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Abstract: Compared with the conventional constant-current constant-voltage (CC-CV) charging
method, the multi-stage constant-current (MSCC) charging method offers advantages such as rapid
charging speed and high charging efficiency. However, MSCC must find the optimal charging
current profile (OCCP) in order to achieve the aforementioned benefits. Hence, in this paper, five bio-
inspired optimization algorithms (BIOAs), including particle swarm optimization (PSO), modified
PSO (MPSO), grey wolf optimization (GWO), modified GWO (MGWO), and the jellyfish search
algorithm (JSA), are applied to solve the problem of searching for the OCCP of the MSCC. The
best solution-finding procedure is run on the MATLAB platform developed based on minimizing
the objective function of combining charging time (CT) and energy loss (EL) with a proportional
weight. Without requiring numerous and time-consuming actual charge-and-discharge experiments,
a wide range of searches can be quickly achieved only through the battery equivalent circuit model
(ECM) established. The theoretical derivation and correctness are confirmed via the simulation and
experimental results, which demonstrate that the OCCPs obtained by using the devised charging
strategies possess the shortest CT and the best charging efficiency (CE), and among them, MPSO has
the best fitness value (FV). Compared with the traditional CC-CV method, the experimental results
show that the maximum improvement rates (IRs) of the studied approaches in terms of six charging
performance evaluation indicators (CPEIs), including CT, charging capacity (CHC), CE, charging
energy (CWh), average temperature rise (ATR), and FV, are 21.10%, 0.40%, 0.24%, 2.85%, 18.86%, and
68.99%, respectively. Furthermore, according to the comprehensive evaluation with CPEIs, the top
three with the best overall performance are the JSA, MPSO, and GWO methods, respectively.

Keywords: battery equivalent circuit model; bio-inspired optimization algorithm; lithium-ion battery;
multi-stage constant-current charging; multi-objective optimization; optimal charging current profile;
overall performance

1. Introduction

With the fast development of portable electronic devices, renewable energy systems,
and electric vehicles (EVs), as well as advancements in battery-related technologies, lithium-
ion batteries (LiBs) have garnered significant attention as a highly promising option for
secondary batteries. They possess numerous advantages, including high energy density,
compact size, long cycle life, high discharge current tolerance, and the absence of memory
effects. As a result, many high-power energy storage systems have begun to focus on the
research and development of high-capacity LiBs [1–3]. Charging techniques play a crucial
role in the performance and lifespan of LiBs. Factors directly affected include the following:
(1) Charging time: the charging technique employed dominates the time required to fully
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charge LiBs. Efficient charging algorithms can optimize the charging process and reduce
the overall CT. (2) Charging efficiency: the charging technique influences the efficiency
of energy transfer during the charging process. Higher CE means less energy loss and
more effective utilization of the charging power. (3) Charging temperature rise (TR): proper
charging techniques help mitigate the TR of LiBs during charging. Excessive TR can
result in thermal stress, accelerated degradation, and safety concerns. (4) Longevity: the
chosen charging technique affects the number of charge–discharge cycles that the LiB can
endure before its capacity significantly degrades. (5) State of charge (SOC): charging the
battery with sufficient SOC and accurately estimating the remaining capacity can help the
system make comprehensive decisions and improve system safety [4]. (6) Micro-health
parameters: the micro-health parameters represent the performance of active material and
electrolytes inside the battery, and the changes in the micro-health parameters represent
the battery’s internal health state [5]. Optimal charging techniques can extend the cycle
life of the battery and ensure its performance retention over a longer period. That is,
charging techniques have a significant impact on various aspects of LiB performance.
Using appropriate charging techniques can optimize these factors and enhance the overall
performance and lifetime of the battery. On the other hand, LiBs are susceptible to factors
such as overcharging, over-discharging, and environmental temperature, leading charging
technologies that consider the impact of these factors to become a future research trend [6–8].
Furthermore, in response to the development of fast charging for EVs, high-current charging
can lead to a high TR, low CE, and short lifespan. Among these factors, TR is particularly
critical for batteries. A higher TR during charging indicates greater energy loss and raises
safety concerns.

Currently, numerous researchers are still putting forward different perspectives and
conducting investigations on various charging methods to address different charging issues.
Their goals often revolve around shortening charging time, reducing charging temperature
rise, and improving charging efficiency. Currently, the most commonly adopted charging
method is the CC-CV method. This method involves initially charging the LiB with a CC,
causing the battery voltage to increase. When the battery voltage reaches the upper limit
voltage (e.g., 4.2 V for LiB), the charging mode switches to CV. During the CV phase, the
battery is charged at the limit voltage while the charging current gradually decreases until
it reaches the preset minimal value (e.g., 0.02 C), at which point the charging is terminated.
This method combines the advantages of both CC and CV methods and is relatively simple
and easy to implement. However, this method requires a longer CT during the CV mode,
resulting in an overall longer CT and potentially shorter cycle life. Accordingly, many
studies proposed in the literature aim to explore new charging algorithms, charging control
strategies, and charging system designs to improve charging effectiveness while ensuring
safety and battery lifetime.

In the derivative CC-CV charging methods, a dual-loop control strategy based on
battery voltage was proposed in [9] to achieve a charge similar to CC-CV. It does not
require a current sensor, making it simpler and more cost-effective. A boost-type CC-CV
method is proposed in [10]; it starts with a voltage higher than the battery rated voltage
and then switches to the standard CC-CV after the boost voltage period. This approach can
reduce the CT compared with the CC-CV, but it requires the battery to be fully discharged
before charging. A gray prediction control was adopted in [11], while a fuzzy controller
was utilized in [12] to achieve higher charging capacity in CV mode. A current pump
battery charger was proposed in [13]. The current pump was used in CC mode, and
the pulse current was adopted in CV mode. Experimental results show that the CE is
higher and the overall CT is comparable to the CC-CV. Ref. [14] proposed a closed-loop
constant-temperature constant-voltage (CT-CV) charging method, which realizes constant
temperature charging through a PID controller.

