3. The mean µr (a) and the standard deviation σr (b) for correlation coefficients between
two sub-grids with varying numbers of households in % are shown. For example, for two subgrids
with d1 = 100 and d2 = 50 households, the mean of the correlation coefficient is 86 % (chart a)).
Furthermore, in all samples of the subgrids of these sizes, the correlation coefficient has a standard
deviation of 1.7%.

4. Case Study—Correlation–Aware State Estimation with Synthesized Load
Profile Distributions

This section evaluates the accuracy of the proposed state estimation approach based
on correlation–aware load probability distributions from two different perspectives:

1. Recognition of critical system states.
2. Accuracy of estimated prior voltage distribution.

The first perspective sheds light on the practical benefits expected from the approach when
applied to a typical use case. The second perspective helps to give a more fundamental
understanding of where improvements in accuracy are coming from and what the specific
differences are compared to conventional approaches. At first, the performance metrics
used in this evaluation are defined in Section 4.1. The simulation environment is presented
in Section 4.2, and the different test cases with respect to SM coverage and load correlation
assumption are given in Section 4.3. Finally, the recognition of critical system states is
evaluated in Section 4.4, and the accuracy of the estimated voltage prior distribution is
assessed in Section 4.5.

4.1. Performance Metrics

To evaluate the recognition of critical system states, a critical system state must be
defined first. A critical system state is present if a voltage band (Vup, Vlow) or thermal current
limit (Ith) is violated for any node or branch element. In this case study, voltage limits
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are set to ±6% of the nominal voltage, which are limits commonly used by distribution
system operators (see [30]). The thermal current limits are taken from the chosen test
power system (defined below). From the state estimation results (step 5 of state estimation
workflow in Section 2.3), the probability of critical systems states pcss can be calculated
(see Equation (A14)): It is the probability that the system state described by the posterior
distribution ΦV,po violates operational limits (e.g., voltage band or thermal current limits).
Note that the voltage posterior distribution ΦV,po can also be used to derive a posterior
distribution of branch currents ΦIpo via the branch admittance matrix Y , since the branch
currents I = YV .

Finally, a probability threshold (pthres) must be defined at which the state is classified
as critical. A system state is classified as critical if any value in the range of µ ± σpo is
critical. The range µ± σpo contains 68.3% of all estimates from the posterior distribution.
Hence, 15.85% of the distribution remain on each side (=(100%− 68.3%)/2). Therefore,
the probability threshold pthres is set to ≈15.9%. If the calculated probability of critical
system states pcss exceeds this threshold, the value is inside the range µ± σpo and therefore
assumed to be critical. The key performance indicator (KPI), used to measure how well
critical system states are recognized, is the aggregated true positive rate tprx̂

lim (see [30]).
An estimate is considered a true-positive if the estimate x̂ε,t for a grid element ε ∈ {1, ..., E}
(node or branch) for time step t ∈ {1, ..., T} correctly recognizes a critical system state
corresponding to the given limit (lim). In this case, tpx̂

ε,t,lim = 1 (otherwise, tpx̂
ε,t,lim = 0).

The aggregated true positive rate, tprx̂
lim, is now given by

tprx̂
lim =

1
postrue

T

∑
t=1

E

∑
ε=1

tpx̂
ε,t,lim (12)

where postrue is the number of all limit violations (over all time steps and grid elements)
in the true system state time series. In some cases, one is primarily interested not in the
fraction of critical cases correctly recognized but in the fraction of critical cases incorrectly
missed. To measure this, the false negative rate fnr = 1− tpr is used.

The second KPI evaluates how accurately the prior state distribution can be estimated.
The estimated and true prior distributions (available in the simulation) are compared in
terms of the true and estimated expectation value and covariance matrix components.
The normalized Root-Mean-Square-Error NRMSE is used as an error metric. It is defined
by the RMSE between true and estimated multi-component quantities, ytrue,n and ycalc,n,
normalized to the mean of the true values:

NRMSE =
RMSE

1
N

N
∑

n=1
ytrue,n

· 100% with RMSE =

√√√√ N

∑
n=1

(ytrue,n − ycalc,n)2. (13)

We applied this error metric to the expectation value and covariance matrix compo-
nents. The resulting KPIs are a measure of how close the estimated and the true prior
distribution are.

