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Abstract: The global proportion of eco-friendly vehicles continues to increase; however, regarding
hybrid vehicles, the vehicle powertrains in most countries include internal combustion engines.
Therefore, research on reducing the carbon emissions from internal combustion engines must be
conducted. Carbon capture technology must be developed for e-fuel, which has recently attracted
attention, to achieve carbon neutrality. In this study, a turbo compound system capable of recovering
waste exhaust gas energy was selected as the most appropriate energy supply system to operate
a mobile carbon capture system. The feasibility was reviewed by analyzing the turbo compound
speed, pressure drop, power generation, etc., using a one-dimensional simulation method. The
maximum power generation of the configured turbo compound system was approximately 9 kW,
and approximately 1–3 kW of energy could be recovered under medium speed and load conditions,
which are the optimal operating conditions for a test engine with the displacement of a 4 L.

Keywords: exhaust energy recovery system; mobile carbon capture; turbo compound; 1D simulation

1. Introduction

Carbon emission regulations in major countries around the world are being strength-
ened. The European Union has finalized regulations on sales restrictions of internal com-
bustion engine vehicles (ICEVs) after 2035 and has enacted legislation to reduce carbon
dioxide (CO2) emissions by 50% compared to 2021 levels by 2030. Major countries, such as
the United States, Japan, and China, are also aiming to reduce CO2 emissions by 10–50%
compared with conventional regulations [1–6]. As a result, the proportion of eco-friendly
vehicles is increasing every year; however, if hybrid vehicles are included, the powertrain
of vehicles in most countries still includes internal combustion engines (ICE); therefore,
research on reducing carbon emissions from ICE is continuously required [7]. To respond to
this situation, discussions are underway to achieve carbon neutrality of ICE by introducing
electrofuels (e-fuels) that can replace conventional fossil fuels [8–10]. E-fuel is a synthetic
fuel that can replace conventional fossil fuels and is manufactured by synthesizing green
hydrogen and carbon dioxide captured through carbon capture utilization [11–13]. There-
fore, to consider e-fuel as a carbon-neutral fuel, research on direct carbon capture (DAC)
or mobile carbon capture (MCC) must be conducted together [14–17]. Finally, carbon
neutrality of ICEVs is possible if e-fuel is supplied by synthesizing CO2 captured from
the tailpipe of a conventional ICE and green H2. Saravanan, S. evaluated whether CO2
adsorption of small diesel engine exhaust gas was possible with zeolite 13X [14]. Sharma,
S. presents a system for CO2 capture from the exhaust stream of an internal combustion
engine. Waste heat from exhaust gas was recovered through a Rankine cycle system to
obtain energy for operating the system. Ultimately, it is expected that 90% of CO2 con-
tained in exhaust gas can be captured without external energy. However, dozens of heat
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exchangers are required to configure the system, and the fixed composition and flow rate
of the exhaust gas have been assumed, to calculate the heating/cooling requirements of
the system. Therefore, operation in real conditions is impossible [15]. Voice, A. K. used
ASPEN Plus V10 to evaluate the thermodynamic potential of carbon capture from internal
combustion engines and consider engine exhaust gas heat energy to drive a small-scale
carbon capture system [17]. Nevertheless, one of the biggest problems with e-fuels is that
the energy required to operate the MCC system must be added to the vehicle system. In
particular, to install and operate MCC under real conditions, the feasibility of the developed
system must be reviewed under actual engine exhaust gas conditions. Therefore, in this
study, a feasibility study of the actual engine operating conditions of an engine exhaust
gas energy recovery system considering the installation of an MCC system was performed
using a one-dimensional (1D) simulation method.