In terms of optimal charging methods based on battery models, ref. [15] considers a
second-order RC model for LiBs and incorporates the model predictive control to minimize
the evaluation function using pulse magnitude modulation and pulse width modulation.
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In order to improve the charging performances, ref. [16] inputs the TR and TR change rate
into the fuzzy controller to deduce the desired charging current value. The experimental
results show that the CE and TR can be improved. Ref. [17] raises an optimization method
based on the electrochemical model of health, TR, and aging to make a trade-off between
CT and aging speed. The MaxLifeTM charging technology proposed in [18] estimates
the electrochemical parameters via the construction of aging and electrochemical models.
During the charging process, it can dynamically adjust the proper charging voltage and
current through control mechanisms. Compared with the CC-CV, this approach features
a higher TR; however, it effectively mitigates lithium dendrite formation and prevents
battery expansion, resulting in longevity improvement. In the context of research related
to pulse charging methods, the highest charging current can be achieved by altering the
pulse frequency [19] or adjusting the duty cycle of the pulses [20]. In addition, refs. [21,22]
explore various variations in charging methods by modifying the current magnitude, pulse
width, and resting period. In [23], an adaptive pulse adjustment is raised to improve
charging speed and charging efficiency. Under the proper parameter setting and operating
conditions, the charging techniques mentioned above can effectively improve the charging
performance. However, these methods have high complexity in implementation and need
the use of costly digital controllers.

The MSCC charging method applies different levels of current to charge. In the
literature, transition criteria of the current level are mainly divided into two categories:
battery terminal voltage and remaining capacity. Refs. [24–26] employ terminal voltage
as the transition criterion of charge current based on the constraint that the current in the
subsequent stage must be less than that of the previous stage. If the battery could not be
fully charged, it is a problem for the voltage-based transition. To cope with this issue, a CV
mode is often added after the final stage charge [27,28]. Although this way can achieve the
full charge, it comes at the cost of longer CT and lower CE. Refs. [29–32] adopt the SOC as
the current transition criterion. In this criterion, the current value in each stage is not subject
to the aforementioned restriction. Compared with the CC-CV method, the SOC-based
transition method can reduce CT and have higher CE than the pulse charging method. In
recent years, studies on searching the OCCP of MSCC using optimization algorithms (OAs),
such as the ant colony system (ACS) [24], Bayesian optimization [28], genetic algorithm
(GA) [32], PSO [33], cuckoo optimization algorithm (COA) [34], GWO [35], etc., have been
proposed. The OA can improve the search capability for multi-objective optimal solutions
and simultaneously consider multiple charging performance indicators to significantly
improve the charging performance as compared with the CC-CV. However, these methods
require experimental verification for candidate charging patterns, which requires a lot of
experimental time and results in a significant increase in the time and cost of finding the
optimal solution. In addition, based on the simplified ECM, ref. [36] proposed a formula
calculation method (dubbed FC method in this paper) to determine the OCCP of MSCC. A
set of simple formulas are derived to calculate each stage’s current value. In comparison
with the aforementioned methods, this approach does not require extensive experiments
and time costs. However, it is only dedicated to improving the CT and does not take the EL
or TR into account.

The MSCC charging method primarily evaluates the contribution of the charge current
in each stage to the total CHC, CT, and EL. Accordingly, finding the OCCP is crucial for
MSCC. Based on the battery ECM and five BIOAs, i.e., PSO, modified PSO [37], GWO,
modified GWO [38], and JSA [39], this paper aims to search the OCCP of the MSCC method
with an objective function that simultaneously minimizes the combination of charging
EL and CT. Firstly, an ECM is established by the analysis of electrochemical impedance
spectroscopy (EIS). Then, mathematical expressions for CPEIs are derived to formulate the
optimization problem studied. Finally, a MATLAB-based computation platform, consisting
of the ECM, CPEI calculation formulas, and BIOAs, is formed to discover the OCCP that
features the best fitness value. The main contributions of this paper include the following:
(1) Without the need for numerous and long-lasting experimental processes, the OCCP
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search can be quickly achieved only through the ECM-based computation platform es-
tablished. (2) The OCCP searching procedure is completed based on the consideration
of multi-objective optimization. (3) The JSA applied to the OCCP search of LiBs is first
proposed. (4) A comprehensive evaluation of the studied BIOA-based method is performed
to make the recommendation for charging method adoption. (5) The proposed charging
strategy could be extended to other types of batteries. The rest of this paper is organized as
follows. The basic philosophy of the proposed charging strategy, including the battery ECM
and parameter measurement, mathematical derivation of the presented MSCC charging
method, formulation of the optimization problem, and the definition of the fitness function,
is described in Section 2 in detail. Section 3 provides a review of the BIOAs, their operating
mechanisms, and the flowchart applied to the studied method. The results of the simula-
tion and experiment are given in Section 4 to demonstrate the validity and effectiveness.
Comparisons with the conventional methods are also performed to emphasize performance
improvement. Finally, Section 5 concludes this paper.

2. Philosophy of the Proposed Charging Strategy

To facilitate the analysis of the complicated electrochemical behavior, this section first
introduces the ECM of the LiB selected. Next, the identification of the parameters in the
ECM through the analysis of the AC impedance is depicted, and then the fitted ECM is
applied to derive the mathematical formulas of the MSCC charging method. Finally, the
BIOAs, integrated with the objective function of simultaneously achieving the reduction in
CT and EL, are applied to find the optimal multi-stage charging current patterns.

2.1. Equivalent Circuit Model and Parameter Measurement

Building an accurate battery ECM is helpful for theoretical derivation, analysis, and
experimental verification. During the charging or discharging process, the battery output
voltage varies over time due to the influence of internal electrochemical reactions. Figure 1
shows the first-order Thévenin’s ECM of the battery adopted in this study, which consists
of the battery equivalent capacitance Ceq, polarization resistance Rp, capacitance Cp, and
internal resistor Ro. This model has the advantages of adequate accuracy and low computa-
tional burden. Rp and Cp represent the charge transfer and diffusion process between the
electrode and the electrolyte. The dynamic response of the battery can be described by the
parallel Rp and Cp. Through this ECM, the CT, EL, and charging capacity of the studied
MSCC method can be derived. If the battery works at a specific temperature, the Rp, Cp,
and Ro are all related to the SOC, and this ECM can characterize the behavior of dynamic
and steady states with acceptable accuracy during the charging and discharging processes.

