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Abstract: In this paper, a simplified and robust control strategy of an interleaved high gain DC/DC
boost converter (IHGBC) is proposed in order to enhance DC bus voltage regulation in proton
exchange membrane fuel cell (PEMFC) applications. The fluctuation of the energy source voltage
and external load, and the change in system parameters lead to the instability of output voltage.
Based on the creation of an average state space model of the DC/DC boost converter, the proposed
controller is designed based on a linear active disturbance rejection control (LADRC), which has an
external voltage loop and an internal current loop to meet the output voltage requirements under
parameters uncertainties and disturbances. The effectiveness of the proposed approach strategy and
its superiority were examined under different operating conditions and scenarios. Simulation and
experiment results showed the efficiency and robustness of the suggested approach and the great
effectiveness in the reference tracking and disturbance rejection.

Keywords: linear active disturbance rejection control (LADRC); proton exchange membrane fuel cell
(PEMFC); robust control; DC-DC boost converter

1. Introduction

With the increasing search for new non-polluting renewable energy resources that can
replace fossil fuels to reduce greenhouse gas emissions, PEMFC presents itself as a serious
solution as clean, highly efficient and reliable energy [1,2]. Fuel cells are used in transport,
and stationary and portable applications [3,4]. In these applications and due to the low
output voltage of the PEMFC system, the DC-DC converter associated to the PEMFC plays
a very important role in transferring the generated power to the load (motor, auxiliaries or
resistive load on the DC bus side) [5,6]. These converters require specific characteristics of
PEMFC applications such as [7,8]: a high voltage gain ratio, minimal input current ripple
and good efficiency.

In this context, studies have largely addressed many different structures of DC/DC
converters categorized into non-isolated, isolated and soft-switched structures for PEMFC
applications based on current issues of volume and weight reduction, input current ripple
reduction or fault tolerance [9–13].

In accordance with the requirements of fuel cell applications, an interleaved non-
isolated high gain boost converter is proposed in this work. This converter is a combination
of a passive switched inductor cell with an additional step-up capacitor [14]. This combina-
tion provides high voltage gain with reduced voltage stress on the switches and diodes,
which reduces conduction and switching losses of the diodes and thus improves converter
efficiency. Furthermore, the converter is improved by adding a passive switching inductor
cell in parallel with the first cell at the input of the converter with the control signals
shifting on switches S1 and S2 to reduce input current ripples. Regarding the latter, the
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literature [7,15–17] has explored the effects of low frequency and high frequency current
ripple on the fuel cell.

Studies have revealed that compared to high frequency current ripple (i.e., >1 kHz),
low frequency current ripple (i.e., 100–120 Hz) has a greater impact on efficiency, hydrogen
consumption and FC lifetime.

Furthermore, the impact on the FC is highly dependent on the amplitude of the
current ripple. If the current ripple amplitude is too high, it could cause much greater
degradation, especially on the lifetime of platinum catalysts [16,17]. It has been suggested
in the literature [7,15] that the current ripple should be limited to less than 10% of the
nominal FC current.

In fact, the proposed topology offers a high voltage conversion gain. Additionally,
interleaving helps reduce the input current ripple compared to existing conventional
converters (e.g., Boost, Cascade Boost, Three Level Boost), which makes it appropriate for
FC applications [13].

Regulating the output voltage and meeting the power demanded in fuel cell systems
requires a high-performance DC-DC boost converter with high efficiency and a fast re-
sponse. However, since the DC-DC boost converter is a non-minimum phase system that is
very sensitive to uncertainties and disturbances, such as fluctuations in the load impedance
and input voltage, and disturbance of the system parameters, it causes limitations in the
control bandwidth [18,19]. For this purpose, many different strategies for the control design
of DC-DC converters have been developed.

In [20], the adaptive sliding mode control (SMC) system is designed to regulate the
output voltage and reduce the inductance current ripple of a three phase direct coupled
interleaved boost converter (TP-DIBC).

Based on the concept of differential flatness, the author in [21] proposes a non-linear
single-loop control strategy for a multiphase interleaved converter in order to achieve
efficient reference tracking without using a complex algorithm. To ensure good voltage
tracking and good performance of an interleaved boost converter, the author in [22] pro-
poses a control strategy based on the H-infinity mixed sensitivity approach. The strategy
was validated under different operating conditions, but such algorithms are complex and
difficult to implement.

