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Abstract: With the increasing popularization and application of the smart grid, the harm of the data
silo issue in the smart grid is more and more prominent. Therefore, it is especially critical to promote
data interoperability and sharing in the smart grid. Existing data-sharing schemes generally lack
effective incentive mechanisms, and data holders are reluctant to share data due to privacy and
security issues. Because of the above issues, a dynamic incentive mechanism for smart grid data
sharing based on evolutionary game theory is proposed. Firstly, several basic assumptions about
the evolutionary game model are given, and the evolutionary game payoff matrix is established.
Then, we analyze the stabilization strategy of the evolutionary game based on the payoff matrix,
and propose a dynamic incentive mechanism for smart grid data sharing based on evolutionary
game theory according to the analysis results, aiming to encourage user participation in data sharing.
We further write the above evolutionary game model into a smart contract that can be invoked
by the two parties involved in data sharing. Finally, several factors affecting the sharing of data
between two users are simulated, and the impact of different factors on the evolutionary stabilization
strategy is discussed. The simulation results verify the positive or negative incentives of these
parameters in the data-sharing game process, and several factors influencing the users’ data sharing
are specifically analyzed. This dynamic incentive mechanism scheme for smart grid data sharing
based on evolutionary game theory provides new insights into effective incentives for current smart
grid data sharing.

Keywords: evolutionary game theory; smart grid; smart contract; data sharing

1. Introduction

In the current era of big data, with the massive growth of data, data have very
important strategic significance for any industry. However, the big data industry is currently
facing a very serious challenge, which is the dilemma of data silos. With the popularization
and application of the concept of the smart grid, the danger of the data silo issue in the
smart grid has become more and more prominent, and an effective way to solve this issue
is to establish a reasonable and effective data-sharing model [1]. In today’s society, with the
rapid development of science and technology, the interconnection of data has become an
important measure with which to enhance scientific and technological innovation in all
walks of life and even the country, and many studies have shown that the interoperability
and sharing of data can improve the utilization rate of data resources [2–5], accelerate the
dissemination of data resources, and provide a very convenient way for people’s work, life,
and travel. However, in the process of data sharing, users’ unwillingness to share data is
affected by the formation of a mutual trust relationship and economic utility. Therefore,
cross-system data fusion can only be truly realized by breaking through data silos [6,7].
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Previous studies on data sharing have been based on the premise that data holders are
willing to participate in data sharing, but, in practice, data holders are often reluctant
to share their data when taking into consideration privacy and security issues [8–10].
Therefore, to enhance users’ willingness to share data, it is necessary not only to study
various cryptographic techniques to ensure the realization of secure sharing, but also to
design an effective incentive mechanism, to fully promote the flow of data and address
the data silo issue [11]. Evolutionary game theory is an important mathematical tool for
studying and analyzing individual behaviors and strategic choices in social systems. The
object of evolutionary game theory is the study of a certain group of people changing over
time. The purpose of theoretical exploration is to understand the dynamic process of group
evolution and to explain why and how the group will reach this current state. Through
model building and mathematical analysis, evolutionary game theory can help explain and
predict human behavior, and is important for revealing the principles and laws of group
behavior evolution. In the process of data sharing, evolutionary game theory can provide
an effective framework for analyzing the strategy selection and outcome evolution among
participants, in addition to helping to design reasonable incentive mechanisms to motivate
data providers to share data and participate in co-operation. By analyzing the benefits and
stability of individuals under different strategies, incentives can be designed to encourage
data sharing and effectively solve the incentive problem in the data-sharing process [12].

An incentive mechanism based on an evolutionary-game-theoretic approach to realize
data sharing in smart grid data centers is proposed, which can effectively increase the
willingness of participants to share data while safeguarding the interests of each participant
in the smart grid. Generally speaking, data owners can obtain greater benefits by sharing
high-value data, but they will also face higher risks. Therefore, the evolutionary game
theory viewpoint is adopted here to plan the data-sharing process, allowing both parties in
data sharing to continuously improve their sharing strategies in the game until reaching
an equilibrium state. Firstly, several basic assumptions of the evolutionary game model
are given, and the payoff matrix of the evolutionary game model is established. Then, the
analysis of the stable strategy of the evolutionary game is carried out. Based on the analysis
results, a dynamic incentive mechanism for smart grid data based on the evolutionary
game theory is given to illustrate how the incentive mechanism proposed in this paper can
dynamically adjust the incentive parameter and the cost of participation in the smart grid to
encourage user participation in data sharing. Finally, the above evolutionary-game-based
model is written into a smart contract for invocation by both data-sharing parties, thereby
encouraging more users in the smart grid system to participate in data sharing. The main
contributions of this paper are as follows:

1. An evolutionary game model based on the smart grid between two data centers
is constructed, several basic assumptions of the evolutionary game model are put
forward, an evolutionary game payoff matrix is established, and an analysis of the
stable strategies of the evolutionary game in the data centers is conducted based on
the payoff matrix to describe the strategy choices and the evolution process among
the participants, as well as the results of different strategy choices.

2. Based on the analysis results, a dynamic incentive mechanism for smart grid data
based on evolutionary game theory is proposed to illustrate how the incentive mech-
anism proposed in this paper can dynamically adjust the incentive parameters and
participation costs in smart grids to promote user participation in data sharing.

3. A smart contract based on evolutionary game data sharing incentives is designed,
which automatically executes to provide incentives for both sharing parties when the
conditions are met, and, due to the characteristics of the smart contract, the incentive
mechanism that excludes the third party is more secure and trustworthy.

The remainder of the paper is organized as follows. Section 2 briefly summarizes the
relevant research results and describes the research directions explored in the related work.
The current state of the theoretical and technological research is presented and our specific
innovations are outlined. Section 3 presents the system model. In Section 4, an evolutionary
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game model between two data centers is described, including the mathematical deriva-
tion and analysis, and a smart contract mechanism is designed. Section 5 describes the
simulation experiments performed on the model and its analysis.