In this work, the dominant parameters (Rp, Cp, and Ro) shown in the ECM were identi-
fied by using the AC impedance analysis (AIA) method. Figure 2a shows the flowchart of
the AIA experiment. The AC impedance and OCV are measured every 1% SOC interval in
this paper. First, fully charge the battery (100% SOC) with CC-CV and rest for 3 h. Then,
execute the EIS testing subroutine to obtain the ECM model parameters. Next, discharge
with 0.1 C CC for 6 min (about 1% SOC), rest for 3 h, and then measure the OCV. The entire
experiment is conducted until the SOC drops to 0%. Figure 2b shows the subroutine of the
electrochemical impedance spectroscopy (EIS) testing. The EIS testing involves perturbing
the battery using a small-amplitude AC sinewave signal with variable frequency. The
amplitude of the testing sinewave voltage is 10 mV, and the testing frequency range is
set from 0.1 Hz to 100 kHz with intervals of 6 dB. The AC impedance of a battery has a
corresponding relationship with the remaining capacity and can be characterized by the
Nyquist plot. This paper considers the accuracy of the ECM and the time required for
testing, and a precision of 1% SOC is used for AC impedance analysis. Then, the measured
AC impedance values under different SOCs are utilized to fit the desired battery model
and identify its corresponding parameters. The Panasonic NCR18650GA LiB was studied
in this paper. The test and analysis platform formed by Bio-logic SP-100 Potentiostat with
EC-Lab V11.40 software from BioLogic was used to perform the AIA. When the battery is



Energies 2023, 16, 7641 5 of 23

working at a specific temperature, the model parameters are a function of SOC. Figure 3a,b
show the measured curves of the open-circuit voltage (OCV), Rp, and Ro, where Req is
the equivalent internal resistance (EIR) that is defined as Req = Rp + Ro. In order to easily
calculate the Req under different SOCs when deriving the total CT and EL, the curve fitting
of Req by using the Gaussian summation function model is conducted, and the result is

Req(SOC) = a1e−(
soc−b1

c1
)

2

+ a2e−(
soc−b2

c2
)

2

+ a3e−(
soc−b3

c3
)

2

+ a4e−(
soc−b4

c4
)

2

+ a5e−(
soc−b5

c5
)

2

+ a6e−(
soc−b6

c6
)

2

(1)

where the coefficients of [a1, b1, c1, a2, b2, c2, a3, b3, c3, a4, b4, c4, a5, b5, c5, a6, b6, c6] are
equal to [0.09555, −0.06814, 0.1023, 1.322 × 105, 6.617, 1.488, 0.1348, −0.184, 0.5725, 0.09618,
0.6407, 0.5104, 0.002261, 0.7916, 0.139, −6.518 × 10−5, 0.7956, 0.03881].
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stage can be designed by 

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2

100%90%80%70%60%50%40%30%20%10%0%

O
C

V
(V

)

SOC

0.00

0.04

0.08

0.12

0.16

0.20

0.24

100%90%80%70%60%50%40%30%20%10%0%
SOC

R
o, 

R
p, 

R
eq

 (Ω
 )

Req (= Ro + Rp)

Ro 

Rp

Figure 3. Model parameter measurement: (a) OCV-SOC curve; (b) equivalent internal resistance.

2.2. Mathematical Derivation of the Proposed Charging Method

As shown in Figure 1, the VCeq, VCp, VRp, VRo, and VT represent battery internal voltage
(or OCV), voltages across Cp, Rp, and Ro, and the battery terminal voltage, respectively.
According to the Kirchhoff law, the VT can be expressed by

VT(t) = VRo (t) + VRp(t) + VCeq(t) (2)

Figure 4 illustrates the schematic waveforms of battery voltage, current, and SOC
charged by using a typical MSCC method. Where n is the stage number, VCeq,1 is the initial
voltage of the SOC at 0%. The study concluded in [27] indicates that increasing the number
of current stages can effectively reduce charging time. However, beyond the fifth stage,
the benefits are insignificant, and the implemented cost and complexity will be increased
substantially. Therefore, the five-stage CC is chosen in this paper. From Figure 4, the
electricity charged into the battery at each stage can be expressed as

∆Qn = Ceq × ∆Vn =
∫

In−1dt = In−1 · ∆tn (3)

where In−1 is the charging current of the previous stage, and ∆Vn is the difference between
the OCV of each stage and that at the previous stage. Consequently, the CT (∆tn) required
during one charging stage can be estimated by

∆tn =
Ceq × ∆Vn

In−1
(4)
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For the duration of the CC charge, the impedance of Cp is much greater than Rp, and
then the current flowing through Rp is approximate to the charging current
(i.e., IRp ≈ Icharge). Consequently, the internal voltage VCeq,n for each stage can be determined
by

VCeq,n = Vcut−o f f − Icharge,n−1 × Req(SOCn) , n = 2 ∼ 5 (5)

where Vcut-off is the cut-off voltage at each current transition point, and Icharge,n is the
charging current of each stage. Accordingly, the ∆Vn for each stage can be derived by

∆Vn =


Vcut−o f f − Icharge,nReq(SOCn+1)−VCeq,n , n = 1
Icharge,n−1Req(SOCn)− Icharge,nReq(SOCn+1), n = 2, 3, 4
Vcut−o f f − Icharge,nReq(SOCn+1), n = 5

(6)

In addition, in order to charge the battery to 100% SOC, the current value of the fifth
stage can be designed by

Icharge,5 =
Vcut−o f f −VCeq,5

Req(SOC5)
(7)

where VCeq,5 is the internal voltage at full charge. Hence, the total CT (CTtotal) can be
determined by

CTtotal =
5

∑
n=1

∆tn =
5

∑
n=1

Ceq × ∆Vn

Icharge,n
(8)

Finally, the total EL (ELtotal) during the charging period depends on the current value
of each stage and the EIR values under different SOC conditions. It can be computed by

ELtotal =
5

∑
n=1

∆ELn =
5

∑
n=1

(∫ tn+1

tn
I2

charge,n
Req(SOC(t)) dt

)
(9)

2.3. Formulation of Optimization Problem

Before applying optimization algorithms to find the best solution, it is necessary to
define the optimization objectives and design the objective function accordingly. The
objective function is used to calculate the FV of each particle and evaluate the optimization
result. This study solves the OCCP simultaneously taking two different physical quantities
of the charging CT and EL into account. In which the CT and EL are closely related to
the charging current of each stage. As shown in Figure 5, based on the specifications of
the studied battery and the requirements for safety, the CC-CV with the charging current
range from 1.5 C to 0.5 C with a 0.1 C step is inputted into the ECM built in the developed
MATLAB platform to calculate the CTtotal and ELtotal under different C-rate charging points
to find the range of feasible solution space for the studied optimization problem. From
Figure 5, it can be observed that the ideal solution is located at the position that has the
shortest CT (CTmin) and minimal EL (ELmin). Thereby, the linear distance (d) between the
solution of the current operating point (CTcop, ELcop) and the ideal optimal solution (CTmin,
ELmin) is adopted as the fitness-value function fFV(·) to evaluate whether the operating
point is the best solution or not. It can be expressed by

fFV(CTcop, ELcop) ≡ d =

√(
CTcop

(
In
)
− CTmin

)2
+
(
ELcop

(
In
)
− ELmin

)2 (10)
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where In =
[
I1, I2, I3, I4, I5

]
are the charging current values. Accordingly, the objective

function and constraints of the studied optimal problem can be formulated as

Minimize

√
σ

(
CTcop(In)−CTmin

CTmax−CTmin

)2
+ (1− σ)