Considering the previous techniques applied to a DC-DC converter, a particular con-
trol technique can improve the DC-DC converter’s operation to achieve better efficiency
and robustness. The control technique is selected based on the priority of the application
requirements, so some converter topology can be considered most suitable for a particular
control technique [23]. Several control techniques are available each with different advan-
tages, including response time, efficiency and robustness [24–26]. For example, classical
PI control is widely used due to its easier design and low control complexity compared to
other control techniques [27]. However, this technique has a slow dynamic response and a
limited performance.

In recent years, many fields of control engineering have turned to the use of an
emerging control technology designed for robust disturbance tolerance known as linear
active disturbance rejection control (LADRC) as a candidate for classical controllers (PID)
and modern model-based control strategies [27,28].

Based on the LADRC design, all internal uncertainties and external disturbances are
estimated and compensated by extended state observer (ESO) law and feedback control. In
order to simplify the non-linear structure and facilitate the tuning of complex parameters,
Gao et al. in [29] simplified the control design into a linear active disturbance rejection
control (LADRC). In contrast to many control strategies, LADRC is an independent method
that does not depend on the exact mathematical model of the controlled system [30], which
qualifies it for wide use in many practical applications and theoretical studies [31–36].

The authors in [32] proposed an LADRC strategy for independent electric vehicle
control. Their results showed that the LADRC controller significantly reduces the driver’s
steering effort, and can also perform better in terms of tracking accuracy, compared to
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the PID controller. In [33], the LADRC method was incorporated into the control loop
of a standalone inverter with the aim of improving the system immunity and extending
the virtual impedance range. In [35], the hydrogen generation produced by the water
electrolyzer is controlled by relying on the LADRC to maintain the gas pressure in the
hydrogen tank. The control system was developed and designed and the superiority
of LADRC was proven by comparing its performance with a PI controller. In [36], a
robust LADRC-based damping method against disturbances and parametric changes was
proposed for an LCL filter. The results showed good dynamic performance and high
power quality.

Based on the previous analysis, to address the issues of varying system parameters,
the external load voltage and the power source fluctuation that causes output voltage
instability in fuel cell applications, the authors of this paper present:

- A robust dual-loop control application and design based on a linear active disturbance
rejection control that controls the external voltage loop and the internal current loop
of an interleaved DC-DC boost converter.

- This converter provides high efficiency and high voltage gain with reduced voltage
stress on switches and diodes.

2. PEMFC Modelling

In the literature, several electrochemical reaction models have been developed to
predict the PEMFC supplied voltage. The purpose of this modeling is to obtain the PEMFC
polarization characteristics, which are deduced from the current and voltage of the fuel cell.
In this section, a cell voltage model is presented as follows [37]:

VFC = EN −VAct −VOhm −VConc (1)

where EN is the fuel cell open circuit potential [37,38].

EN = 1.229− 0.85× 10−3(TFC − 298.15) + 4.3085× 10−5TFC

[
Ln
(

PH2

1.01325

)
+

1
2

Ln
(

PO2

1.01325

)]
(2)

VAct are the activation losses expressed as a function of the constants Va, C1 and the
voltage drop VO.

VAct = VO + Va

(
1− e−C1i

)
(3)

VOhm is the ohmic voltage drop and is calculated based on the temperature, membrane
thickness of fuel cell and constants b1, b2 [37].

VOhm =
i.tm

b1exp
(

b2

(
1

303 −
1

TFC

)) (4)

The concentration losses VConc are given as a function of constants iMax, C2 and C3 [37].

VConc = i
(

C2
i

iMax

)C3

(5)

3. Modelling of the Proposed Converter

The interleaved high gain DC-DC boost converter (IHGBC) is shown in Figure 1. The
circuit consist of two active switches (S1, S2), four inductors (L1, L2, L3, L4) and two boost
capacitors (CB1, CB2) with equal values, one input capacitor (Cin), four passive switched
inductor diodes (D1, D2, D3, D4), two output diodes (Ds1, Ds2) and one output capacitor (C0).
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Figure 1. Structure of the proposed interleaved high gain DC-DC boost converter.

The interleaving concept used in this configuration is ensured by the parallel connec-
tion of two passive switched inductor cells at the input of the converter and the shifting of
the control signals for the switches S1 and S2.

The interleaved topology reduces input current ripple. Moreover, this topology makes
it possible to provide a high voltage gain and to reduce the electrical stresses (i.e., voltage
and current) on the power semiconductors. The gain ratio of this topology is given by the
following relationship:

Vdc
VFC

=
2

1− d
(6)

The power switches (S1, S2) are controlled by switching each PWM gate control signal
from each other by an angle of 180◦.