2. Experimental Setup and Procedure
2.1. Test Engine and Exhaust Energy Recovery System

A test engine was selected to review the feasibility of the specific-engine exhaust gas
energy recovery system. From a long-term perspective, it is appropriate to consider an
MCC system that can be installed in light-duty vehicles. However, considering the system
installation space, the development is expected to be extremely difficult in the absence of
a dedicated platform. In addition, the development of a system that can be installed on
a vehicle currently in operation rather than on a vehicle to which a dedicated platform is
applied will be more advantageous for practical use. Most leading researchers have verified
the feasibility of the MCC system for Class 8 semi-trucks by considering the CO2 emitted
from the trucking industry and the system installation space [18]. In this study, a 2.5–3.5 ton
payload capacity truck engine was selected to consider smaller-scale transportation, and
its feasibility was verified. Table 1 lists the specifications of the test engine that satisfies
euro-6D regulations.

Table 1. Specifications of the test engine.

Description Specification

Type Inline DOHC Euro-6D
Number of cylinders 4
Bore × Stroke [mm] 103 × 118
Displacement [cc] 3933
Compression ratio 17.1

Intake system Various geometry turbocharger
Rated power [ps/rpm] 170/2500

Rated torque [kgf·m/rpm] 62/1400

Many studies have been conducted to increase engine efficiency by utilizing ICE waste
energy. The representative waste energy from ICE is the exhaust gas energy. Technologies
for its recovery include turbo compounds, the Rankine cycle, and thermoelectric power
generation technology [19].

Turbo compounds are systems that can recover the kinetic and thermal energies of
exhaust gases. Generally, when installed in the exhaust system of an ICE, the waste energy
is converted into kinetic energy. It is most suitable for diesel engines and has the advantage
of being easily installed in conventional ICEs. However, the exhaust gas pressure of the
engine and the pumping loss increase, which poses a problem [20,21].

The Rankine cycle is a thermal energy recovery system that uses a working fluid
through a phase change. In this structure, the working fluid is circulated in a closed
circuit. The Rankine cycle is composed of a pump, boiler, condenser, and expander, and,
therefore, its structure is complicated. It is most suitable for medium–low-temperature
exhaust gas temperature conditions, and has the advantage of minimizing the effect on
engine performance. However, the reactivity decreases under transient conditions. The
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recovered energy is recovered as kinetic energy through an expander, and, in some cases, it
is recovered electrically by coupling a generator [22,23].

A thermoelectric generator is a technology that recovers thermal energy by utilizing
the Seebeck effect, which generates electricity when a temperature difference is applied to
both ends of a module. Because there are no physically moving parts, it has the advantage
of being lightweight and small in the system installation space. However, the disadvantage
is that the price is relatively high, and the recovery efficiency is low because of the difference
in power generation according to temperature conditions [24,25].

In this study, the application technology was determined by considering the instal-
lation, efficiency, cost, structure, and engine performance of each waste energy recovery
system, as listed in Table 2. In particular, it was considered in the final installation that the
waste energy recovery system and MCC system should be installed together. Finally, the
electric turbo compound system was determined to be the most suitable for application in
the MCC system.

Table 2. Characteristics of waste energy recovery system [19].

Installation Efficiency Cost Structure Engine
Performance Note

Turbo
compound
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on the shaft of a conventional turbocharger. When turbo lag occurs, the impeller is forcibly 
rotated using an electric motor. When the turbine rotates sufficiently, the motor is used as 
a generator to recover the energy. The method in which the electric supercharger and 
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required to operate these systems properly. In this study, a serial-type turbo generator 
was selected because it can be installed in the conventional engine system of a vehicle 
currently in operation. 

: Best

2.2. Turbo Compound System

As previously mentioned, a turbo-compound system is generally configured by in-
stalling a blowdown turbine in the ICE exhaust system. By classifying the installation
methods in detail, they can be divided into four types, as shown in Figure 1. A serial or
parallel turbo generator system is a method for installing a blowdown turbine in addition
to a conventional turbocharger. The electric turbocharger/generator type installs a motor
on the shaft of a conventional turbocharger. When turbo lag occurs, the impeller is forcibly
rotated using an electric motor. When the turbine rotates sufficiently, the motor is used as a
generator to recover the energy. The method in which the electric supercharger and turbo
generator are installed separately can be considered ideal. The air required for the ICE is
supplied by an electric supercharger. The turbo generator installed in the exhaust system is
used only for power generation. However, complex control methods are required to operate
these systems properly. In this study, a serial-type turbo generator was selected because it
can be installed in the conventional engine system of a vehicle currently in operation.