(
ELcop(In)−ELmin

ELmax−ELmin

)2
, In ∈ S

Subject to CTmin ≤ CTcop
(

In
)
≤ CTmax

ELmin ≤ ELcop
(

In
)
≤ ELmax

In > Im i f n < m, n, m = 1, 2, . . . , 5
0 ≤ In ≤ Imax, VCeq,n ≤ Vmax

(11)

where S stands for the set of all feasible charging patterns. Since (11) contains two different
physical quantities, the maximal and minimal values of the CT and EL are used to normalize
the two parameters to ensure the consistency of the benchmark values for the target
parameters. In addition, to appropriately balance the significance of the two target CPEIs,
a weighting coefficient σ is introduced into the objective function. The constraints of
the optimization problem include that the CT and EL are limited to the maximum and
minimum values allowed by the feasible solution space. In order to alleviate the chemical
reaction stress, the charging current value of the present stage should not be greater than
that of the preceding stage. In addition, the current (In) and the transition voltage (VCeq,n) of
each stage must not exceed the allowable maximum values, Imax and Vmax, recommended
by the battery specification. In this paper, Imax is 3.3 A, and Vmax equals 4.2 V.
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3. Bio-Inspired Optimization Algorithms for OCCP Searching
3.1. Overview of BIOAs Studied

Searching for the OCCP for a rechargeable battery can be regarded as a combinatorial
optimization problem. Such a problem is hard to solve by using traditional methods.
One possible way to obtain the OCCP is to try every combination of the charging current
value. However, this way of exhaustive search is time-consuming and not economical
for engineers to do so. The BIOA-based optimization techniques have been successfully
applied to various research and applications. Hence, this study first establishes an accurate
battery ECM through the EIS analysis, and then the objective function that simultaneously
considers the minimization of charging EL and CT is derived based on the ECM; finally,
combining the ECM with the BIOA method, a computation platform is established on
MATLAB to search for the OCCP of the MSCC. In this way, without the need for numerous
and time-consuming actual charge-and-discharge experiments, only through the battery
ECM-based computation platform, a wide range of searches based on the BIOA approaches
to quickly find the OCCP can be achieved.
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3.1.1. Modified Particle Swarm Optimization

Particle swarm optimization [37] is a metaheuristic optimization algorithm that draws
inspiration from the collective foraging behavior of a flock of birds or fish. Figure 6 shows
an update concept of a particle in PSO searching. Particles are used to represent potential
solutions. Each particle possesses a fitness value and a corresponding position. The particles
continuously adjust their velocities and positions in order to explore the search space and
locate the optimal solution. This update process is influenced by both the particle’s own
experiences and the experience of the swarm. Initially, the particles are randomly initialized
within the solution space, and their positions and velocities are subsequently updated
iteratively based on the following two formulas:

Vd
q (k + 1) = w(k)Vd

q (k) + c1<1(Pd
best,q − Sd

q(k)) + c2<2(Gd
best − Sd

q(k)) (12)

Sd
q(k + 1) = Sd

q(k) + Vd
q (k + 1) (13)
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For particle q, Sd
q(k + 1) and Sd

q(k) are positions of the (k + 1)th and kth iterations in
the dth dimension, respectively; Vd

q (k + 1) and Vd
q (k) denote velocities of the (k + 1)th and

kth iterations in the dth dimension, respectively. w(k) is inertia weight. The c1 and c2 are the
cognitive and social learning factors, respectively. <1 and <2 are two random numbers
in the interval of [0, 1], respectively. Gd

best is the location with the best global FV. Pd
best,q is

the location at which the particle q had the best FV. During each iteration, the particles
will modify their convergence speed and update their individual velocity and position by
simultaneously taking both experiences of the individual particle (Pbest,q) and the collective
particle (Gbest) into account. This iterative process persists until termination conditions,
such as reaching the maximum number of iterations or discovering the global optimal FV,
are met. In the velocity update Equation (12), since w, c1, and c2 dominate the particle
global search capability and local convergence quality, as a result, the inertia weight with a
linear decrease was proposed in [33] to improve the problem of poor global exploration
and local exploitation capabilities caused by improper weight settings. However, in this
linear decrease way, if the tuning value between the three parameters in (12) is not properly
matched, the update speed becomes slower, causing the particle search speed to slow
down. Once the particle is trapped in the local optimal solution, it may not have enough
momentum to escape due to the velocity attenuation.
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In order to enhance the global and local search abilities, modified PSO is studied in
this paper. In addition to utilizing the cognitive and social models of individual particles in
traditional PSO, MPSO adds a new mode called other particles’ best experience (OPBE)
to guide the swarm in locating the best solution. The OPBE mode selects a random
particle Pbest,ap as the exchange learning experience for the current particle among different
individuals. The learning factor c3 in this mode is chosen to be linearly decreasing, from
c3,max to c3,min, as the iteration number increases. Adjusting these two parameters can make
the algorithm more flexible and applicable to various optimization problems. Therefore,
this algorithm enables each particle to search more efficiently and quickly for the global
best solution or a solution closer to the global best in the complex solution space. The
complete formula of MPSO can be expressed as

Vd
q (k + 1) = w(k)Vd

q (k) + c1<1(Pd
best,q − Sd

q(k)) + c2<2(Gd
best − Sd

q(k)) + c3(k)<3(Pd
best,ap − Sd

q(k)) (14)

Sd
q(k + 1) = Sd

q(k) + Vd
q (k + 1) (15)

The learning factor c3(k) can be denoted by

c3(k) = c3,max −
iter

itermax
(c3,max − c3,min) (16)

where c3,max and c3,min are the maximal and minimal values of the c3. The iter and itermax
stand for the number of current iterations and the maximum iteration number.

3.1.2. Modified Grey Wolf Optimization

The grey wolf optimizer [38] is a computational method that draws inspiration from
the hunting behavior of a pack of grey wolves. Figure 7 depicts the mechanism of the gray
wolf position update. The algorithm commences by yielding a model based on random
initial solution generation and subsequently identifies the three most optimal solutions
within the wolf pack, referred to as α, β, and δ. Afterward, utilizing the positions of these

three superior solutions and employing vector coefficients
→
C and

→
A, the expected forward

positions for each solution are sequentially updated. Ultimately, the three anticipated
positions are combined and averaged to yield the new position for each grey wolf. The
mathematical formulation for updating the positions of the grey wolves is given by

→
X(iter + 1) =

→
X1 +

→
X2 +

→
X3

3
(17)



→
X1 =

→
Xα −

→
A1 ×

∣∣∣∣→C1 ×
→
Xα(iter)−

→
X(iter)

∣∣∣∣
→
X2 =

→
Xβ −

→
A2 ×

∣∣∣∣→C2 ×
→
Xβ(iter)−

→
X(iter)

∣∣∣∣
→
X3 =

→
Xδ −

→
A3 ×

∣∣∣∣→C3 ×
→
Xδ(titer)−

→
X(iter)

∣∣∣∣
(18)

where
→
X is the gray wolf position vector. The determination of vector coefficients

→
C and

→
A

can be derived by
→
A = 2×→a ×→r1 −

→
a (19)

→
C = 2×→r2 (20)

where
→
r1 and

→
r2 are random variables in the interval of [0, 1];

→
a is a vector coefficient that

decreases from 2 to 0 with each iteration, which can be calculated by

→
a = 2×

(
1− iter

itermax

)
(21)



Energies 2023, 16, 7641 11 of 23

Energies 2023, 16, x FOR PEER REVIEW 11 of 23 
 

 

max

2 1 iter
a

iter
 

= × − 
 


 (21)

 
Figure 7. Mechanism of the gray wolf position update. 