2. Related Work
2.1. Evolutionary Game Theory

Evolutionary game theory (EGT) is an important mathematical tool for studying and
analyzing individual behavior and strategic choices in social systems. Evolutionary game
theory is the study of a particular group of people changing over time. The purpose of the
theoretical inquiry is to understand the dynamic process of group evolution and to explain
why the group will reach this current state and how it will get there. In evolutionary game
theory, individuals are assumed to be rational, pursuing their own interests and interacting
with others by choosing different strategies [13]. In evolutionary game theory, there is a
core concept called the “Evolutionary Stable Strategy” (ESS), which is similar to the Nash
equilibrium in traditional game theory, but emphasizes the long-term stability of individual
strategies in the evolutionary process. Evolutionary game theory focuses on dynamic
equilibrium, while general game theory focuses on static equilibrium and comparative static
equilibrium. Evolutionary game theory also introduces the concept of replicator dynamics
(RD) and a mathematical model of competitive growth dynamics. Replicator dynamics
provides a way to understand the evolutionary trend of individual strategic choices from a
population level perspective. By analyzing the results of the replicator dynamics model,
we can predict the change in the frequency of different strategies in a population over time,
thus revealing the evolutionary trend of population behavior. The mathematical model of
competitive growth dynamics, on the other hand, can use differential equations to describe
the trend of rational behavior of individuals in a population, further revealing the dynamic
changes in the evolutionary process [14].

The modeling and mathematical analysis process of evolutionary game theory usu-
ally involves several key steps in order to study and understand the strategic evolution,
competition, and co-operation of individuals in groups. These steps can be summarized
as follows:

1. Identify the participants and strategy space: Firstly, it is necessary to identify the individ-
uals or groups involved in the evolutionary game and specify the available strategies.

2. Determine the payoff function: A payoff function is defined for each combination of
strategies, which can be used to quantify the payoffs or utilities that each participant
obtains under different combinations of strategies.

3. Construct a dynamic evolutionary model: The evolution of individual strategies over
time is simulated by means of different mathematical models.

4. Analyzing evolutionarily stable strategies: Finding and analyzing evolutionarily
stable strategies (ESSs), i.e., strategies that are difficult to be violated by other strategies
during long-term evolution. This usually involves an analysis of model stability and
the stability of equilibria, as well as the use of dynamical systems, steady-state analysis,
and other methods to reveal the nature of these strategies [15].

5. Perform mathematical analyses and simulation experiments: Evaluate and vali-
date the accuracy and utility of the model through mathematical analysis methods
(e.g., stability analyses, property derivations, etc.) and computer simulation exper-
iments. We can use the results of the model to predict the evolutionary trends of
individual strategies.

2.2. Data Incentives

Research on incentive schemes for data sharing in different scenarios has been con-
ducted by numerous scholars. This paper analyzes the current research status of data
sharing and incentive programs from the data-sharing incentive programs, as well as the
application of game theory in the field of energy data incentives in two aspects.
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2.2.1. Data-Sharing Incentive Aspects

In terms of evolutionary game theory incentives, An et al. [16] proposed an incentive
mechanism for data sharing in science and technology services, where three strategies
for science and technology service organizations to participate in data sharing were de-
signed through evolutionary game theory. Subsequently, a safe and adjustable incentive
mechanism for smart contracts was constructed based on the sharing strategies. However,
the scheme has not yet unified the data complementary indicators, thus lacking empirical
modeling and analysis. Cai et al. [17] proposed a blockchain-supported IoT data-sharing
incentive framework, ShareBC, which adopts an efficient consensus mechanism and shard-
ing technology to improve the data-sharing efficiency. They also designed a data-sharing
incentive mechanism based on a hierarchical data auction-sharing model implemented
by smart contracts. However, they did not consider how to realize node balancing in
dynamic IoT environments, nor did they address member node reward and punishment
management. Shen et al. [18] proposed a reliable collaboration model consisting of data
owners, miners, and third parties in which data is shared via blockchain and recorded by
smart contracts. However, the authors only analyzed the topological relationships among
the participants and developed some Shapley’s value models from simple to complex
in the revenue distribution process. Li et al [19] proposed a blockchain-based incentive
mechanism for blockchain vehicle perception, which incorporates each user into a repu-
tation management system to improve the quality of perception data, adopts a genetic
algorithm to solve the selection problem of the winning vehicle and allocates rewards based
on task completion, and designs smart contracts to realize non-deterministic vehicles to
perform the perception process automatically. However, it is not applicable to the mutual
incentive and revenue scenarios among users in the smart grid. Wang et al. [20] proposed
an incentive mechanism for data sharing in science and technology service, designed three
strategies for science and technology service organizations to participate in data sharing
through evolutionary game theory, then constructed a safe and adjustable smart contract
incentive mechanism based on the sharing strategy, and, finally, analyzed the factors affect-
ing the sharing strategy. However, the program has not yet unified the data complementary
indicators, and, thus, the model cannot be empirically analyzed.

In terms of blockchain and smart contract incentive aspect. Zhang et al. [21] com-
bined the distributed architecture and decentralization of the blockchain, and designed a
microgrid data security sharing scheme using points to replace the tokens in the traditional
blockchain consensus mechanism to circulate. This scheme stores the data packets in
the database under the chain after the nodes reach a consensus, and returns its storage
address to the chain for storage. However, this scheme only proposes a sharing scheme
for microgrid data, and does not study the aspect of incentivizing users to share data. In
scenarios with large amounts of data in the smart grid, the scale of microgrid users and
the quality of data also need to be considered to determine the reliability of this scheme.
Xu et al. [22] proposed a user-impact-weighted scoring algorithm to analyze the behavior
of the user, and established a user impact model, and designed a blockchain-based rating
incentive mechanism that links users’ rating behavior with their interests. However, the
model has a limited scope of consideration and may have a large impact on the effect of data
of the magnitude of the smart grid. Shi et al. [23] proposed a blockchain-based competitive
platform for SME intelligence sharing, which introduced a credit score system to incentivize
data-sharing behavior among users. However, a simulation experiment lacks an analysis of
the performance, and it provides a vague discussion on the consensus mechanism. Wang
et al. [24] propose a data trust incentive model supported by blockchain by involving equip-
ment providers, data trustees, and general users. They also offer a trusted data transaction
scheme. In addition, homomorphic encryption is utilized to achieve fine-grained data
querying and device matching with privacy protection for device providers and general
users. Xuan et al. [25] propose a data-sharing incentive mechanism based on blockchain
and smart contract to encourage users to actively contribute data by dynamically adjust-
ing the incentive level and participation cost. However, the scheme does not consider
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the effects of shared data size and data quality on the dynamic adjustment of incentives,
thus exhibiting certain limitations. Li et al. [26] constructed a blockchain-based privacy-
preserving and rewarding private data sharing scheme (BPRPDS) with the help of deniable
ring signatures and Monero, which achieves the behavioral feature construction prevention
and non-trapability of BPRPDS. At the same time, a licensing technique enforced by smart
contracts is utilized to ensure flexible access control for multi-person sharing. However, the
main target of the article is for private data, and it is worth considering possible application
scenarios for data from massive smart grids.