When the switches (S1, S2) are turned on, diodes D1, D2, D3 and D4 are forward
biased and L1, L2, L3, L4 and CB1, CB2 charge in parallel. When the switches (S1, S2) are
turned off, then D1, D2, D3 and D4 are reverse biased and (L1, CB1 and L2), (L3, CB2 and
L4) discharge in series.

The converter average model can be described by the equation:{
L dIL

dt = Vin − (1−d)
2 Vdc

C dVdc
dt = (1− d)iL1 + (1− d)iL2 + idc

(7)

The small-signal model makes it possible to consider the transient and permanent
state of the converter [39]. Therefore, we write:

x(t) = X(t) + x̃ (8)

where x represents the variable, X represents the steady state and, finally, x̃ represents the
small variation around this steady state.

The average small-signal model of the converter is given below:{
LsîL = V̂in − (1−d)

2 V̂dc +
Vo
2 d̂

CsV̂dc = (1− d)îL1 − IL1d̂ + (1− d)îL2 − IL2d̂ + îdc
(9)

Assuming that the duty cycles (d1, d2) are identical, the different transfer functions of
this converter with a resistive load R are given below.

V̂dc

d̂
=
−2RLILs + RVdc(1− d)

2RLCs2 + 2Ls + R(1− d)2 (10)

îL

d̂
=

VdcRCs + R(1− d)IL + Vdc

2RLCs2 + 2Ls + R(1− d)2 (11)
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4. LADRC-Based Control Design

This work presents the application of a linear active disturbance rejection control on
a DC-DC converter in order to ensure a good reference tracking of the DC bus voltage
reference and improve the performance and stability of the control system.

The LADRC design is based on the effective estimation and compensation of internal
and external disturbances. LADRC is an independent technique of the controlled system,
which gives it an important advantage over traditional control methods.

LADRC contains a linear state error feedback (LSEF) control law, and a linear extended
state observer (LESO). The structure is shown in Figure 2. The LADRC is composed
of two main control loops: the inner loop, also called the disturbance rejection loop,
and the outer loop, also called the feedback control loop. The total disturbances of the
system are estimated in advance by the LESO and eliminated by the inner loop, which is
combined with the feedback control loop to achieve the desired signal and improve the
system stability.
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Assuming that the exact mathematical model of the system is not known, and the
external perturbation is ignored, the dynamics of the IHGBC system can be reformulated
based on the approximate model in the LADRC framework as follows [27,36]:

.
y = bu + f (y, u) (12)

where y is the system output, f represents the total disturbance, u is the controlled quantity,
and b is the system gain.

Let x1 = y, x2 = f then {
.
x = Ax + Bu + E

.
f

y1 = Cx
(13)

where A =

[
0 1
0 1

]
; B =

[
b
0

]
; E =

[
0
1

]
; x =

[
x1
x2

]
; C = [1 0]

The corresponding second-order LESO is then written as follows:{ .
x̂ = Ax̂ + Bu + L0(y− ŷ)
ŷ = Cx̂

(14)

where L0 =

[
β1
β2

]
is the observer gain vector.

The total disturbance is estimated by properly designing the LESO and configuring
the observer bandwidth ω0. To obtain the total perturbation compensation, the final control
law is written as [27]:

u =
u0 − f̂

b
(15)
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where f̂ is the estimated value of the total disturbance, and u0 is the control quantity before
compensation.

Substitute Equation (15) into Equation (12) to obtain:

.
y = f − x̂2 + u ≈ u (16)

For first-order system, proportional control is adopted:

u0 = Kp(r− x̂1) (17)

where Kp is the controller parameter and r is the input reference (see Figure 2).
By applying Laplace transform to (14) we can obtain [36]:

x̂1 =
β1ys + kprs

s(s + β1 + kP)
(18)

x̂2 =
β2ys + β2kpy + β2kpr

s(s + β1 + kP)
(19)

To simplify the parameter tuning process, the setting of Kp and L0 is converted into
the observer’s bandwidth ω0 and the controller’s bandwidth ωc.

The needed settling time determines the controller parameter so Kp = ωc with
ωc ≈ 4

Tsettl
[36].