In addition, A


 is a random number between −2 and 2. When A


 > 1, it represents 
global exploration, and when A


 < 1, it indicates local exploitation. C


 is a random num-

ber between 0 and 2, which affects the distance between the target wolf and each wolf, 
and it helps to avoid falling into local optima. 

In (21), the value of a


 affects the overall system search speed. In conventional GWO, 
it decreases linearly to balance the search time between global exploration and local ex-
ploitation. However, if the convergence speed is too fast, the search results will easily fall 
into the local optimal solution, and the search accuracy will be poor. To address this issue, 
a modified GWO algorithm is studied. Equation (22) is introduced in this paper to change 
the range of a  with the computation of the cosine function and adjust the speed of ex-
ploration and exploitation. In addition, the π is conducted to capture the descending curve 
so that the a  decreases in a cosine curve as the number of iterations increases, which is 
beneficial to increase the global exploration time. Adding 1 to the numerator term of (22) 
can make the curve minimal value zero. The value of ρ in the denominator term will fur-
ther affect the range of a  and the search time. The curves of a  under different ρ values 
are plotted in Figure 8. From Figure 8, it can be observed that the variation in a  is the 
same as the traditional GWO when ρ is one and will decrease from 2 to 0 with the iterative 
process. Compared with traditional GWO, the smaller the ρ is, the larger the a  is. This 
helps to maintain the range of A


 and extend the global searching time. In addition, the 

larger the ρ, the higher the search accuracy, which makes the global search time longer, 
and the range of A


 is reduced. However, if the selection of ρ is too large, the search range 

of A


 will be too small, which results in the inability to discover the optimal solution. As 
a result, choosing an appropriate ρ can effectively increase the global exploration time and 
make the search results more accurate and the system more stable. 

iter
iter

a

 
π + 

 =
ρ
max

cos 1
  

(22)

Dδ  

Dα 

Move

Dβ 

R

a1 

C1 

a3 

C3

a2 C2 

Any other hunters 

Prey

Figure 7. Mechanism of the gray wolf position update.

In addition,
→
A is a random number between −2 and 2. When

→
A > 1, it represents

global exploration, and when
→
A < 1, it indicates local exploitation.

∣∣∣∣→C∣∣∣∣ is a random number

between 0 and 2, which affects the distance between the target wolf and each wolf, and it
helps to avoid falling into local optima.

In (21), the value of
→
a affects the overall system search speed. In conventional GWO,

it decreases linearly to balance the search time between global exploration and local ex-
ploitation. However, if the convergence speed is too fast, the search results will easily fall
into the local optimal solution, and the search accuracy will be poor. To address this issue, a
modified GWO algorithm is studied. Equation (22) is introduced in this paper to change the
range of ã with the computation of the cosine function and adjust the speed of exploration
and exploitation. In addition, the π is conducted to capture the descending curve so that
the ã decreases in a cosine curve as the number of iterations increases, which is beneficial
to increase the global exploration time. Adding 1 to the numerator term of (22) can make
the curve minimal value zero. The value of ρ in the denominator term will further affect
the range of ã and the search time. The curves of ã under different ρ values are plotted
in Figure 8. From Figure 8, it can be observed that the variation in ã is the same as the
traditional GWO when ρ is one and will decrease from 2 to 0 with the iterative process.
Compared with traditional GWO, the smaller the ρ is, the larger the ã is. This helps to

maintain the range of
→
A and extend the global searching time. In addition, the larger the ρ,

the higher the search accuracy, which makes the global search time longer, and the range of
→
A is reduced. However, if the selection of ρ is too large, the search range of

→
A will be too

small, which results in the inability to discover the optimal solution. As a result, choosing
an appropriate ρ can effectively increase the global exploration time and make the search
results more accurate and the system more stable.

ã =
cos
(

iter
itermax

π
)
+ 1

ρ
(22)
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3.1.3. Jellyfish Search Algorithm

The jellyfish search algorithm [39] is inspired by the optimal technology of the jellyfish
movement and foraging behavior in the ocean. Figure 9 shows an imitation of an ocean
current, a jellyfish swarm, and time control. The movement behavior of jellyfish is mainly
affected by the direction of the ocean current, jellyfish swarm, and time control mechanism:

• Ocean current: Ocean currents are rich in nutrients, which make it easy for jellyfish to

move along with the currents. The direction of the ocean current,
→

trend, is determined
by the average vector between the position X of all jellyfish and the current optimal
position of the jellyfish, X∗. The direction of the ocean current and the position update
of the ith jellyfish moving with the ocean current can be respectively expressed by

→
trend = X∗ − β× rand(0, 1)× µ (23)

Xi(t + 1) = Xi(t) + rand(0, 1)×
→

trend (24)

where β is the allocation coefficient, µ is the average vector between all jellyfish and the
one with the best solution, rand(0, 1) is a random number in the interval of [0, 1], and t is
the time specified as the number of iterations.
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Figure 9. Imitation of ocean current, jellyfish swarm, and time control.

• Jellyfish swarm movement: There are two types of jellyfish swarm movements, passive
movement (type A) and active movement (type B). When a jellyfish swarm first forms,
most jellyfish explore by passive movement. But as time goes by, more and more
jellyfish are showing active movement for exploration. Type A movement swarms
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move by circling around their own position, and the corresponding position update of
each jellyfish can be denoted by

Xi(t + 1) = Xi(t) + γ× rand(0, 1)× (Ub − Lb) (25)

where Ub and Lb are the upper and lower bounds of the search space, respectively. γ > 0 is
a motion coefficient, which is related to the range of motion around the jellyfish position.
On the other hand, in the movement of type B, a jellyfish j, other than the current jellyfish i,
is randomly selected, and the vector from the jellyfish i to the selected jellyfish j is used to
determine the movement direction. When the food amount (or FV) of the selected jellyfish
j’s position exceeds that of the current jellyfish i’s position, the latter will move toward the
former; otherwise, it will move away from the former. Consequently, each jellyfish moves
in a better direction to find more food, and this way of movement is considered to be highly
efficient in local search. The active movement direction can be expressed as

Xi(t + 1) = Xi(t) +
→

step (26)

where
→

step = rand(0, 1)×
→
dir (27)

and
→
dir =

{
Xj(t)− Xi(t), if f (Xi) ≥ f (Xj)
Xi(t)− Xj(t), otherwise

(28)

where f (·) is the objective function at the position X.

