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Abstract: The development of modern vehicle drives is aimed at reducing fuel consumption (i.e.,
crude oil) and minimizing the exhaust emission of toxic components. One such development is the
implementation of a two-stage combustion system. Such a system initiates ignition in the prechamber,
and then the burning mixture flows into the main chamber, where it ignites the lean mixture. The
system allows the efficient combustion of lean mixtures, both liquid and gaseous fuels, in the cylinder.
This article proposes a solution for internal combustion engines with a cylinder capacity of approx.
500 cm3. The tests were carried out on a single-cylinder engine powered by pure methane supplied
through a double, parallel injection system. A wide range of charge ignitability requires the use of an
active chamber containing an injector and a spark plug. The tests were carried out at n = 1500 rpm
with three load values (indicated mean effective pressure, IMEP): 2, 4 and 6 bar. All of these tests were
carried out at a constant value of the center of combustion (CoC), 8 deg CA. This approach resulted
in the ignition timing being the control signal for the CoC. As a result of the conducted research,
it was found that an increase in the load, which improved the inter-chamber flow, allowed for the
combustion of leaner mixtures without increasing the coefficient of variation, CoV(IMEP). The tests
achieved a lean mixture combustion with a value of λ = 1.7 and an acceptable level of non-uniformity
of the engine operation, CoV(IMEP) < 8%. The engine’s indicated efficiency when using a two-stage
system reached a value of about 42% at λ = 1.5 (which is about 8 percentage points more than with a
conventional combustion system at λ = 1.0).

Keywords: combustion system; turbulent jet ignition; prechamber; combustion efficiency; CNG
engine

1. Introduction

Modern powertrain development is focused on (1) maximizing specific power and
(2) minimizing the exhaust emission of harmful compounds. One of the decisive factors
shaping the development of drives is the reduction of fuel consumption while reducing
carbon dioxide emissions. Article 4 of Regulation (EC) No 443/2009 and Article 4 of
Regulation (EU) No 510/2011 requires manufacturers of new passenger cars to comply
with certain levels of CO2 emissions. Until 2015, the average CO2 emission value of the
vehicle fleet was 130 g/km [1]. Since 2021, this value has become 50 g/km [2]. Further
reductions in this emission value are being pursued through the use of alternative fuels
or the development of new combustion systems for light- and medium-duty non-zero-
emission vehicles [3]. The ACEA report indicates that in 2021, conventional fuels (petrol
and diesel) still dominated the market with a 60% share [4]. In April 2019, the European
Parliament and Council adopted Regulation (EU) 2019/631, introducing CO2 emission
standards for new passenger cars and light commercial vehicles (vans) in the European
Union. This regulation set reduction targets of −15% and −37.5% for the tailpipe CO2
emissions of newly registered cars for 2025 and 2030 respectively. The 2030 target set for
vans was −31% [5]. As part of the development of combustion systems, new solutions
are being developed such as homogeneous charge combustion systems (HCCI) [6,7] or
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reactivity charge compression ignition (RCCI) [8,9], commonly referred to as diesel low-
temperature combustion (LTC) [10,11]. All of these systems only partially reduce particulate
or nitrogen oxide emissions (Figure 1).

Energies 2023, 15, x FOR PEER REVIEW 2 of 18 
 

 

tailpipe CO2 emissions of newly registered cars for 2025 and 2030 respectively. The 2030 
target set for vans was –31% [5]. As part of the development of combustion systems, new 
solutions are being developed such as homogeneous charge combustion systems (HCCI) 
[6,7] or reactivity charge compression ignition (RCCI) [8,9], commonly referred to as 
diesel low-temperature combustion (LTC) [10,11]. All of these systems only partially 
reduce particulate or nitrogen oxide emissions (Figure 1). 

 
Figure 1. Modern combustion systems and the possibilities of reducing exhaust emissions [12–14]. 