As shown in Figure 2, the test engine was equipped with various exhaust gas post-
processing systems to comply with emission regulations. The exhaust gas post-processing
system of the test engine consists of a diesel oxidation catalyst (DOC), diesel particulate
filter (DPF), selective catalytic reduction (SCR), and ammonia oxidation catalyst (AOC).
Furthermore, a hydro carbon injection (HCI) is installed separately. The recoverable energy
increased when the installation location of the turbo compound was close to that of the test
engine. However, problems may occur if the exhaust gas is not processed by the exhaust
gas post-processing system. Since Point 1© is closest to the engine, it can recover the most
kinetic energy and thermal energy of the exhaust gas. In the case of Point 2©, the conditions
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are similar to those of Point 1©; however, problems may occur in the impeller owing to the
fuel injected under the HCI operating conditions. Point 3© can be affected by ammonia
sprayed by the urea dozing nozzle installed downstream of the DPF. Point 4© has the lowest
recoverable energy, and installation of the MCC system is considered. Therefore, point 1©
was selected as the installation location of the turbo compound system, as that can increase
the efficiency of the turbine the most [26].
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The electric turbo compound considered in this study consisted of a turbine for waste
exhaust gas energy recovery and a power generation system for converting the recovered
energy into electricity. The turbine must have high efficiency at a low pressure ratio to
minimize the decrease in the efficiency of the ICE owing to the increase in exhaust gas
back pressure. The generator system must be highly efficient under the turbine operating
conditions. In addition, because the specifications of the test engine have been determined,
the turbine and generating system must be selected based on the operating conditions of
the test engine.

The test engine, with a displacement of 4 L, was equipped with a conventional tur-
bocharger. Therefore, assuming that the exhaust gas energy is primarily recovered by
the conventional charging system, the turbine specification of a 2 L displacement diesel
engine was applied to the turbo compound system. The selected turbine rotated at tens of
thousands of rpm when it was operated normally under the exhaust gas conditions of the
test engine. Therefore, a synchronous generator with the specifications listed in Table 3,
capable of a high revolution rate, was selected. The maximum number of revolutions was
120,000 rpm, and the power generation was 10 kW. The output increases linearly with
the number of revolutions. For comparison with the selected synchronous generator, the
heavy-duty alternator listed in Table 4 was selected and considered for application. The
maximum revolution speed is 8000 rpm, and the maximum output is about 6.8 kW at an
ambient temperature of 110 ◦C. In addition, in the case of the alternator, the product is
already equipped with a rectifier and regulator, so there is an advantage in that it can be
applied immediately without additional equipment. Because both cases have advantages
and disadvantages, 1D simulations were conducted for the two types of methods with
different specifications.

Table 3. Specifications of the synchronous generator.

Description Specification

Maximum speed [rev/min] 120,000 (continuous)
Apparent power [kVA] 10.8

Power [kW] 10
Voltage [V] 348
Current [A] 18

Frequency [hz] 2000

Performance
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Table 4. Specifications of the heavy-duty alternator.

Description Specification

Maximum speed [rev/min] 8000 (continuous)
9000 (intermittent)

Voltage [V] 24
Current [A] 275

Efficiency [%] >80

Performance
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2.3. Test Conditions

The World Harmonized Stationary Cycle (WHSC) was considered a test condition
other than the full load condition of the target engine. The WHSC is a steady-state engine
dynamometer test cycle for heavy-duty engines. Detailed operating conditions are listed in
Table 5, in which the data were obtained after a stabilization period of 10 min or more for
each condition.

Table 5. WHSC test conditions.