In terms of other forms of data-sharing incentives: Tay et al. [27] propose a novel col-
laborative generative modeling (CGM) framework that incentivizes self-interested parties
to collaborate in providing data for training generative models (e.g., GANs), from which
synthetic data are extracted and distributed to the parties as rewards commensurate to their
contributions, and distributing synthetic data as rewards. Vakilinia et al. [28] model the
storage service as a non-co-operative repetitive dynamic game and set the players’ payoffs
such that the dominant strategy of the storage provider is to honestly follow the storage
contract. They also utilize smart contracts and oracle networks to effectively manage the
storage agreement between customers and storage providers. However, the application
scope of this non-co-operative repetitive game is limited, and it is worth investigating
whether the scheme can be effective for scenarios such as smart grids, which need to be
shared and have a huge sharing scope, as well as a huge scale in the number of users and
the amount of data. Khalid et al. [29] proposed a blockchain-based data storage system to
overcome the traditional data management issues of data storage mechanisms involving
third parties; the proposed system utilizes the advantages of the interplanetary file system
(IPFS). An incentive mechanism is also proposed to provide monetary rewards to the re-
spondent vehicles for responding to event messages. However, the analysis of the incentive
mechanism and the specific process in the paper is not comprehensive enough, as it mainly
focuses on the proposed data storage system.

2.2.2. Game Theory in Energy Data Incentive Applications

In terms of power data incentives, Tang et al. [30] proposed a smart grid dynamic
pricing interaction demand-side management scheme based on game theory, which used
the game to develop an interaction strategy between the grid and the users, with the grid
optimizing the price and the users using the power reasonably to reduce the fluctuation
of the demand in order to achieve the Nash equilibrium. However, the indicators that
specifically affect the game process, as well as the influencing factors, were not analyzed.
Li et al. [31] proposed a dynamic game model for power market transactions based on
blockchain technology, applying Stackelberg game theory to address the interaction strat-
egy between market supply and demand parties in the pursuit of the optimal objective of
electricity price and power, which effectively incentivizes the integration of distributed
clean energy sources into the grid. However, the article is mainly aimed at the game of the
power transaction process rather than promoting the sharing of data between power users.
Doan et al. [32] studied a P2P energy-trading system based on double auction game theory,
where the buyer adjusts the purchase quantity based on different electricity prices, while
the auctioneer controls the game, and the seller does not participate in the game, hiding
the transaction information to maximize the benefits after a unique game equilibrium.
However, the reliability of this scheme for handling massive data in the smart grid was
not demonstrated. Apostolopoulos et al. [33] proposed a smart grid demand response
management method based on the two-stage game theory to study the demand response
management problem in the multi-electric utility and multi-customer coalition, which de-
scribes the relationship between the electric utility and the customer as a two-stage game, in
which the electric utility and the customer Nash equilibrium point is reached, determining
the optimal pricing of the electric utility and the optimal electricity consumption of the
customers, iteratively based on reinforcement learning algorithms. Stai et al. [34] modeled
the data incentive problem as a non-co-operative game and investigated the existence of a
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mixed-strategy Nash equilibrium under the adopted proportional allocation policy when
the total demand for renewable energy exceeds the available energy. Alsalloum et al. [35]
proposed a game theory based on the game-theoretic energy hierarchy management sys-
tem model for smart grids that considers multiple constraints among multiple suppliers
and producers. A Stackelberg game was established to simulate supplier–producer and
supplier–consumer interactions, proving the existence of a unique equilibrium solution.

In the area of telematics and other industrial data incentives: Tan et al. [36] proposed
a citywide vehicle data-sharing platform based on digital twins, designing out an incen-
tive mechanism based on a game-theoretic approach to eliminate mutual distrust among
vehicles and encourage them to contribute to data sharing. However, this paper mainly
targets the effect of the direction of trust on the game, as well as the incentive process,
which is too homogeneous to consider the factor indicators. Moafi et al. [37] proposed
a three-tier intelligent structure based on game theory to evaluate the individual and
co-operative strategies of the power manufacturers that this paper targets the direction
of. Moniruzzaman et al. [38] proposed a novel system combining the co-operative game
theory and blockchain technology to stimulate profit maximization and secure energy
transactions for users. However, the research direction of this paper is biased toward the
specific application process, and various indicators of factors affecting data sharing are not
fully analyzed. Amini et al. [39] utilize game theory to explore the circumstances under
which multiple self-interested firms can invest in vulnerability discovery and share their
cyberthreats and share their cyberthreat information, which is algorithmically applied to
a public cloud computing platform. However, the scheme through game theory targets
the cybersecurity and threat aspects and is not applicable to the user dynamic incentive
scenarios of smart grids. Pandey et al. [40] proposed a framework for bi-level decision
making within the scope of multiple demand response providers in retail competition. It
is formulated as a multi-leader–multi-follower game that interacts strategically to opti-
mize the cost of the load-serving entity at the upper level and its cost at the lower level.
However, the authors’ bi-level decision-making framework addresses the interaction of a
multi-leader–multi-follower game without mentioning the specific incentive process and
dynamic incentive schemes. Gelhaar et al. [41] bridge the research gap of insufficient match-
ing between data sharing by adopting a conceptual model for motivation and incentive
issues in data sharing and applying it to the industrial data ecosystem Catena-X. However,
the author’s perspective is only on the issue of the matching of data sharing, and other
aspects related to the dynamic impact of the incentive process between data-sharing parties
have not been studied.