4.2. Simulation Environment

The present approach was tested in a simulation study to evaluate the effect of correla-
tions in general and the performance of the synthesized correlation-aware load probability
distributions. A 20 kV MV grid with 107 buses from [32] (1-MV-comm–0-sw) was taken as a
test system. The model is used in the pandapower format [33] and contains consumption
and generation profiles for one year with a 15-min resolution for every MV node. The grid
topology is shown in Figure 4. The renewable generation plants directly connected to MV
nodes include PV, wind, biomass, and hydropower units. In summary, 10 large RES units
and 19 large commercial customers are connected at the MV level. At 79 MV nodes, LV
grids are located. The LV grids have varying numbers of customers, 13 to 118.
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Figure 4. The 20 kV MV grid 1-MV-comm–0-sw from Simbench with additional voltage PMU measure-
ments at buses 2, 5, 23, 77, 87 as used in the case study.

In the original dataset from Simbench, load and generation profiles are assigned to
nodes in the test model from a relatively small pool of profiles, resulting in the same
profile being assigned to multiple nodes. While this is accurate enough for most grid
analyses, it leads to unrealistically high correlations in the behavior of different loads. Since
these correlations play an important role in evaluating the performance of the proposed
approach, the test system must realistically reproduce the correlations between power
profiles of different MV nodes. We, therefore, retain only the static specification of the grid
topology and the load types from the simbench data set but apply a bottom-up approach
to synthesize the load profiles for them. Since the load profiles from Washington state (as
described in Section 3.4) will be used as comparable profiles to estimate LPDs for subgrids
with low smart meter coverage, we draw household load profiles for the test system from
an independent pool of 7000 OpenEI load profiles for a different state (New York state) [31].
This process avoids our comparable load profiles being unrealistically similar to the true
load profiles in the test data. For MV nodes with underlying LV grids dominated by
household profiles, every household is assigned a new, unique residential profile from that
pool. The commercial profiles from simbench are replaced by OpenEI profiles of the same
type. The PV and wind profiles are taken from simbench. For the reactive power profiles,
the power angle ϕ between active Sre and reactive power Sim is assumed to be constant.

To simulate the true system state (ground truth), a power flow calculation is executed
for every time step using the load profiles described above. Simulated measurements
are then obtained from true system states without adding synthetic measurement errors.
For the measurement scenario, all MV nodes with large commercial consumers and RES
are assumed to be equipped with RLMs. Furthermore, five voltage PMU measurements
(assumed accuracy: σVmag : 0.2%, σVang : 0.11◦) are placed at buses 2, 5, 23, 77, and 87 (see
Figure 4). For the household loads, two different test cases are investigated, corresponding
to smart meter coverage of 0 and 100%.

In the terminology of Section 3, this results in the following MIS for the different
MV nodes:

• The 5 MV nodes with real-time measurements and 21 MV nodes with RLMs (large
commercial consumers and RES) are assigned to MVmeas.

• The 79 MV nodes with underlying LV grids are assigned to SM100%/SM≥αthres/SM<αthres .
The SM coverage is either 0 or 100%, depending on the test case.

On this test dataset, the performance of the approach is evaluated in the context of
a typical use case: the recognition of critical system states. To this end, the approach
is integrated into a complete Bayesian state estimation workflow, described in detail in
Section 2.3. The workflow uses a single LPD for all state estimation tasks. Note that the
accuracy of Bayesian state estimation can further be improved if a more accurate prior
voltage distribution is available for a specific state estimation task. One example would
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be distinguishing between weekdays and weekends or different seasons, using a separate
LPD (and hence prior voltage distribution) for each setting.

4.3. Test Cases

For the evaluation, four test cases are defined:

Test case 1: The SM coverage of all underlying LV grids is assumed to be 100% (SM100%),
i.e., 15 min “time-resolved” measured power profiles at every load are available for
the estimation. The sample LPD covariance ΣS,nm,samp is calculated according to our
approach as described in Section 3.3. Hence, it considers the behavioral correlations
(correlation aware, denoted in results tables by cor).