• Time control mechanism (TCM): TCM is introduced to control the ratio between the
movement of jellyfish following the ocean current and that within the jellyfish swarm.
The TCM includes a time control function c(t) and a constant Co (the Co is set to 0.5 in
this study). The c(t) is a random value that fluctuates between 0 and 1 over time, and
it can be derived by

c(t) =
∣∣∣∣(1− iter

itermax

)
× (2× rand(0, 1)− 1)

∣∣∣∣ (29)

If c(t) ≥ Co, the movement of jellyfish follows the ocean current; if c(t) < Co, the
jellyfish moves within the jellyfish swarm. When moving within the jellyfish swarm, if
rand(0, 1) > (1 − c(t)), the jellyfish explores with passive movement; otherwise, it explores
with active movement.

3.2. Procedure for OCCP Searching

Figure 10 shows the general operation flowchart of the MSCC charging method based
on the OA. No matter which OA is adopted, this process can generally be used to search
for the OCCP. The search steps for the OCCP are explained as follows:

Step (1) First, execute system and particle parameter initialization and select OA to be
applied. Then, perform parameter setting for the selected OA, and the initial
charging current pattern is generated. In this study, according to the theoretical
analysis of the problem described in Section 2.2, each particle can be set as a five-
dimensional vector composed of [Vcut-off, I1, I2, I3, I4]. Where the transition voltage
Vcut-off and the current I1~I4 are the five variables that need to be determined and
optimized for each particle.

Step (2) The battery is charged with the current pattern generated by the selected OA.
From the charging data recorded, calculate the total CT, total EL, and FV of each
particle via (8)–(10), respectively, and then evaluate and rank the FV of each
particle according to the value obtained from the objective function of (11). The
particle position with the minimal FV is regarded as the current best solution.
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Step (3) Based on the FV of each particle obtained from Step (2), update the individual best
Pbest and the group best Gbest with the separate operation principles of different
OAs and then update the velocity and position of each particle. Finally, the
dominant parameters involved in the OA for manipulating the searching process
of each particle should also be recalculated and updated for correct utilization in
the next iteration.

Step (4) Check whether the convergence criteria are satisfied or not. If not, return to Step
(2) to continue execution. If the convergence conditions are met, output the OCCP
and end the searching process.
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4. Experimental Results and Discussion
4.1. Computation Parameter Setting and Results

Table 1 lists the parameters required for the calculation of the CTtotal, ELtotal, and FV.
The OCVs at SOC 100% and 0% are measured at an ambient temperature of 25 ◦C, and
the proportional weight σ in the objective function is set to 0.5, which means that CT and
EL have equivalent significance. As mentioned in Section 2.2, the factors affecting CT and
EL include each stage current (I1~I5) and the cut-off voltage (Vcut-off) for current transition.
Generally, the I1~I5 is set between 0 C and 1 C, and the Vcut-off is set to 4.2 V. The range
setting of variables in the particle is tabulated in Table 2. It should be noted that to prevent
the battery from damage, these parameter values must ensure that the OCV does not exceed
the rated voltage during the entire charging process. Table 3 shows the main parameter
setting of the BIOAs used in this paper. The computation is run on a personal computer
(PC) with a CPU of i7-13700 16C24T.
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Table 1. Parameters for CTtotal, ELtotal, and FV computation.

For CTtotal and ELtotal Calculation For FV Calculation

Rated capacity 3.3 Ah CTmax 14,496 s
VCeq at 100% SOC 4.2 V CTmin 9894 s

VCeq at 0% SOC 3.0662 V ELmax 5298.3 J
Req As Equation (1) ELmax 1926.8 J
Ceq 10,478 F σ 0.5

Table 2. Range setting of variables in the particle.

Vcut-off (V) I1 (A) I2 (A) I3 (A) I4 (A) I5 (A)

4.2~4.22 0~3.3 0~3.3 0~3.3 0~3.3
Vcut−o f f−4.2

Req(SOC)

Table 3. Parameter setting of the used BIOAs.

Algorithm Iteration No. Particle No. Main Parameters

MPSO 100 200 c1 = 1, c2 = 2,ω, c3 = 2~0
PSO 100 200 c1 = 1, c2 = 2,ω = 2~0

MGWO 100 200 ρ = 30
GWO 100 200 N/A
JSA 100 200 β = 3, γ = 0.1

To verify the correctness and feasibility of the proposed charging methods, the simula-
tions under various test scenarios are performed. Generally, most BIOAs involve random
parameters to enable them to escape the local optima. Due to the random variation in these
parameters, the best solution found after each execution tends to be different. Therefore, in
order to obtain effective optimal solutions, the average value of the OCCP for each BIOA
case is executed 50 times under the setting of 100 iterations, and the number of particles
of 50, 100, 200, and 300, respectively, is taken as the final OCCP. In this study, apart from
the proposed five BIOA-based methods, three additional cases, as well as the FC method
proposed in [36] and the conventional CC-CV method, are also run to demonstrate that the
OCCP obtained has the optimal solution. Table 4 shows the simulation results in terms of
four CPEIs, including the best FV (FVbest), CTtotal, ELtotal, and CHC. The obtained OCCP
corresponding to each simulation case listed in Table 4 is tabulated in Table 5. From Table 4,
the FC method has the best CT performance because this research aims to minimize the
CT, i.e., it is a special case in (11) for setting σ = 1. In addition, the CC-CV method usually
has better performance in CHC. However, if the objective function must satisfy both the
performance of CT and EL, it can be seen from the FVbest indicator that the proposed
methods have a significant improvement in FVbest than that obtained by using the FC and
CC-CV methods. Among them, case-JSA has the best simulation FV, and it shows 54.1%
and 65.6% improvement in FV compared with CC-CV and FC methods, respectively. On the
other hand, additional three cases, including PSO − 0.1 A, GWO + 0.1 A, and JSA + 0.1 A,
formed by fine-tuning the values of I1~I4 in the optimal case-PSO, -GWO, and -JSA by
subtracting 0.1 A and adding 0.1 A, are conducted to further confirm the correctness of the
obtained OCCP. Similarly, it is obvious from the FVbest indicator that even a solution that is
very close to the optimal solution does not have the best FV.