2.3. Summary and Analysis

Existing data-sharing incentive schemes based on smart grid application scenarios
generally lack effective incentive mechanisms, and some of the schemes are unable to realize
node balancing in dynamic incentives, and there is no punishment and reward management
for member nodes. Some data-sharing incentive schemes based on game theory are not
unified for the complementary indicators of data, which cannot be empirically analyzed in
the model, and some schemes are based on small-scale data incentives, which do not take
into account the impact of the shared data size and data quality on the dynamic adjustment
of incentives for the massive data of smart grids.

Aiming at the existing data-sharing schemes, smart grid data sharing generally lacks
an effective incentive mechanism, data holders are reluctant to share data due to privacy
and security issues, and the sharing incentive scheme cannot meet the dynamic demand;
a dynamic incentive mechanism for smart grid data sharing based on game theory is
proposed. According to several basic assumptions of the evolutionary game model, the
evolutionary game payoff matrix is established; based on the payoff matrix, the evolution-
ary game stabilization strategy analysis is carried out, and several factors affecting the
sharing of data between the two sides of the user are simulated and analyzed by using
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MATLAB, and the effects of different factors on the evolutionary stabilization strategy of
the data-sharing incentive process are discussed.

3. System Model

A dynamic incentive model for smart grid data sharing based on evolutionary game
theory [25] proposed in this paper is shown in Figure 1.
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The model consists of three parts: the data provider, the data user, and the smart
contract. Among them, the data provider is responsible for sharing the data throughout the
system and therefore obtains the benefit of sharing the data. Data users and data providers
achieve their own purposes by getting the data provided by the data providers. The smart
contract part is responsible for automatically executing the scheme proposed in this paper
in the system, which dynamically performs inter-system incentives by invoking smart
contracts by judging the incentives in the current state.

The model function can be divided into two parts: the data-sharing incentive mech-
anism based on evolutionary game theory and the design of a smart contract based on
an incentive mechanism. An evolutionary game model is established between data users
and analyzed to stabilize the evolutionary strategy, and a smart contract is designed to
dynamically adjust the incentive benefits of user participation in sharing.

4. Program Description

The construction of a smart grid data dynamic incentive mechanism based on evo-
lutionary game theory is described in detail in this section and a stability analysis of the
mechanism is carried out. For each round of data sharing, the data holders can choose to
participate or not participate in the sharing process, and the focus of the research in this
section is to find the stability point of the data users’ stable participation in the data sharing.
The model assumes that both parties involved in data sharing have finite rationality, and
dynamically adjust their strategies according to the benefits of each sharing, in order to
maximize the benefits in the pursuit of the goal.

In evolutionary game theory, repeated strategies refer to players adopting the same
decision or strategy in multiple games. Repeated strategies are often used to analyze the
outcome of long-term games because they can reflect the decision-making behavior of
players at different points in time and their impact on the outcome. In the model of this
paper, repeated strategies are the behaviors of Data Centers A and B that consistently
choose either shared or unshared data over a certain period of time. A dominant strategy is
a strategy by which one party in a game is able to obtain a better outcome than any other
strategy. This strategy will dominate the other strategies because the other players will be
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more inclined to adopt the dominant strategy to obtain better results. In the model of this
paper, the dominant strategy means that a certain data-sharing or non-sharing strategy can
steadily dominate and become the strategy that Data Centers A and B consistently adopt.
A nomination strategy, on the other hand, means that, in a multi-player game, a participant
must publicly nominate the other participants with whom he or she will play the game.
This strategy can influence the outcome of the game as it involves interaction and mutual
selection between participants. In the model of this paper, a dominant strategy means
that a certain data-sharing strategy performs well in a specific environment or against a
certain reward mechanism, but whether it can become a dominant strategy needs further
observation and analysis. The flow chart of the evolutionary game process is shown in
Figure 2.
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4.1. Model Building

This model constructs an evolutionary game model for data-sharing incentives be-
tween two data centers. Evolutionary game theory suggests that game participants are
always in a state of finite rationality, and need to learn and imitate the environment in
which they are located, and dynamically adjust the data-sharing strategy P in order to
achieve the optimal and stable solution. Suppose that x denotes the probability that Data
Center A chooses to share the data, and 1 − x denotes the probability that Data Center
A chooses not to share the data, x ∈ (0, 1). Similarly, y denotes the probability that Data
Center B chooses to share the data, and 1 − y denotes the probability that Data Center B
chooses not to share the data, y ∈ (0, 1). x, y will be continuously adjusted during the game,
and the following assumptions are made about the model:
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Assumption 1: The two parties involved in the evolutionary game are Data Center A and Data
Center B. Data Center A’s data-sharing behavior strategy is PA = {x, 1 − x} = {Sharing data, Not
sharing data}, and Data Center B’s data sharing behavior strategy is PB = {y, 1 − y} = {Sharing
data, Not sharing data}.

Assumption 2: Analysis of direct benefits of data sharing. The direct benefit obtained when data
centers share data is related to two factors: one is the size of the shared data E, and the other is the
complementary coefficient of the shared data a. Generally speaking, the larger the amount of shared
data and the more high-value data, the more benefit it obtains, and the benefit is also related to the
complementary nature of the shared data. Therefore, after analysis, it can be seen that the direct gain
after sharing Data Centers A and B is a1E2, a2E1.

Assumption 3: Data-sharing reputation gain analysis. Data center parties can reduce the trust
cost if they have a high reputation value when sharing data, so a certain reputation gain should be
allocated to the sharing parties, denoted by N. The reputation gain obtained by Data Centers A and
B is denoted as N1, N2.

Assumption 4: Data-sharing cost analysis. The execution of data sharing will produce an economic
cost and privacy cost. Economic cost refers to the idea that the data-holding party needs to carry
out data collection, cleaning, encryption, and other operations; both sides of the game, as long as
one party initiated the sharing operation, will produce an economic cost. Privacy cost refers to the
idea that the data-holding party in the completion of the data sharing needs to bear the consequences
of the possible leakage of data caused by the data; here, Data Centers A and B choose to share data
when consumed, and the cost is C1, C2.

Assumption 5: Data-sharing platform revenue analysis. In order to incentivize both data centers
to participate in sharing high-quality data, a certain amount of revenue is rewarded by the platform
to the party that chooses to share, and the platform revenue is related to the cost of sharing data by
the participant C and the subsidy coefficient k. Here, the platform revenue obtained by Data Centers
A and B is kC1, kC2.