Test case 2: The SM coverage is also assumed to be 100%, but the load correlations are not
considered (correlation-unaware, denoted in results tables by cor0). This results in a
diagonal covariance matrix of the LPD.

Test case 3: The SM coverage of 0% (SM0%) is assumed for all LV grids, i.e., only the annual
energy demand is available for the estimation approach. The LPD is calculated
according to our approach as described in Section 3.3, using a value of K = 1000
and drawing comparable profiles for non-SM nodes (in this case, all nodes in the LV
grid) from the pool of 4947 OpenEI power profiles described in Section 3.4. Hence, it
considers the load correlations (correlation aware, denoted in results tables by cor).

Test case 4: The same SM coverage as for the third test (SM0%) is assumed, but the correla-
tion is neglected (correlation-unaware, denoted in results tables by cor0).

4.4. Recognition of Critical System States

As mentioned above, the evaluation starts with a test to recognize critical system
states. For every time step t ∈ {1, ..., T}, the Bayesian linear state estimation is conducted as
described in Section 4.2 based on LPDs calculated according to the approach described in
Section 3. From the resulting posterior distribution, the probability of critical system states
pcss is calculated as described in Section 4.1. To quantify the accuracy, the true positive
rate tpr (see Section 4.1) was used (The aggregated true-negative rate, which gives the
percentage of correctly recognized non-critical system states, is for all eight cases larger
than 99.6%). The results are shown in Table 4 below.

Table 4. Aggregated true-positive rates in % for recognition of critical system states (lower voltage
limit violation or thermal current limit violation) by Bayesian DSSE for test cases with different
smart meter coverage (SM100% and SM0%), as well as with (cor) and without (cor0) considering
load correlation.

MIS SM100% SM0%
Approach cor cor0 cor cor0

tprx̂
Vlow

98.0 82.1 98.0 80.7
tprx̂

Ith
97.6 76.7 95.2 72.8

First, the results of the SM100% scenario are compared. In this case, taking into account
behavioral correlations for calculating the probability of critical system states improves
tprx̂

lim by 15.9 percentage points for voltage limit violations and by 20.9 percentage points
for thermal current limit violations. The picture is similar for the SM0% scenario: Here,
tprx̂

lim improves by 17.3 percentage points for voltage limit violations and by 22.4 percentage
points for thermal current limit violations.

The benefit of considering behavioral correlations becomes even more striking when
viewed from the perspective of critical system states that are missed (i.e., not correctly rec-
ognized) by each approach. This can be captured, e.g., looking at the false negative rate fnr:
In the scenario SM0% where no smart meter measurements are available, the conventional
approach cor0 misses 19.3% of true critical system states caused by voltage limit violations.
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Using the approach cor based on the correlation-aware estimation of background load
probability distributions in this article, that fraction drops to 2%, a reduction by a factor of
9.7. Analogously, for thermal current limit violations, a reduction of the fnr by a factor of
5.7 is observed.

These findings confirm the importance of considering load correlations in DSSE
algorithms, as found in the context of WLS state estimation by [19]. It also demonstrates
the relevance of the Correlation-Aware LPD Synthesis method presented in this article: The
method enables correlation-aware state estimation even for nodes with no smart meter
coverage. The first and third test cases (SM100% vs. SM0%, both with correlation awareness)
result in similar true positive rates. Even without smart meter coverage, the accuracy
is much better than what can be achieved without considering load correlations, even if
background distributions are based on full historical smart meter data.

It is important to note that, as described in Section 3.2, the proposed approach only
uses comparable load profiles for the estimation of correlations in the case SM0%. These
give us an approximate indication of the true behavioral correlation between loads in the
system (in fact, the estimated correlation values differ from the empirical correlation in our
ground truth by 12% on average, with a maximum value of 39%). However, as the results
above show, this approximation is good enough to substantially improve the accuracy of
the resulting state estimation and, consequently, the recognition of critical system states.

In summary, it could be confirmed that considering load correlations allows for
substantially more accurate recognition of critical system states. Furthermore, using the
approach described in this paper, this improvement can be leveraged even in cases where
no smart meter measurements are available that would allow an empirical estimation of
load correlations. Instead, insights from a set of comparable (but different) load profiles
from an entirely different geographical region can be used to achieve accuracy comparable
to the case where full smart meter coverage is available.