Mode Engine Speed Engine Torque

% rpm % Nm

1 0 650 0 0
2 55 2050 100 545
3 55 2050 25 140
4 55 2050 70 395
5 35 1750 100 580
6 25 1600 25 145
7 45 1900 70 405
8 45 1900 25 145
9 55 2050 50 280
10 75 2350 100 475
11 35 1750 50 295
12 35 1750 25 150
13 0 650 0 0

2.4. 1D Simulation Model

SIEMENS’ advanced modeling environment for the simulation of engineering systems
(AMESim) was used to predict the performance of the components and turbo-compound
systems. A simulation model was developed to predict the speed, torque, power generation,
and energy recovery efficiency of the turbo-compound system based on the temperature
and flow rate of the exhaust gas of the test engine. The turbine was modeled by referring
to the turbocharger applied to the 2 L diesel engine. The turbine model was set up using
the turbocharger map-processing tool provided by AMESim 2210. As shown in Table 6,
the turbine map was derived according to the input values, with multidimensional data
consisting of five variables: the variable geometry turbocharger (VGT) position and reduced
speed. In addition, directly measurable turbine hardware specifications were applied.
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Table 6. Parameters of the turbine map.

Parameter Unit

VGT position -
Reduced rotary speed (Nreduce ) rpm/

√
K

Reduced mass flow rate
( .
mreduce ) kg/s·

√
K/kPa

Pressure ratio -
Isentropic efficiency -

Nreduce = Nactual/
√

Tup,
.

mreduce =
.

mactual·
√

Tup/Pup, Tup : upstream temperature[K], Pup :
upstream pressure[kPa].

The model was configured differently depending on the type of generator system,
and the analysis was conducted by configuring the model in two cases. Case 1 uses a
high-speed synchronous generator, and Case 2 uses a relatively low-speed heavy-duty
alternator. However, in Case 2, because the maximum rotational speed of the target
alternator was 8000 rpm, a rotation speed reducer was configured on the shaft to adjust the
rotational speed.

In Case 1, the power and torque had linear values depending on the number of
revolutions. The model was constructed so that the expected power generation could be
derived from the input torque under steady conditions. The generator model is interlocked
with the turbine model to form a turbo-compound simulation model, as shown in Figure 3.
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Figure 3. Turbo compound 1D simulation model (Case 1, generator model).

Because the heavy-duty alternator applied to the Case 2 model did not produce a
constant output depending on the number of revolutions, a separate generator model was
used to derive the map data and apply it to the simulation model. The derived map data
are verified using a specification sheet. For torque, an error of less than 3% and an output
of less than 1% were considered usable. Therefore, as shown in Figure 4, a simulation
model was constructed by combining it with the turbine model. In addition, as mentioned
above, a rotation speed reducer was configured on the drive shaft to adjust the number of
revolutions with a gear ratio of 1–50:1 according to the driving conditions.

The energy-recovery performance of the turbo compound system in the test engine was
predicted using a configured 1D simulation model. For the input parameters, the exhaust
gas conditions measured according to the operating conditions were applied through
the base performance evaluation of the test engine. Accordingly, as shown in Table 7, the
turbine speed, pressure drop, and power generation were acquired and analyzed. The turbo
compound speed can be identified from the rotational speed of the turbine, and the increase
in the exhaust gas backpressure of the test engine can be inferred from the turbine pressure
drop value. The power generation and energy recovery rate of the turbo compound were
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measured using the equations in Table 7 and used as performance evaluation indicators of
the turbo compound according to the operating conditions [27].
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reducer).

Table 7. Parameters of the simulation model.

Input Parameters Output Parameters

Description Unit Description Unit

Exhaust gas mass flow rate kg/h Turbine speed rpm
Turbine pressure drop bar

Exhaust gas temperature ◦C
Power generation kW

Energy recovery rate %

Eexhaust =
.

mexhaustCp∆Texhaust, Energy recovery rate[%] = Eturbo compound/Eexhaust × 100.