Assumption 6: When Data Center A or Data Center B chooses not to share data as a strategy, it is
stipulated that their revenues are both 0.

According to the assumptions, the gain matrix of the two parties of the game when
smart grid data centers are shared is derived, as shown in Table 1.

Table 1. Benefit matrix for two-party gaming in smart grid data center sharing.

Strategy for Data
Center A Selection

Strategy for Data Center B Selection

Select Share y Select Not to Share 1 − y

Select Share x a1E2 + N1 + kC1 – C1
a2E1 + N1 + kC1 – C1

N1 + kC1 – C1,
0

Select not to share 1 – x 0,
N2 + kC2 – C2

0, 0

4.2. Analysis of Model Stabilization Evolution Strategies

From the game payoff matrix in Table 1, the expected payoffs of both parties are
analyzed.

Data Center A chooses to share the data with an expected gain of:

EA1 = y(a1E2 + N1 + kC1 − C1) + (1 − y)(N1 + kC1 − C1)
= y(a1E2 + N1 + kC1 − C1 − N1 − kC1 + C1) + N1 + kC1 − C1
= y · a1E2 + N1 + kC1 − C1
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Data Center A expects a gain the following of when it chooses not to share data:

EA2 = 0

The average expected return is:

EA = xEA1 + (1 − x)EA2
= xy · a1E2 + x(N1 + kC1 − C1)

Data Center B expects a gain of the following when it chooses to share data:

EB1 = x(a2E1 + N2 + kC2 − C2) + (1 − x)(N2 + kC2 − C2)
= x(a2E1 + N2 + kC2 − C2 − N2 − kC2 + C2)
= x · a2E1 + N2 + kC2 − C2

Data Center B chooses not to share the data in anticipation of a gain of:

EB2 = 0

The average expected return is:

EB = yEB1 + (1 − y)EB2
= xy · a2E1 + y(N2 + kC2 − C2)

The resulting equation for the replication dynamics between Data Centers A and B is
established as:

FA(x) = x(EA1 − EA) = x[y · a1E2 + N1 + kC1 − C1 − xy · a1E2 − x(N1 + kC1 − C1)]
= x[y(1 − x) · a1E2 + (1 − x) · (N1 + kC1 − C1)]
= x(1 − x)(y · a1E2 + N1 + kC1 − C1)

FB(y) = y(EB1 − EB) = y[x · a2E1 + N2 + kC2 − C2 − xy · a2E1 − y(N2 + kC2 − C2)]
= y[x(1 − y) · a2E1 + (1 − y) · (N2 + kC2 − C2)]
= y(1 − y)(x · a2E1 + N2 + kC2 − C2)

Let: FA(x) = FB(y) = 0; the equilibrium point of both sides of the data-sharing game can
be found as O(0, 0),P1(0, 1), P2(1, 0), P3(1, 1), P4

(
C2−kC2−N2

a2E1
, C1−kC1−N1

a1E2

)
= (x∗, y∗).

Next, construct the Jacobi matrix by taking the partial derivation of the above equation:

J =
[
(1 − 2x)(ya1E2 + N1 + kC1 − C1) x(1 − x)a1E2

y(1 − y)a2E1 (1 − 2y)(xa2E1 + N2 + kC2 − C2)

]
The above matrices and equations are used to determine whether the equilibrium is in

a steady state or not. We only need to bring the equilibrium point into the Jacobian matrix,
in turn, to calculate this; if the determinant is greater than 0 while the trace is less than 0, it
can be determined that the point has equilibrium stability, and satisfies the stabilization
strategy during the evolution, from the following three cases to start the analysis:

Condition 1: When C2 − kC2 − N2 > a2E1, C1 − kC1 − N1 > a1E2, at this point, the cost of
user participation in data sharing is higher than the benefits received, and the system incentive is at
a low level. A simple analysis shows that the point P4 does not meet the requirements, the remaining
points will be brought into the matrix to calculate the determinant and traces, and the results of the
system evolutionary stability analysis are shown in Table 2.
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Table 2. Analysis of local evolutionary stabilization results on both sides of data sharing.

Balance
Point

Matrix Determinant
Notation

Matrix Trace
Symbols Evolutionary Results

O(0, 0) >0 <0 Evolutionary
stabilization strategy

P1(0, 1) <0 Uncertain Saddle point
P2(1, 0) <0 Uncertain Saddle point
P3(1, 1) >0 >0 Unstable

As can be seen from Table 2, among the four local equilibrium points, only point
O(0, 0) is a stable evolutionary strategy, indicating that both data-sharing parties choose
not to participate in the sharing, P3(1, 1) is an unstable point, and P1(0, 1), P2(1, 0) is a
system saddle point.

The phase evolution diagram was used to describe the data-sharing evolutionary
process as shown in Figure 3a. The analysis shows that when the system incentive is small,
the sharing cost is greater than the gain, and the data-sharing parties after the rational
game all chose not to participate in the data sharing, so the parties in the phase diagram
are converging to O(0, 0).
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Condition 2: When C2 − kC2 − N2 < a2E1, C1 − kC1 − N1 < a1E2 and N2 + kC2 < C2, N1 +
kC1 < C1, the benefits gained from user participation in data sharing are greater than the costs,
and all points are brought into the matrix to calculate the determinant and traces, it can be seen
that O(0, 0) and P3(1, 1) are stable evolutionary points in the system, and the results of the stable
evolutionary analysis of the system are shown in Table 3.

Table 3. Results of local evolutionary stability analysis for both sides of data sharing.

Balance
Point

Matrix Determinant
Notation

Matrix Trace
Symbols Evolutionary Results

O(0, 0) >0 <0 Evolutionary
stabilization strategy

P1(0, 1) >0 >0 Unstable
P2(1, 0) >0 >0 Unstable

P3(1, 1) >0 <0 Evolutionary
stabilization strategy

P4(x*, y*) <0 Uncertain Saddle point

According to the analysis in Table 3, it can be seen that O(0, 0), P3(1, 1) is an evolu-
tionary stable strategy, P1(0, 1), P2(1, 0) is an evolutionary unstable strategy, and P4(x∗, y∗)
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is a saddle point. Only O(0, 0) and P3(1, 1) show stable evolution when data users share,
which correspond to the two cases when data-sharing parties choose to share data and not
share, respectively.