4.5. Accuracy of Estimated Prior Voltage Distribution

To get a more detailed view of the improved state estimation accuracy behind the
results in the previous section, we now look closer at the prior voltage distribution used in
the Bayesian state estimation approach.

To achieve accurate state estimation results (and hence a reliable detection of critical
system states), the approximation of ΦV,pr should represent the true empirical voltage
distribution ΦV,pr,true (i.e., the distribution of voltage values in the simulated ground truth
system state, resulting from a power flow calculation for every time step) as accurately as
possible. To illustrate this fact, we have run the state estimation based on true, empirical
voltage prior distribution ΦV,pr,true, which results in recognition accuracies for critical
system states of >99% (tprx̂

Vlow
: 99.9%, tprx̂

Ith
: 99.0%).

A closer look at the Bayesian state estimation algorithm shows that changes in the
LPD covariance matrix ΣS only affect the covariance matrix ΣV,pr of the prior voltage
distribution (the expectation value µV,pr is not affected). Hence, to assess the impact of
changes in LPD covariances on the estimated prior voltage distribution, the calculated
prior voltage covariance matrices are compared to the true empirical covariance matrix
ΣV,pr,true obtained from the simulated ground truth system state. Specifically, the following
two characteristics of the prior voltage distribution are evaluated:

• Standard deviation σV,pr (overall variation of voltage values for each node);
• Correlation coefficient rV,pr (correlation between voltage values at different nodes).

On a qualitative level, the standard deviation calculated without considering load cor-
relations always substantially underestimates the true standard deviation, thus assuming a
much lower variation of voltage values in the prior distribution (see Figure 5). On the other
hand, if load correlations are considered, the resulting standard deviation is very close to
the true empirical values (there are small deviations with a maximum of ±2.7% relative to
the mean).
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Figure 5. The marginalized true and estimated node voltage distribution ΦV,pr for voltage magnitude
(a) and angle (b) at the exemplary bus (97) are shown. The different colors represent the true empirical
values and the four test cases described in Section 4.3, covering different MIS and approaches with
and without consideration of load correlation.

Table 5 summarizes the results separately for σVpr and rVpr . It shows the NRMSE (see
Equation (13)) for each of the two characteristics of the prior voltage distribution and for
each of the four test cases from Section 4.3, separately for magnitude and angle components
of V.

Table 5. NRMSE for σV,pr and rV,pr for calculated and true voltage prior covariance depending on
MIS and load correlation rS assumption in %.

σV ,pr rV ,pr

MIS SM100% SM0% SM100% SM0 %
Correlation cor cor0 cor cor0 cor cor0 cor cor0

Vpr,mag 15.5 71.9 27.6 72.3 2.1 40.9 4.8 41.3
Vpr,ang 1.5 44.7 11.6 44.8 1.6 36.4 3.8 36.6

We first focus on the NRMSE for the standard deviation of the prior voltage distribu-
tion. If load correlations are not taken into account (cor0 columns), relatively high NRMSE
values (∼72% for voltage magnitude and∼45% for voltage angle) are observed, confirming
the qualitative observation from Figure 5. This is true independently of the level of smart
meter coverage. Accounting for load correlations, on the other hand, reduces that error
dramatically in the case of full smart meter coverage. Even in the case where no smart
meter measurements are available, using the approach presented in this paper, error levels
can be reduced to ∼1/3 (for Vpr,mag, 27.6% vs. 72.3%) and ∼1/4 (for Vpr,ang, 11.6% vs. 44.8%)
compared to the baseline cor0.

Regarding the NRMSE for the correlation coefficients of the prior distribution, an even
more dramatic improvement can be observed. While the NRMSE is somewhat lower if
load correlations are not taken into account (∼41% for voltage magnitude and ∼36% for
voltage angle), the increase in accuracy when considering load correlations is larger than
before: In the case where no smart meter measurements are available, the approach reduces
error levels to ∼1/9 (for both Vpr,mag and Vpr,ang) compared to the baseline.

The comparison of true and calculated σV,pr and rV,pr shows that the consideration of
behavioral correlations in LPD for Bayesian DSSE strongly improves the accuracy of the
estimated prior distribution ΦV,pr. This translates into a more accurate posterior estimate
of ΦV,po, which can be observed in our assessment of recognition of critical system states
above (Section 4.4).