3. Results and Discussion
3.1. Exhaust Gas Properties of Test Engine

Before proceeding with the simulation to predict the performance of the turbo-
compound system, a base performance evaluation of the test engine was conducted. Based
on the base performance evaluation, the characteristics of the exhaust gas temperature
and flow rate according to the operating conditions were analyzed to identify the condi-
tions under which the turbo compound operates. Figure 5 is the exhaust gas temperature
according to the operating conditions of the test engine. The exhaust gas temperature
ranges from 110 to 460 ◦C, and increases with increasing engine load. The exhaust gas
mass flow rate was calculated by adding the air and fuel flow rates supplied to the test
engine, and the measurement results are shown in Figure 6. The exhaust gas mass flow rate
ranged from 73 kg/h to 660 kg/h, and increased with increasing engine speed and load.
The exhaust gas energy of the test engine was analyzed based on the measured exhaust
gas temperature and flow rate. Figure 7 shows the exhaust gas energy of the test engine
according to the operating conditions. Among the WHSC mode conditions for evaluating
heavy-duty engines, the energy of the exhaust gas is more than 40 kW under medium–high
load conditions. However, as shown in Figure 8, assuming that the pressure ratio of the
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turbo-compound system is 1.3, the actual recoverable energy is expected to be less than
10 kW.
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3.2. Simulation Results of Turbo Compound System

In order to predict the performance of the configured turbo compound model, the
performance prediction results of the analysis model were derived under the conditions
of gas temperature 100–600 ◦C and flow rate 0–600 kg/h. Because the generator speed
specification of Case 1 is 125,000 rpm and the torque is as low as 0.8 Nm, it is predicted
that an energy recovery of up to 8 kW is possible, as shown in Figure 9. In Case 2, the
maximum revolution speed of the alternator was less than 9000 rpm, and the maximum
power generation was 6.8 kW. Furthermore, the result was derived as shown in Figure 10.
In addition, because there is a difference in the torque according to the operating conditions,
the speed change according to the gas conditions is small. The maximum power generation
is lower than that in Case 1, but it is expected to utilize up to 6.8 kW, which is the maximum
performance of the alternator.
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Figure 10. Speed (left) and power (right) of turbo compound according to operating conditions
(Case 2, alternator model).

The feasibility was verified by applying the exhaust gas conditions of the test engine
to a previously reviewed turbo-compound performance prediction model. Based on the
exhaust gas property results, gas conditions according to the engine speed and load were
applied, and Cases 1 and 2 were applied and compared. Figures 11 and 12 show the turbo
compound speed results based on the operating conditions. Similar to the previous results,
the number of revolutions in Case 1 increased according to the engine speed and load.
In Case 2, the turbo compound speed increased very slowly under medium–low load
conditions. This means that a section with a high alternator efficiency cannot be used under
the operating conditions of the test engine. Therefore, to apply the alternator in Case 2,
it is essential to apply a dedicated low-speed, low-pressure turbine or a rotation speed
reducer [28].
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Figure 11. Speed of turbo compound according to engine conditions (Case 1, generator model).

The pressure drop in a turbo compound system can directly affect the performance
of the test engine by increasing the exhaust gas back pressure. A large pressure drop
indicates that the exhaust back pressure of the engine increases, which is directly related
to an increase in the pumping loss. Figures 13 and 14 show the pressure drops of the
turbo compound according to the operating conditions. In both cases, the pressure drop
increased in proportion to the engine speed and torque, and in Case 1, a larger pressure
drop occurred. In addition, in both cases, a pressure drop of more than 0.6 bar occurs
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under high load conditions in WHSC mode, so a method to compensate for this is required.
However, the pressure drop was as low as 0.5 bar or less in all cases under medium–low
speed conditions. In Case 2, the pressure drop was less than that in Case 1; therefore, the
effect on engine performance was expected to be less. Nevertheless, it is necessary to select
the optimal operating conditions by matching the operating range of the turbo compound
with the engine exhaust gas conditions.
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Figure 13. Pressure drop of turbo compound according to engine conditions (Case 1, genera-
tor model).