The phase evolution diagram is shown in Figure 3b. Data users choose to share or
not share data depending on the initial state of the system, linking the points in the figure;
when the initial state of both data-sharing parties falls below, after evolution, the system
will converge to point O, which indicates the strategy where the sharing parties will tend
to choose not to share data; when the initial state of both sharing parties falls above, after
evolution, the system will converge to point P3, which indicates the strategy where the
sharing parties will tend to choose to share data. The area of the region surrounded by
points P1P2P3P4 can be used to indicate the probability of user participation in sharing.

SP1P2P3P4 = 1 − 1
2

(
C2 − kC2 − N2

a2E1
+

C1 − kC1 − N1

a1E2

)

Condition 3: When C2 − kC2 − N2 < a2E1, C1 − kC1 − N1 < a1E2, and N2 + kC2 > C2, N1 +
kC1 > C1, the benefits gained from user participation in data sharing are greater than the costs,
and the system incentive level is high. A simple analysis shows that point P4 does not meet the
requirements, the remaining points are brought into the matrix to calculate the determinant and
traces, and the results of the system stability evolution analysis are shown in Table 4.

Table 4. Results of local evolutionary stability analysis of data-sharing parties.

Balance
Point

Matrix Determinant
Notation

Matrix Trace
Symbols Evolutionary Results

O(0, 0) >0 >0 Unstable
P1(0, 1) <0 Uncertain Saddle point
P2(1, 0) <0 Uncertain Saddle point

P3(1, 1) >0 <0 Evolutionary
stabilization strategy

From Table 4, it can be seen that, among the four equilibrium points, only P3(1, 1) is an
evolutionary stable point, indicating that both data-sharing parties adopt sharing strategies,
O(0, 0) is an unstable point of system evolution, and P1(0, 1), P2(1, 0) is a saddle point.

The phase evolution diagram is shown in Figure 4a, and the analysis shows that, when
the incentive strength is in the interval, the data-sharing users all choose to share the data
after a long-term game, indicating that the system incentive is at a high level at this time.
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The above study analyzes three cases of evolutionary stability in the process of data
sharing. Figure 4b summarizes the direction of evolution under different conditions; in
fact, affected by a variety of factors to share, the two sides choosing to share the data is
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not necessarily able to achieve a stable evolutionary strategy. The user who chooses the
{sharing, sharing} or {not sharing, not sharing} strategy may reach a stable state of evolution.
The state parameter, to a large extent, determines whether the user in the long term after
the game should select the sharing of the data, in practice, in order for the two sides to
converge to share the need to make the area in the formula larger, as much as possible.

An incentive mechanism based on evolutionary game theory for the dynamic sharing
of smart grid data is derived by us and used to encourage more users within the smart
grid system to come and participate in data sharing. The motivation process is shown in
Figure 4b.

Firstly, in the initial stage of the whole evolutionary gaming process, the proportion of
users in the system who choose to participate in data sharing as a whole is small; according
to the analysis, using Condition 3, the proportion of participating users can be increased by
improving the subsidy coefficient, increasing the size of the shared data, and reducing the
cost to incentivize more users to turn to the participation strategy. Once the proportion of
users participating in data sharing exceeds a certain threshold, i.e., the state of P4 point,
users can spontaneously participate in data sharing without additional incentives from
the system. When the current incentive ratio has reached the maximum before the end of
a round of the game, the system can spontaneously determine whether it is necessary to
use Condition 1, and reduce the proportion of users participating in data sharing in the
system at this time by increasing the cost or reducing the subsidies in the system to make
the users choose not to participate in data sharing after the evolutionary game; at this time,
the blockchain data-sharing platform, with the increasing proportion of sharing users, may
bring additional costs to users, and, as the proportion of shared users rises, it may lead
to higher loads within the system, resulting in higher maintenance costs. Therefore, it is
necessary to dynamically reduce the proportion of partially shared users to ensure that the
benefits of the entire system are maximized.

After a round of the game, the system will keep repeating the incentive process
described above, charging users for participation through an iterative process of data
sharing for inaccessible users, until the system revenue reaches the maximum value of the
game stage.

The dynamic incentive mechanism can maximize the user participation rate by dy-
namically adjusting the parameters and constantly adjusting the conditions of the game
phase so that more users can participate in data sharing and experience the benefits of data
sharing. In addition, the whole process is designed as a smart contract that automatically
executes to provide incentives for both sharing parties when the conditions are met, and
the incentive mechanism that excludes third parties is more secure and trustworthy due to
the characteristics of the smart contract. The flowchart of the system motivation is shown
in Figure 5.
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4.3. Smart Contract Incentive Mechanism Design

In order to encourage more users to participate in data sharing, a dynamic incentive
mechanism based on the evolutionary game is proposed by us, through the design of a
smart contract that simulates the whole incentive process, and through the characteristics
of the smart contract to achieve the mutual integration of the data-sharing process and
the users of the blockchain platform. Meanwhile, smart contracts are deployed on the
blockchain platform to ensure privacy and security in data sharing. The decentralized
nature of blockchain makes it more secure because data and transaction information are
distributed throughout the network and are less susceptible to single-point attacks. More-
over, blockchain uses cryptography to ensure data security, including mechanisms such
as the encryption of transaction information and digital signatures. Finally, the consen-
sus mechanism of blockchain ensures consistency between participants in the blockchain
network, protecting the integrity and security of data.

First, in the initial stage of the evolutionary game, the number of users participating
in data sharing in the system is very small. Using the scenario in Condition 3, taking one
incentive for users to participate in sharing motivates more users to shift to the strategy of
participating in data sharing. When the proportion of data sharing exceeds a threshold,
using Condition 1 ensures that the blockchain can be used without external incentives in
the current state, ensuring that the current system is in a normal incentive state. In addition,
the blockchain data-sharing platform may impose specific fees on users. The system will
keep repeating the above incentive process by charging users for participation through an
iterative process of data sharing for different users until the system revenue reaches the
maximum value in the game phase.