Naturally, the achieved accuracy w.r.t the prior voltage distribution cannot be quite
as high, when no smart meter measurements are available as in the case with full smart
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meter coverage. However, the results of this paper show that the approach presented in
this article can improve the accuracy of the prior voltage distribution impressively, even
without any smart meter measurements (see Section 4.5). In particular, the level of accuracy
is sufficient for practical use cases, e.g., enabling a reliable recognition of critical system
states (see Section 4.4).

5. Conclusions

This paper highlights the importance of accurately modeling load correlations in
Bayesian state estimation. A method is proposed to calculate load probability distributions
and accurate load correlations for medium voltage grids in different measurement instru-
mentation scenarios, which was previously only possible if a complete set of time-resolved
power measurements was available at all underlying grid nodes (e.g., from smart meters).
The resulting load probability distributions can be used as background distributions for
Bayesian state estimation, but also to enhance WLS approaches that consider correlations
between pseudo-measurements.

The main inferences of this paper are:

• Using the correlation-aware synthesis module for estimating the background dis-
tribution for Bayesian state estimation substantially improves the accuracy of state
estimation results;

• Using the approach presented in this article, up to 98% of critical system states are
correctly identified, reducing the fraction of missed critical system states by a factor
of up to nine compared to conventional approaches that do not take behavioral
correlations in background load probability distributions into account;

• The approach is especially beneficial for cases with no or very limited data availability,
where a factor improvement of nine can be achieved.

• The results emphasize the importance of accurately modeling the statistical properties
of customer behavior in distribution system state estimation by achieving up to 22%
percentage points higher detection rates.

For future research, the correlation analysis should be evaluated for different types of
low-voltage grids. The distinction between rural, semi-urban, and urban grids could open
a broader application scope for the proposed method. For future decarbonization scenarios,
further research would be needed to determine load correlations between low-voltage grids
with high photovoltaic, electric vehicles, and heat pump penetrations. Furthermore, valida-
tion in experiments with actual field data is required to confirm the practical applicability.
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Abbreviations

Variable Description Units
ΓS/ΓV,pr Complex-valued covariance of

background/prior distribution
µS/µV,pr/µV,po/µx|z Expectation value of background/voltage prior/voltage

posterior/likelihood distribution
µS,samp Sample mean of background distribution
ΣS/ΣV,pr/ΣV,po/Σx|z Real-valued covariance of background/voltage

prior/voltage posterior/likelihood distribution
ΣSsamp /ΣScomp Sample/synthesized covariance of

background distribution
σe/σV,pr Standard deviation of measurement

error/measurement/voltage prior distribution
ΦS/ΦV,pr/ΦV,po/Φx|z/ΦIpo Density function of background/voltage prior/voltage

posterior/likelihood/branch current posterior
distribution

ΦC
S /ΦC

V,pr Complex-valued density function of
background/prior/posterior/likelihood distribution

ϕ Angle between active and reactive power
CS/CV,pr Pseudo-covariance of background/prior distribution
e Measurement error
E∑ SM/E∑SM Summed up energy demand of all customers/customers

with SM in LV grid
MWh

fscale Scaling factor for energy demand
H Jacobi matrix of measurement function
h Measurement function
I Branch current kA
L Admittance matrix without slack row and column Ω−1

L0,0/L0,col/L0,row Slack variance/Slack column/row of admittance matrix Ω−1

S Apparent power at bus MVA
SMV,synth/SMV,meas/SMV Synthesized/measured/apparent power at MV node MVA
S∑ SM/SSM Summed up/apparent power of Smart Meter MVA
S∑ LVcomp Summed up apparent power of comparable LV grid MVA
pcss,lim Probability of critical system states for given limit lim %
rV,pr Correlation coefficient of prior distribution %
tpr True positive rate %
V Node voltage at bus kV
V0/ Vns Slack and non-slack voltages kV
W Weight matrix
x State variable
xtrue/x̂ True/estimated state variable
x̂MAP/x̂ML/x̂MMSE/x̂WLS Estimated state variable for MAP/ML/MMSE/WLS

estimator
Y Bus admittance Ω−1

z Measurement variable
Parameters Description
αthres Threshold for Smart Meter Coverage %
B Number of branches
E Number of node or branch elements
Ith Thermal current limit kA
K Number of simulation runs
M Number of real-time measurements
N Number of non-slack buses
NSM Number of Smart Meters
pthres Probability threshold %
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T Number of time steps
Vlow Lower voltage band limit kV
Symbols Description
MVmeas, SM100%/ Measurement instrumentation scenarios