Figures 15 and 16 show the expected power generation of the turbo compound for
each case, according to the engine operating conditions. The maximum power generation in
Case 1 is superior to that in Case 2 by approximately 2.5 kW. In Case 1, the maximum power
generation was approximately 9 kW, and the energy recovery rate was approximately 10%.
The maximum power generation in Case 2 was approximately 6.5 kW, and the energy
recovery rate was approximately 7%; This is the result of the difference in specifications
between the generator applied in Case 1 and the alternator applied in Case 2. However,
because the difference in power generation under each condition of the WHSC mode,
which is the actual operating condition, is less than the maximum value of 1 kW, the
difference in performance is much smaller than the difference in the specifications. Under
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medium–speed and medium-load conditions, Case 1 generated 1–3 kW with an energy
recovery rate of 6–8%. In contrast, Case 2 generated 1–2 kW, and the energy recovery rate
was 4–6%. The maximum recovery rate was not significantly different compared with the
difference between the maximum power generation and the specifications. In addition,
because the pressure drop is small, the performance can be improved by adjusting the
system hardware [20].

Energies 2023, 16, x FOR PEER REVIEW 13 of 17 
 

 

under high load conditions in WHSC mode, so a method to compensate for this is 
required. However, the pressure drop was as low as 0.5 bar or less in all cases under 
medium–low speed conditions. In Case 2, the pressure drop was less than that in Case 1; 
therefore, the effect on engine performance was expected to be less. Nevertheless, it is 
necessary to select the optimal operating conditions by matching the operating range of 
the turbo compound with the engine exhaust gas conditions. 

 
Figure 13. Pressure drop of turbo compound according to engine conditions (Case 1, generator 
model). 

 
Figure 14. Pressure drop of turbo compound according to engine conditions (Case 2, alternator 
model). 

Figures 15 and 16 show the expected power generation of the turbo compound for 
each case, according to the engine operating conditions. The maximum power generation 
in Case 1 is superior to that in Case 2 by approximately 2.5 kW. In Case 1, the maximum 
power generation was approximately 9 kW, and the energy recovery rate was 
approximately 10%. The maximum power generation in Case 2 was approximately 6.5 
kW, and the energy recovery rate was approximately 7%; This is the result of the 
difference in specifications between the generator applied in Case 1 and the alternator 

1.41.2
1.0

0.8

0.6

0.4

0.2

1000 1500 2000 2500

100

200

300

400

500

600

T
o
rq

u
e
 (

N
m

)

Engine speed (rev/min)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(bar)

1.0

0.8

0.6

0.4

0.2

1000 1500 2000 2500

100

200

300

400

500

600

T
o

rq
u

e
 (

N
m

)

Engine speed (rev/min)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(bar)

Figure 14. Pressure drop of turbo compound according to engine conditions (Case 2, alternator
model).

Energies 2023, 16, x FOR PEER REVIEW 14 of 17 
 

 

applied in Case 2. However, because the difference in power generation under each 
condition of the WHSC mode, which is the actual operating condition, is less than the 
maximum value of 1 kW, the difference in performance is much smaller than the 
difference in the specifications. Under medium–speed and medium-load conditions, Case 
1 generated 1–3 kW with an energy recovery rate of 6–8%. In contrast, Case 2 generated 
1–2 kW, and the energy recovery rate was 4–6%. The maximum recovery rate was not 
significantly different compared with the difference between the maximum power 
generation and the specifications. In addition, because the pressure drop is small, the 
performance can be improved by adjusting the system hardware [20]. 

 
Figure 15. Turbo compound power according to engine conditions (Case 1, generator model). 

 
Figure 16. Turbo compound power according to engine conditions (Case 2, alternator model). 