Smart contracts can be automatically executed according to pre-set rules and trigger
conditions, and their program code is deployed on the blockchain with a tamper-proof
function, so the sharing incentive mechanism can be written to the smart contract for
users to invoke on the smart grid data center, and it is automatically executed to provide
incentives for both sharing parties when the conditions are met; this kind of incentive
mechanism that excludes the third party is safer and more trustworthy. This section designs
a data-sharing incentive contract based on the evolutionary game, which contains five
functions, and the specific roles are explained as follows:

(1) GetTotalusers(): Counts the number of data holders participating in data sharing
in the system over a period of time, and sets this number to the total number of
shared users.

(2) GetParticipatingusers(): Counts the number of data holders participating in data
sharing in the system over a period of time, and sets this number to the total number
of shared users.

(3) GetCurparaset(): Obtain the set of parameters for the current phase from the parameter
set.

(4) GetThreshold(): Calculate the threshold for the current state of the system based on
the data in the current set of parameters.

(5) GetIncentive(): Incentivize the system of the evolutionary game by changing, for
example, the parameters of the current parameter set.

Tables 5 and 6 show the data names and types of the main functions and parameter sets.
The deployment process of the smart contract is as follows: First, initialize the global

parameters; and stipulate that after the proportion of users participating in sharing exceeds
90 percent, end the incentive process and return the incentive rewards and incentive
costs automatically. After that, obtain the specific parameters of the current parameter set
through the GetCurparaset method, and then compute the proportion of users participating
in sharing to the whole set of users x. Then, compute the threshold value x* for the current
gamble phase by the GetThreshold() method. Use GetThreshold() method to calculate
the threshold x* for the parameter set of the current game stage; if the proportion x of
users participating in sharing is less than the threshold x*, the incentive within the system
is enhanced by changing the value of the current parameter set Curparaset, and a new
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threshold is formed dynamically, and the external incentive is canceled if the proportion of
users participating in sharing is greater than the threshold x1*, indicating that the system’s
own incentive is sufficient, after which the users are made to enter the next stage of the
evolutionary game. Finally, the corresponding results are returned, including the cost of
data sharing and the incentive benefits in the game stage.

Table 5. Names and data types of functions and variables.

Name Data Type

Participatingusers int
Totalusers int

GetIncentive() double
GetTotalusers() int

GetParticipatingusers() int
GetCurparaset() double
GetThreshold() double

Table 6. The data name and data type in the parameter set.

Name Data type

data size double
data complementarity double

user reputation double
sharing cost double
sharing cost double

The pseudo-code of the smart contract for smart grid data sharing incentives is shown
in Algorithm 1.

Algorithm 1: Data-Sharing Incentive Mechanism Smart Contracts

Input: Totalusers, Userparticipating, Curparaset
Output: results
1. Function GetSystembenefits()
2. N = GetTotalusers(P)
3. n = GetParticipatingusers(N)
4. S = GetCurparaset(parameterset)
5. x = n/N
6. If x > 0.9 then//When x is greater than 0.9, it automatically ends the game phase
7. Participatingusers = 0
8. Totalusers = 0//Reset all parameters of this process
9. Curparaset = 0
10. End if
11. x* = GetThreshold(S)//Calculate the threshold assignment for the current parameter set
to x*
12. While (x < x*)
13. S* = GetCurparaset(parameterset1)
14. GetIncentive(S*)//Adjust the parameters in the current parameter set for incentive
15. x1* = GetThreshold(S*)//Dynamically adjust the set of parameters and thresholds
16. If (x > x1*)
17. Return results//End this phase of the incentive process
18. Break
19. End Function

5. Simulation Results and Analysis

To discuss the influence of different factors on users’ evolutionary strategies, this
section uses the MATLAB software (9.5.0.944444 (R2018b)) for simulation analysis. By
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setting different values of E, N, k, and C, the effects of different factors on data incentives
are measured by the proportion and speed of users’ participation in data sharing, and the
role of these parameters in the incentive mechanism in the data-sharing evolutionary game
is verified. The control variable method is used to solve the differential equations using
the ode45 function to verify the role of a single condition on the stabilization strategy of
sharing evolution by setting different parameter values.

5.1. Impact of Data Complementarity on Stabilization Evolution

Data complementarity is an important parameter that affects the user’s benefit. In the
control of other parameters remaining unchanged, change the parameter a to determine the
data complementarity on the evolutionary game stabilization role; the results are shown
in Figure 6a. The other parameter assignments are specified as follows: E1 = 6, E2 = 10,
N1 = 6, N2 = 6, C1 = 25, C2 = 30, k = 0.6. The initial user sharing ratio in the system is
set to 0.3.
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Analyzing Figure 6a shows that data complementarity plays a positive role in the
system game stabilization strategy. With the increase of data complementarity in the system,
the above curve shifts from converging to 0 to converging to 1, and the convergence speed is
gradually accelerated, which indicates that the user shifts from not sharing data to sharing
data, and the greater the data complementarity between the two sharing parties, the greater
the willingness to share data, and the improvement of data complementarity can effectively
enhance the system incentive strength.

5.2. Effect of Shared Data Size on Stabilization Evolution

Data-sharing size is also an important parameter that affects the user’s benefit; the
larger the data shared between the two sides, the more the benefit. In the control of
other parameters remaining unchanged, change the parameter E to determine the data
complementarity on the evolution of the game stabilization role; the results are shown in
Figure 6b. The other parameters assigned specific values are as follows: a1 = 0.6, a2 = 0.9,
N1 = 6, N2 = 6, C1 = 25, C2 = 30, k = 0.6. The initial user sharing ratio in the system is
set to 0.3.

An analysis of Figure 6b shows that the data-sharing size plays a positive role in
promoting the evolutionary stabilization strategy; as the data shared by both parties in the
system increases, the curve in the figure shifts from converging at 0 to converging at 1, and
the convergence speed is gradually accelerated. Comparing the same set of curves, the
more the data sharing, the faster the convergence speed; the user’s willingness to share
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data in the enhancement, which indicates that the size of the data shared by both parties, is
also an important factor affecting the sharing.

5.3. User Reputation Impact on Stable Evolution

Considering that credibility in the calculation of user benefits is an important means
to ensure safe sharing, in the control of other parameters remaining unchanged, change the
parameter N to determine the impact of user credibility on the stable evolution strategy;
the results are shown in Figure 7a. The other parameter assignments are as follows:
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a1 = 0.6, a2 = 0.9, E1 = 6, E2 = 10, C1 = 25, C2 = 30, k = 0.6. The initial proportion of users
in the system is set to 0.3.