The observer bandwidth is often selected in an effort to balance the sensitivity to noise
and the rapidity of state estimation. All of the observer poles are put at −ω0 by carefully
choosing the observer gains, and the equation is found as β1 = 2ω0; β2 = ω2

0.
There is a general rule based on selection ω0 = 3 ∼ 10ωc.
Finally, the value of b is required to be increased incrementally until the desired

performance is reached [36].
The DC-DC converter control loop is designed with a linear active disturbance rejection

control that contains two cascaded loops (Figure 3): an outer loop for DC bus voltage control
and an inner loop for phase current control. The DC bus voltage controller produces an
iph.re f by the error between the desired voltage value and the observed DC bus voltage,
then the inner current loop allows the control signals (d1, d2) to be generated.
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The current controller parameters are designed using the transfer function given by
Equation (7) as follows:

dIL
dt

= − (1− d)Udc
2L

+
Uin
L

(20)

Let IL = y1, d = u1 then:

.
y1 =

Udc
2L

u1 +
Uin
L
− Udc

2L
= b1u1 + f1(y1, u1) (21)
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where b1 = Udc
2L is the object gain, u1 is the system input, f1 = 2Uin−Udc

2L is the total distur-
bance and y1 is the system output.

Let x1 = y1, x2 = f1 then:{
.
x = A1x + B1u1 + E1

.
f 1

y1 = C1x
(22)

where A1 =

[
0 1
0 1

]
; B1 =

[
b1
0

]
; E1 =

[
0
1

]
; x =

[
x1
x2

]
; C1 = [1 0]

Second-order LESO is [30]:{ .
x̂ = A1 x̂ + B1u1 + L1(y1 − ŷ1)
ŷ1 = C1 x̂

(23)

where L1 =

[
β11
β12

]
The final control law is designed to achieve aggregate compensation for disturbance

as follows [30]:

u1 =
u0 − x̂2

b1
(24)

Substituting Equation (24) into Equation (21):

.
y1 = f1 − x̂2 + u1 ≈ u1 (25)

Considering the controlled plant as a first-order system, a linear proportional controller
can be used of the form:

u0 = Kpi(r1 − x̂1) (26)

Based on the concept of bandwidth, the tuning of L1 and Kpi is simplified.
β11 = 2ω01; β12 = ω2

01; Kpi = ωc1
In the same way as the study of the design of the current controller, the voltage

controller parameters are designed using the transfer function given by Equation (7)
as follows:

dUdc
dt

=
(1− d)IL

C
− Udc

RC
(27)

Let Udc = y2 ,IL = u2 then:

.
y2 =

(1− d)
C

u2 −
y2

RC
= b2u2 + f2(y2, u2) (28)

where b1 = (1−d)
C is the system gain, u2 is the system input, f1 = − y2

RC is the total distur-
bance of the system and y2 is the system output.

Let x1 = y2, x2 = f2 then:{
.
x = A2x + B2u2 + E2

.
f 2

y2 = C2x
(29)

where A2 =

[
0 1
0 1

]
; B2 =

[
b2
0

]
; E2 =

[
0
1

]
; x =

[
x1
x2

]
; C2 = [1 0].

Second-order LESO is:{ .
x̂ = A2 x̂ + B2u2 + L2(y2 − ŷ2)
ŷ2 = C2 x̂

(30)
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where L2 =

[
β21
β22

]
The control law is designed to compensate the disturbances as follows:

u2 =
u0 − x̂2

b2
(31)

Thus, Equation (28) becomes:

.
y2 = f2 − x̂2 + u2 ≈ u2 (32)

and the controlled plant is easily regulated using a proportional controller:

u0 = Kpv(r2 − x̂2) (33)

The parameter setting for L2 and Kpv is simplified as follows:
β21 = 2ω02; β22 = ω2

02; Kpv = ωc2
Figure 4 shows the block diagram of the proposed control for one phase. From Figure 4,

the gain of the internal current loop is equal to:

Gi(s) =
Gci(s)Hi(s)

1 + Gci(s) Gpi(s)
(34)

and the gain of the external voltage loop is obtained as:

Gv(s) =
Gcv(s)Hv(s)Gci(s)Hi(s)Gpv(s)Gpi(s)

1 + Gci(s) Gpi(s)
(35)
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In Figure 4, Hv(s) and Gcv(s) represent the outer voltage loop of the LADRC to obtain
the phase current reference from the difference between the measured DC bus voltage and
the reference DC bus voltage, and Hi(s) and Gci(s) represent the LADRC inner current
loop, which allows the duty cycle from the difference between the measured current and
the reference current to be obtained.