The maximum rotational speed of the alternator in Case 2 was 8000 rpm, which was 
much lower than the operating range of the turbine; therefore, this effect was analyzed by 
applying a rotational speed reducer. Figure 17 shows the analysis results for the turbo 
compound Case 2 when the rotation speed reducer was applied. The engine operating 

9.07.0
6.0

5.0
4.0

3.0

2.0

1.0

1000 1500 2000 2500

100

200

300

400

500

600

 WHSC coditions

 WHSC coditions (high load)

T
o
rq

u
e
 (

N
m

)

Engine speed (rev/min)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

(kW)

6.0

5.0

4.03.0
2.0

1.0

0.0

1000 1500 2000 2500

100

200

300

400

500

600

 WHSC coditions

 WHSC coditions (high load)

T
o

rq
u
e
 (

N
m

)

Engine speed (rev/min)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

(kW)

Figure 15. Turbo compound power according to engine conditions (Case 1, generator model).

The maximum rotational speed of the alternator in Case 2 was 8000 rpm, which was
much lower than the operating range of the turbine; therefore, this effect was analyzed
by applying a rotational speed reducer. Figure 17 shows the analysis results for the turbo
compound Case 2 when the rotation speed reducer was applied. The engine operating
conditions applied two, four, and seven modes, which are relatively high-load conditions,
among the WHSC modes. The difference in power generation due to the rotation speed
reducer appeared at 25–40:1 or more. The power generation was the maximum at 25:1
under WHSC 2 conditions and 40:1 under WHSC 4 and 7. It is possible to improve the
power generation performance by applying a rotational speed reducer. However, since
the ratio is large, it is expected that it will be almost impossible to apply in real-world
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conditions. Even in this case, it is necessary to apply a low-speed turbine considering the
alternator speed conditions.
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4. Conclusions

In this study, based on a 4 L diesel engine, exhaust gas characteristics were analyzed
according to operating conditions. A waste energy recovery system suitable for the test
engine was selected, and element parts were configured. The waste exhaust gas energy
recovery performance and optimal operating conditions of the turbo compound system
were analyzed using a 1D simulation method, and the following conclusions were drawn:

1. The exhaust gas temperature of test engine is distributed between 110 and 460 ◦C
and increases with engine load. The exhaust gas flow rate is distributed between
73 and 660 kg/h and increases with engine speed and engine load. The exhaust gas of
the target engine has energy of up to 40 kW, but the recoverable energy at the turbo
compound’s pressure ratio of 1.3 is up to 10 kW or less.

2. Regarding installing an MCC system, the most suitable waste energy recovery system
for the test engine is an electric turbo compound system. The simulation is divided
into Case 1 (high-speed synchronous generator) and Case 2 (heavy-duty alternator).
In Case 1, the rotation speed increases linearly up to 90,000 rpm depending on the
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operating conditions. In Case 2, the rotation speed rapidly increases to 120,000 rpm
under high load conditions, exceeding the specification limit, so the application of a
reducer or low speed turbine is necessary.

3. Turbo compound pressure drop is up to 1.4 bar in Case 1 and up to 1.0 bar in Case 2,
which is about 50% higher than Case 1. However, the pressure drop in the medium-
speed and -load conditions is below 0.2–0.6 bar in both cases. Therefore, in order to
maximize the performance of the test engine and optimize the efficiency of the turbo
compound, it is necessary to apply a low pressure turbine.

4. The maximum power generation according to engine operating conditions is about
9 kW for Case 1 and 6.5 kW for Case 2, with Case 1 being superior by about 2.5 kW.
However, when compared in WHSC conditions, the difference in power generation
is less than 1 kW. In Case 2, the pressure drop performance is better than Case 1, so
performance can be improved by improving hardware.

5. Considering the maximum speed of the heavy-duty alternator in Case 2, a speed
reducer was applied to optimize power generation. Although the power generation
is improved when the speed reducer ratio is 25:1 or higher, the reduction ratio is
at a level that is difficult to consider real conditions. Therefore, it is expected that
performance improvement will be possible by applying a low speed turbine with
high efficiency under the same conditions as the optimal operating conditions of
the generator.

By applying the turbo compound system composed of a 1D simulation model to a
test engine, the feasibility of recovering more than 1–3 kW of energy while minimizing
the impact on engine performance was confirmed. To improve performance, additional
research is needed on high-speed rotation speed reducers or low-speed, low-pressure
turbines, etc.
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