Energies 2023, 16, 7641 16 of 23

Table 4. Simulation results.

Case FVbest CTtotal (s) ELtotal (J) CHC (Ah)

MPSO 0.2687 10,328 2960.03 3.2950
PSO 0.2796 11,058 2953.17 3.2977

MGWO 0.2809 11,046 2926.93 3.2924
GWO 0.2810 10,780 2930.12 3.2913
JSA 0.2700 11,400 2872.64 3.2882

PSO − 0.1 A 0.3618 11,814 2727.87 3.2920
GWO + 0.1A 0.3053 10,885 3088.43 3.2907
JSA + 0.1 A 0.3977 11,829 3033.13 3.3021

FC [36] 0.7857 9216 5559.78 3.2908
0.7 C CC-CV 0.3458 11,449 3118.50 3.2936

Table 5. Obtained OCCP of each simulation case in line with Table 4.

Case Vcut_off (V) I1 (A) I2 (A) I3 (A) I4 (A) I5 (A)

MPSO 4.22 1.6348 0.9003 0.3640 0.2308 0.1578
PSO 4.22 1.6185 0.8255 0.4453 0.2405 0.1345

MGWO 4.22 1.6153 0.8028 0.4355 0.2438 0.1250
GWO 4.22 1.6153 0.8515 0.4485 0.2373 0.1337
JSA 4.22 1.5893 0.7313 0.4485 0.2405 0.1113

PSO − 0.1 A 4.22 1.5185 0.7255 0.3453 0.1405 0.1345
GWO + 0.1 A 4.22 1.7153 0.9515 0.5485 0.3373 0.1337

JS + 0.1 A 4.22 1.6893 0.8313 0.5485 0.3405 0.1113
FC [36] 4.22 3.3 1.3539 0.5554 0.2278 0.0935

0.7 C CC-CV 4.2 2.31 − − − −

4.2. Experimental Test Environment Setup and Results

As described in the previous subsection, the proposed BIOA-based algorithms are
executed on a MATLAB-based computation platform to obtain the OCCP. Subsequently,
it is necessary to conduct actual battery charge and discharge, record relevant data, and
calculate the corresponding CPEI to verify that the OCCP obtained is indeed optimal. In
this study, the CT4008T battery charge–discharge tester from BioLogic is used to perform
battery charge–discharge experiments and data measurement. During the experiment, the
battery is placed in the DDTH-48L-00-BP4.3 thermostatic chamber, and the temperature
is controlled at 25 ◦C. Figure 11 shows the experimental platform architecture set up in
this study. The experimental procedure first inputs and sets the required charging current
values deriving from the current patterns listed in Table 5, then charges and records the
charging data and CPEIs (CT, CHC, TR). After resting for 3 h, discharge the battery with
0.2 C CC until the OCV reaches 3 V, then record the discharge data and DHC, and calculate
CE. If all charging current patterns have been run, the operating procedure is terminated.
The experimental results in terms of eight CPEIs, including CT, CHC, discharging capacity
(DHC), CE, CWh, discharging energy (DWh), ATR, and FV, are illustrated in Table 6. It
is worth noting that the experimental results shown in Table 6 are obtained by specifying
the charging current values of each case the same as those in the OCCP derived from the
computation of the optimization algorithms. From Table 6, it can be seen that, in all the test
scenarios, the capacity charged by using the proposed methods is more than 99% of the
CC-CV method under the lowest ATR and the highest CE. Furthermore, the experimental
results are in good agreement with those obtained from the computation.
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Table 6. Summary of experimental results.

Case CT (s) CHC
(Ah)

DHC
(Ah) CE (%) CWh (Wh) DWh (Wh) ATR (◦C) FV

MPSO 9694 3.1913 3.1713 99.37 12.16 11.0993 2.09 0.1414
PSO 9994 3.1993 3.1763 99.28 12.40 11.3497 2.46 0.2208

MGWO 10,374 3.1932 3.1719 99.33 12.23 11.1666 2.08 0.2117
GWO 9974 3.1962 3.1773 99.41 12.38 11.3528 2.53 0.2303
JSA 10,729 3.2076 3.1828 99.23 12.42 11.3748 2.30 0.2687

FC [36] 9150 3.1952 3.1597 98.89 12.60 11.2753 2.94 0.2705
0.49 C CC-CV 12,286 3.1949 3.1684 99.17 12.52 11.3454 2.56 0.4560

On the other hand, to further highlight the effectiveness and performance improve-
ment in this study, the conventional CC-CV and FC methods are employed as the primary
benchmark for the comparison with the proposed MSCC charging methods. For a fair
comparison, the CC-phase current is set to 1.6 A (0.49 C), which is equivalent to the average
value of all the first-stage currents obtained by using the proposed methods, and the charg-
ing cut-off current is set to 0.02 C. Comparing with the CC-CV and FC methods, the IRs of
the proposed methods in individual CPEI are shown in Tables 7 and 8, respectively. From
Table 7, the maximum IRs in terms of the CT, CHC, CE, CWh, ATR, and FV are 21.10%,
0.40%, 0.24%, 2.85%, 18.86%, and 68.99%, respectively, which are contributed, respectively,
by case-MPSO, case-JSA, case-GWO, case-MPSO, case-MGWO, and case-MPSO. Similarly,
the maximum IRs in terms of the CHC, CE, CWh, ATR, and FV, from the comparison
with the FC method in Table 8, are 0.39%, 0.53%, 3.52%, 29.35%, and 47.72%, respectively,
which are contributed, respectively, by case-JSA, case-GWO, case-MPSO, case-MGWO, and
case-MPSO. It should be noted that, in Table 6, the FC method has the shortest CT. The
reason is that the FC method focuses on CT minimization, which is equivalent to a special
case of setting the proportional weight of the objective function to one, so the IRs in this
indicator are all negative.

Table 7. IRs of proposed methods compared with CC-CV method.

Case CT (s) CHC (Ah) CE (%) CWh (Wh) ATR (◦C) FV

MPSO 21.10% 0.11% 0.20% 2.85% 18.36% 68.99%
PSO 18.66% 0.14% 0.11% 0.92% 7.72% 54.96%

MGWO 15.56% 0.05% 0.16% 2.32% 18.86% 53.57%
GWO 18.82% 0.04% 0.24% 1.12% 1.17% 49.51%
JSA 12.67% 0.40% 0.06% 0.76% 10.20% 41.08%
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Table 8. IRs of proposed methods compared with FC method.