An analysis of Figure 7a shows that user credibility positively affects the stabilization
strategy of the evolutionary game between the sharing parties, and, as the user credibility
parameter increases, the curve in the figure converges to 1 rapidly, and the probability that
the user chooses to share the data becomes larger.

5.4. Impact of Sharing Cost on Stabilization Evolution

Users have to consume a certain amount of computational cost in the process of
sharing data, and also face the risk of data leakage, so the sharing cost is also an important
parameter that affects the user’s revenue. Under the control of other parameters remaining
unchanged, the parameters C are changed to determine the impact of the sharing cost on
the evolutionary game strategy; the results are shown in Figure 7b. The other parameters
are assigned as follows: a1 = 0.6, a2 = 0.9, E1 = 6, E2 = 10, N1 = 6, N2 = 6, k = 0.6. The
initial user ratio in the system is set to 0.3.

An analysis of Figure 7b shows that the size of the sharing cost plays an inverse role
in stabilizing the evolutionary strategy. The smaller the sharing cost is, the faster the curve
in the graph converges to 1; the probability of user participation in data sharing increases,
and, when the sharing cost is greater than the gain obtained, the user will choose not to
participate in sharing.

5.5. Impact of Platform Subsidies on Stability Evolution

The factors discussed above are all fixed values, and, when the user sharing cost is
greater than the above benefits, a certain amount of subsidy must be given by the platform to
incentivize users to share data. Under the control of other parameters remaining unchanged,
change the parameters k to determine the impact of platform subsidies on the evolution of
the game strategy; the results are shown in Figure 8. The other parameters are assigned
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as follows: a1 = 0.6, a2 = 0.9, E1 = 6, E2 = 10, N1 = 6, N2 = 6, C1 = 25, C2 = 30. The
initial user ratio in the system is set to 0.3.
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An analysis of Figure 8 shows that the platform subsidy plays a positive incentive
role in stabilizing the evolutionary strategy. When k = 0.3, the system user chooses not to
share data and converges to 0 faster; when k = 0.6, the user still chooses not to share but the
converging to 0 slows down; and, when k = 0.9, the user chooses to share and converges to
1, which indicates that the incentive is sufficient at this time. The system adopts the subsidy
method with the sharing cost as the credential, standardizes the subsidy standard, and has
obvious incentives to promote the sharing of data.

5.6. Analysis of Simulation Results

Synthesize the above simulation and analysis results, and, specifically, analyze several
factors that affect the user sharing data.

The larger the size of the data shared by both parties E, the larger the complementary
coefficient a between the data, and the higher the probability of sharing. The purpose of
sharing data is to find differentiated data, so the greater the complementary coefficient
between the data, the greater the value generated by sharing, and the higher the willingness
of both parties to share.

The greater the reputation value of both parties N, the greater the probability of
sharing. The reputation value reflects the user’s performance in the past sharing: the higher
the reputation value, the higher the trust between the two parties to share, and the higher
the willingness to share.

The larger the platform subsidy coefficient k, the greater the probability of sharing
occurring. Here, the overall reward of the platform is positively correlated with the subsidy
coefficient and the sharing cost, and, usually, the higher the cost of the sharing party is, the
more the platform reward is harvested, and this platform subsidy–cost correlation setup is
more in line with reality.

Other things being equal, the higher the cost of data sharing C, the lower the probability
of sharing occurring. This is due to the fact that the data-sharing party needs to bear the
data economic cost and privacy cost, and only when the benefit of data sharing is greater
than the cost can it create positive incentives for the sharing process.

The incentive mechanism proposed in this paper can dynamically adjust the incentive
parameters and participation costs in smart grids to promote user participation in data
sharing. When the number of users participating in data sharing starts to decrease, without
the incentive adjustment mechanism, users are likely to continue to decrease, which,
ultimately, leads to the failure of the data-sharing network. The incentive adjustment
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mechanism increases user participation by adding incentives and maintains a balance
between the size of the users and the cost of the activity.

When the smart grid system is in the first case or the second case where the initial
proportion of participating users is low and the level of system incentives is low, the above
experiments can dynamically adjust the incentive parameters such as data complementarity
between the two parties, the size of the shared data, the user credibility, the increase of
the smart grid’s platform subsidy to the sharing users, and the reduction of the sharing
cost to incentivize the active participation of the users in the system in the sharing of data,
thus expanding the proportion of participating sharing users in the system to maximize the
benefits for the users, as well as the entire smart grid system. When the system is in the
third situation, the system incentive level is relatively high; at this time, the proportion of
shared users in the system is already large, and there is no need for additional incentives
from the system. When the proportion of shared users reaches a certain threshold, the
proportion of participating users can even be dynamically adjusted by increasing the cost
of sharing, so as to achieve the maximization of the revenue of the entire smart grid system.

6. Conclusions and Outlook

Based on the game theory on smart grid data-sharing incentive scheme was our
study. Because of the lack of an incentive mechanism for the data-sharing problem, we
put forward a game-theory-based smart grid data-sharing incentive mechanism. First,
we establish the data-sharing stage evolution game model, based on the model analysis
of the sharing parties’ benefit matrix, and then we discuss the stability of the evolution
strategy under different conditions, according to the results of the analysis, to give a kind
of model based on the evolutionary game. A dynamic incentive mechanism for smart
grid data based on game theory is given based on the analysis results, which illustrates
how the incentive mechanism proposed in this paper can dynamically adjust the incentive
parameters and participation costs in the smart grid to promote users’ participation in
data sharing. Accordingly, a smart contract module is designed, and, finally, the effects of
different factors on the evolutionary stabilization strategy are discussed through simulation
analysis, and the simulation results verify the role of these parameters in the incentive
mechanism in the evolutionary game of data sharing.

The incentive model proposed by us uses a two-party evolutionary game to construct
a sharing model between data holders and data requesters; in fact, there are also multiple
roles in data sharing, such as platform agents. In the future, the incentive mechanism can be
improved by investigating the users’ behavior in data sharing and testing the applicability
and effectiveness of the model in the real smart grid environment to increase the complexity
of the gaming process, such as conducting the evolutionary game among the data-sharing
users, the management part, and the platform agent, and so on. From there, refinements of
this incentive are made to bring the model closer to reality.
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