Gpv(s) and Gpi(s) are the transfer functions defined, respectively, with the following
equations.

Gpv(s) =
V̂dc

d̂
=
−2RLILs + DRVdc

2RLCs2 + 2Ls + DR
(36)

Gpi(s) =
îL

d̂
=

VdcRCs + DRIL + Vdc
2RLCs2 + 2Ls + DR

(37)

where R is the load, and D = 1− d.
By combining (18), (19), (24), (26), (31) and (33), the LADRC transfer functions-based

control law can be expressed as:

Hv(s) =
kPv
(
s2 + β21s + β22

)
(kPvβ21 + β22)s + kpvβ22

(38)
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Gcv(s) =
1
b2

(kPvβ21 + β22)s + kpvβ22

s(s + β21 + kPv)
(39)

Hi(s) =
kPi
(
s2 + β11s + β12

)
(kPiβ11 + β12)s + kpiβ12

(40)

Gci(s) =
1
b1

(kPiβ11 + β12)s + kpiβ12

s(s + β11 + kPi)
(41)

5. Simulation Results

The simulations of the IHGBC converter and the proposed LADRC control were
performed using MATLAB/SIMULINK. The performance and stability of the system are
checked under different operating scenarios and the proposed controller is compared with
the classical PI controller and sliding mode control (SMC) to prove the advantage of the
proposed strategy. Table 1 shows the simulation parameters used for the IHGBC converter
and controller.

Table 1. Simulation parameters.

Parameters Specifications

DC bus voltage Vbus 80–200 V
Switching frequency, fs 10 KHz
Inductors, L1, L2, L3, L4 440 µH

Boost capacitors CB1, CB2 47 µF /100 V
Input capacitor, Cin 4.7 mF/400 V
Output capacitor, Co 330 µF /400 V

ωc1, ω01, b1 1200, 6000, 21,000
ωc2, ω02, b2 50, 450, 490

PI parameters (voltage loop), Kp1, Ki1 0.4, 4.5
PI parameters (current loop), Kp2, Ki2 0.5, 30

First, the performance of the proposed converter is evaluated in an open loop by per-
forming tests at different duty cycle values. The obtained results are shown in Figure 5a–d.
During the entire operation, the input voltage is fixed at 20 V with a load resistance of
100 Ω.

Figure 5a–c show the input current, phase currents and inductor currents at duty cycle
values of 0.3, 0.5, 0.67, respectively, while Figure 5d represents the obtained output voltage
values. The output voltage ranges from 57 V to 121 V with a duty cycle change from 0.3
to 0.67.

These results confirm the ability of the proposed converter to achieve high voltage
gain with less current ripple. Moreover, the evolution of the output voltage and the duty
cycle correspond to Equation (6).

Second, the output voltage reference was increased from 100 to 120 volts and then
decreased from 120 to 100 volts in order to test the robustness of the proposed controller.

Figure 6 shows the output voltage response of the conventional PI, sliding mode con-
trol and the proposed LADRC controller. As can be seen, the proposed LADRC controller
provides better performance with a fast response and perfect traceability of the output
voltage reference compared to PI control and sliding mode control.

To further verify the efficiency of the IHGBC converter, and the proposed LADRC
control, the converter is controlled in a closed loop in order to regulate the DC bus voltage
to multiple values, between 80 and 200 volts. The input voltage is set to 20 V with a 150 Ω
resistance load.

Figure 7 confirms that the proposed converter has the ability to provide good efficiency
and high voltage gain. The results also confirmed, once again, the efficiency of the LADRC
to deliver the DC bus voltage to the desired value faster.
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The output voltage reference is fixed at a value of 100 and then 120 volts, then the
stability of the system is tested under different operating points (different input voltage
values and load resistance are selected).

Figure 8 shows the converter performance of the proposed LADRC controller, sliding
mode control and the PI controller. By comparing the results of the three methods under
similar conditions, the LADRC controller provides optimum performance with voltage
stability at different operating points. In contrast, the performance of the SMC and PI
controller records overshoots and deviations from the output voltage reference as operating
points change.
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(c) proposed LADRC. Case 1: Vfc = 15 V, R = 100 Ω; case 2: Vfc = 15 V, R = 200 Ω; case 3:
Vfc = 20 V, R = 150 Ω; case 4: Vfc = 25 V, R = 100 Ω; case 5: Vfc = 25 V, R = 200 Ω.