Case CT (s) CHC (Ah) CE (%) CWh (Wh) ATR (◦C) FV

MPSO −5.95% 0.12% 0.49% 3.52% 28.91% 47.72%
PSO −9.22% 0.13% 0.39% 1.61% 16.24% 24.07%

MGWO −13.38% 0.06% 0.44% 2.99% 29.35% 21.73%
GWO −9.01% 0.03% 0.53% 1.81% 13.95% 14.88%
JSA −17.26% 0.39% 0.34% 1.44% 21.80% 0.67%

In addition, it is difficult to directly measure the energy loss when conducting battery
charging experiments, but the energy loss is directly related to the TR observed. Therefore,
in this work, the charging TR is used as an evaluation indicator for EL performance
during the test. Figure 12 shows the measured curves of charging TR for various charging
methods. From Figure 12, it can be seen that the FC and CC-CV methods exhibit significant
variations in accumulated TR, especially the FC method. This is because the charging loss
indicator is not taken into account, leading to a substantial increase in TR. On the other
hand, the proposed methods show similar TR curves with smoother variations because the
balance between CT and EL is considered. Compared with the FC and CC-CV methods,
the proposed method achieves maximum IRs in ATR of 29.35% and 18.86%, respectively,
both contributed by case-MGWO. Figures 13–17 show the simulated and experimental
waveforms, including battery current, voltage, and capacity, measured under the charge of
OCCP found by using the proposed methods. Figures 18 and 19 illustrate the simulated
and experimental waveforms deriving from the charge of the FC and CC-CV methods. It
is obvious from these measured waveforms that the experimental and simulation results
match significantly. It verifies that the built battery ECM, developed computation platform,
and the constructed experimental environment are correct and valid. It also proves that the
experimental results are in good agreement with the theoretical derivation.
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Figure 13. Charging waveforms of MPSO method: (a) simulation; (b) experiment.
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Figure 14. Charging waveforms of PSO method: (a) simulation; (b) experiment.
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Figure 15. Charging waveforms of MGWO method: (a) simulation; (b) experiment.
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Figure 16. Charging waveforms of GWO method: (a) simulation; (b) experiment.
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Figure 17. Charging waveforms of JSA method: (a) simulation; (b) experiment.
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4.3. Comprehensive Evaluation of the Proposed BIOA-Based Algorithms

This study extensively evaluates five BIOA-based charging methods based on five
CPEIs, including CT, CHC, CE, CWh, and ATR. The evaluation results can serve as a
recommendation reference for the suitable charging method for LiBs with different charging
performance requirements in various application scenarios. The radar chart analysis is
utilized to perform the comprehensive evaluation. According to the experimental results
shown in Table 6, the obtained radar chart is shown in Figure 20, and the corresponding
evaluation scores are listed in Table 9. The scoring rule for each performance indicator is
divided into two types: “the higher, the better” or “the lower, the better”. For example, the
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smaller the CT value, the higher the score, while the larger the CE value, the higher the
score, and so on.
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Table 9. Score corresponding to the radar chart.

CASE CT (s) CHC (Ah) CE (%) CWh (Wh) ATR (◦C) Total Score

MPSO 0.8265 0.0000 0.9231 1.0000 1.0000 3.7496
PSO 0.7309 0.3465 0.7500 0.8898 0.7450 3.4621

MGWO 0.6097 0.1166 0.8462 0.8501 1.0000 3.4225
GWO 0.7372 0.1024 1.0000 1.0000 0.6396 3.4792
JSA 0.4965 1.0000 0.6538 0.7989 1.0000 3.9493

FC [36] 1.0000 0.0236 0.0000 0.0000 0.0000 1.0236
0.49 C CC-CV 0.0000 0.0000 0.5385 0.3819 0.5928 1.5131

It can be seen from Table 9 that MPSO has the best performances in CWh and ATR
indicators, MGWO has the best ATR performance, GWO is good at obtaining high CE
and CWh, the JSA has the best CHC and ATR performances, and the FC is dedicated to
improving the CT performance, while the performances for the rest of the methods are
average. According to the ranking of the total scores of various performance indicators,
the top three with the best overall performance are the methods of JSA, MPSO, and GWO.
That is, from the comprehensive evaluation results of the radar chart, the suggestion of
charging method adoption can be made as follows: for the most energy-saving charging,
MPSO and GWO can be chosen. MPSO, MGWO, and JSA are good for controlling the TR
during charge. If the goal is to charge the battery with the maximum capacity, the JSA is a
good choice. Additionally, GWO can also be used to obtain high charging efficiency. The
FC method can effectively reduce charging time.

5. Conclusions

To reduce the numerous time-consuming charge-and-discharge experiments and take
the capability of wide-range search in the solution space into account, in this paper, the
OCCP of the MSCC is solved by using the proposed five BIOA-based methods, including
PSO, MPSO, GWO, MGWO, and the JSA, which is run on the MATLAB-based computation
platform constructed to minimize the objective function of combining CT and EL with a
proportional weight. Without the need for a substantial and tedious experimental process,
the OCCP search can be rapidly achieved only through the battery ECM developed on the
computation platform. The theoretical derivation and validity were confirmed through
the simulation and experimental results, which demonstrate that the OCCPs obtained by
all the devised charging strategies possess the lowest fitness values and the best charging
performance as compared with their counterparts. Among them, the fitness value acquired
by MPSO outperforms those of all the other charging methods studied.
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The experimental results show that the maximum IRs of the studied techniques in six
CPEIs of CT, CHC, CE, CWh, ATR, and FV, are 21.10%, 0.40%, 0.24%, 2.85%, 18.86%, and
68.99% which are contributed, respectively, by MPSO, JSA, GWO, MPSO, MGWO, and
MPSO, as compared with the traditional CC-CV method. Similarly, the maximum IRs in
terms of five performance indicators, CHC, CE, CWh, ATR, and FV, from the comparison
with the FC method, are 0.39%, 0.53%, 3.52%, 29.35%, and 47.72%, respectively, which
are contributed, respectively, by the JSA, GWO, MPSO, MGWO, and MPSO. In addition,
compared with the FC and CC-CV methods, the proposed method achieves maximum
IRs in ATR of 29.35% and 18.86%, respectively, both contributed by MGWO. On the other
hand, a comprehensive evaluation of the proposed BIOA-based algorithms via the radar
chart analysis was conducted to make recommendations for charging method adoption.
The recommendations of charging methods adopted can be made as follows: the MPSO
and GWO methods can be chosen to perform the most energy-saving charge. MPSO,
MGWO, and the JSA are good at controlling the TR during charge. The JSA method has the
ability of maximum-capacity charge. In addition, GWO can be adopted to obtain the best
charging efficiency, and the FC method can charge the battery with a significant reduction in
charging time.
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