(see Table 1)SM≥αthres /SM<αthres

cor/cor0 Considering/neglecting correlations
Acronyms Description
DSSE Distribution System State Estimation
DSO Distribution System Operator
LV Low Voltage
LPD Load Probability Distribution
MIS Measurement Instrumentation Scenario
MV Medium Voltage
NRMSE Normalized Root-Mean-Square Error
PV Photovoltaic
RLM Recorded Power Measurements (german:

Registrierende Leistungsmessung)
SM Smart Meter
SLP Standard Load Profiles
WLS Weighted Least Square

Appendix A

The derivation of the equations for Bayesian linear state estimation is given below.
The calculation of the complex covariance matrix ΓS and pseudo covariance matrix CS from
real-valued covariance matrix ΣS, is given by (see Equation (16) in [34])

ΓS = ΣS,rr + ΣS,ii + j(ΣS,ir − ΣS,ri) (A1)

CS = ΣS,rr − ΣS,ii + j(ΣS,ir + ΣS,ri). (A2)

The complex form of LPD ΦC
S is transformed to complex form of voltage prior distribution

ΦC
V,pr by linearized power flow equation (see Equation (4) in [30]). The equation equals the

first iteration step of the forward/backward sweep-based power flow algorithm [35]:

Vns = −L−1L0,colV0 +
L−1

V0
S∗, (A3)

where V0 ∈ C denotes the slack voltage phasor and Vns ∈ CN×1 the non-slack voltage
phasor vector. S∗ ∈ CN represents the complex conjugated apparent power of consumers
and generation units at all non-slack buses. L ∈ CN×N is the “non-slack” and L0,col ∈ CN×1

the slack column of the bus admittance matrix.
For the linear affine transformation, Equation (A3) is rewritten as

Vns = AS∗ + b (A4)

with A =
L−1

V0
and b = −L−1L0,colV0.

With this, the explicit calculation steps for calculating ΦC
V,pr from the load probability

distribution ΦS can be given below (see Equation (10) in [15]).

ΦC
V,pr = N

(
V, pr | µV,pr, ΓV,pr, CV,pr

)
(A5)

µV,pr = AµS∗ + b (A6)

ΓV,pr = AΓS∗AH (A7)

CV,pr = ACS∗AT (A8)
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The re-transformation from complex covariances to real-valued covariances is given by
(see Equations (8) and (9) in [34])

ΣV,pr =

(
0.5 Re

(
ΓV,pr + CV,pr

)
0.5 Im

(
−ΓV,pr + CV,pr

)
0.5 Im

(
ΓV,pr + CV,pr

)
0.5 Re

(
ΓV,pr − CV,pr

) ). (A9)

The voltage posterior distribution ΦV,po can be derived from the sum of exponents of
the prior and likelihood distribution using Equation (2.96) and (2.97) from [28]. For this,
the measurement function is linearized around µV,pr:

h(x) ≈ h(µV,pr) + H(x− µV,pr), (A10)

where H is the Jacobian matrix of the measurement function h(x). It is deceived by partial
deviations with respect to Vre and Vim. The posterior distribution can then be calculated
as follows:

ΦV,po = N
(

Vpo | µV,po, ΣV,po

)
(A11)

ΣV,po = ΣV,pr − KHΣV,pr (A12)

µV,po = µV,pr + K
(

z− h
(

µV,pr

))
(A13)

with K = ΣV,prHT
(

HΣV,prHT + Σz|x
)−1

The probability of critical system states for lower voltage limit violations is calculated based
on the marginalized voltage prior distribution ΦVpo,mag,n according to (see Equation (20)
in [30])

pcss,Vlow,n =

Vlow∫
−∞

ΦVpo,mag,n · 100%. (A14)
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