6. Experimental validation

In order to test and verify the robustness and the efficiency of the proposed LADRC
dual-loop control, tests were carried out on an experimental prototype of the interleaved
gain high DC-DC boost converter, as shown in Figure 9.
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Figure 9. Experimental test bench.

The experimental test bench consists of a real-time PEMfc system emulator to repro-
duce the same characteristics of a real PEMfc, an IHGBC DC/DC converter, a resistive
load, a measurement card, a development real-time card and, finally, a PC to save the data
obtained using MATLAB software.

The fuel cell model presented in Section 2 and the DC/DC converter control methods
are implemented on a real-time board, the latter being used for the control and data
acquisition of the IHGBC converter and FC emulator.
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The operation principle of the PEMFC emulator is presented in Figure 10; it consists
mainly of a DC/DC buck converter. The output current of this converter is used as input to
the fuel cell model. The model allows the reference voltage to be used, which is compared
to the measured voltage, and regulated using a PI regulator, to generate the PWM control
signals, so the buck converter is controlled in the voltage.
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Figure 10. Architecture of PEMFC emulator.

The PWM gate control signals are generated by a PWM signal generator block pro-
vided by the real-time board library in the MATLAB Simulink environment. The IHGBC
converter and controller’s parameters are summarized in Table 2.

Table 2. Experimental parameters.

Parameters Specifications

Switching frequency, fs 10 KHz
Inductors, L1, L2, L3, L4 440 µH
Boost capacitors CB1, CB2 47 µF/100 V

Input capacitor, Cin 4.7 mF/400 V
Output capacitor, Co 330 µF/400 V

Switch ‘S1′, ‘S2′ IRFP260 (200 V, 50 A)
Diodes D1, D2, D3, D4, Do RHRG3060

Diodes Ds1, Ds2 RHRG3060

ωc1, ω01, b1 500, 1750, 1600
ωc2, ω02, b2 30, 270, 851

PI parameters (voltage loop), Kp1, Ki1 0.05, 0.5
PI parameters (current loop), Kp2, Ki2 0.01, 10

Various operating modes are made to check the behavior of the considered system
and the proposed controller.

The superiority of the proposed method was first demonstrated by comparing the
proposed LADRC controller with the classical PI controller. The main purpose is to make
the DC bus voltage follow its reference and provide a disturbances rejection.

Figures 11–13 show the system response for a reference change in the output voltage
from 100 V to 120 V between moment 4 s and 6 s.
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As can be seen from Figure 11, the two controllers can reach the desired value, but the
proposed LADRC proves its superiority by perfect tracking of the output voltage reference
with a fast response and without any overshoot during rise or fall. The phase current
response after the reference change in the output voltage is shown in Figure 12.

An increase in output voltage leads to an increase in phase current and PEMFC
emulator current, and, consequently, the PEMFC emulator voltage decreases depending on
the fuel cell nature, as shown in Figure 13.

Second, to check how well the controller can ensure a stable output voltage under
different loads, a variable load current is applied, by abruptly changing the load resistance
from 150 Ω to 100 Ω. The phase current rises from 2 A to 3 A during this period (Figure 14)
to meet the load requirements, while the proposed control algorithm reacts instantly in
order to maintain the output voltage constant at the desired reference, as shown in Figure 15.
At the same time, Figure 16 shows that the controller PI takes a long response time and
with greater deflection.
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Figure 17 shows the PEMFC emulator current and voltage, respectively.
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7. Conclusions

To improve the control performance and ensure the stability and fast response of
the DC/DC boost converter under parameter uncertainties and disturbances, a robust
two-loop control based on a linear active disturbance rejection control is proposed in this
paper. It includes an internal current control loop and an external voltage control loop
of an interleaved high gain DC/DC boost converter associated with the proton exchange
membrane fuel cell system. This converter provides high efficiency and high voltage gain
with reduced voltage stress on the switches and diodes. In addition, the interleaving
technique and the parallel structure of the converter guarantee low input current rip-
ple and reduce the size of the passive components and its modularity also offers fault
tolerant capabilities.

The robustness and effectiveness of the proposed controller have been confirmed by
simulations and experimental results. The results showed that the proposed control unit
provides good dynamic performance and stability under different operating conditions.
Moreover, the performance of the proposed control still needs to be verified against other
advanced control techniques. Additionally, a number of ongoing research studies show
that strong robustness can be provided by relying on a hybrid control between LADRC
and other control algorithms, and this will be one of the directions of our future research.
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