One of the measures used to reduce fuel consumption and exhaust emissions is a 
two-stage combustion system, turbulent jet ignition [15]. This system has been in devel-
opment since the 1950s [16]. It relies on using a prechamber, which significantly im-
proves the thermodynamic parameters of the combustion process in terms of lean mix-
ture combustion compared to the conventional SI system or even the use of a prechamber 
spark plug [17]. The effects of using the TJI system depend on the geometry of the igni-
tion chamber and the mixture formation system used [18,19]. Two systems can be dis-
tinguished in the system: a passive and active prechamber (Figure 2). In the case of an 
active prechamber, an additional dose of fuel is delivered directly to the spark plug area. 
In such a system, it is possible to use the widespread indirect injection of natural gas or 
direct injection, which is under development. In addition, it is possible to use both sim-
ultaneously. 

 
(a) (b) 

Figure 2. Two-stage combustion systems: (a) Passive prechamber; (b) Active prechamber [20]. 

Studies conducted with the use of prechambers have indicated the possibility of 
obtaining about a 2–9% reduction in fuel consumption [21]. 

In the article, IMEP denotes the indicated mean effective pressure, while BMEP 
stands for the break mean effective pressure. Sens and Binder [21], conducting research 
on prechambers, pointed out differences in the combustion process when using active 
and passive chambers. The tests were carried out at n = 1500 rpm and BMEP = 6 bar. The 

Figure 1. Modern combustion systems and the possibilities of reducing exhaust emissions [12–14].

One of the measures used to reduce fuel consumption and exhaust emissions is a two-
stage combustion system, turbulent jet ignition [15]. This system has been in development
since the 1950s [16]. It relies on using a prechamber, which significantly improves the
thermodynamic parameters of the combustion process in terms of lean mixture combustion
compared to the conventional SI system or even the use of a prechamber spark plug [17].
The effects of using the TJI system depend on the geometry of the ignition chamber and the
mixture formation system used [18,19]. Two systems can be distinguished in the system: a
passive and active prechamber (Figure 2). In the case of an active prechamber, an additional
dose of fuel is delivered directly to the spark plug area. In such a system, it is possible
to use the widespread indirect injection of natural gas or direct injection, which is under
development. In addition, it is possible to use both simultaneously.

Energies 2023, 15, x FOR PEER REVIEW 2 of 18 
 

 

tailpipe CO2 emissions of newly registered cars for 2025 and 2030 respectively. The 2030 
target set for vans was –31% [5]. As part of the development of combustion systems, new 
solutions are being developed such as homogeneous charge combustion systems (HCCI) 
[6,7] or reactivity charge compression ignition (RCCI) [8,9], commonly referred to as 
diesel low-temperature combustion (LTC) [10,11]. All of these systems only partially 
reduce particulate or nitrogen oxide emissions (Figure 1). 

 
Figure 1. Modern combustion systems and the possibilities of reducing exhaust emissions [12–14]. 

One of the measures used to reduce fuel consumption and exhaust emissions is a 
two-stage combustion system, turbulent jet ignition [15]. This system has been in devel-
opment since the 1950s [16]. It relies on using a prechamber, which significantly im-
proves the thermodynamic parameters of the combustion process in terms of lean mix-
ture combustion compared to the conventional SI system or even the use of a prechamber 
spark plug [17]. The effects of using the TJI system depend on the geometry of the igni-
tion chamber and the mixture formation system used [18,19]. Two systems can be dis-
tinguished in the system: a passive and active prechamber (Figure 2). In the case of an 
active prechamber, an additional dose of fuel is delivered directly to the spark plug area. 
In such a system, it is possible to use the widespread indirect injection of natural gas or 
direct injection, which is under development. In addition, it is possible to use both sim-
ultaneously. 

 
(a) (b) 

Figure 2. Two-stage combustion systems: (a) Passive prechamber; (b) Active prechamber [20]. 

Studies conducted with the use of prechambers have indicated the possibility of 
obtaining about a 2–9% reduction in fuel consumption [21]. 

In the article, IMEP denotes the indicated mean effective pressure, while BMEP 
stands for the break mean effective pressure. Sens and Binder [21], conducting research 
on prechambers, pointed out differences in the combustion process when using active 
and passive chambers. The tests were carried out at n = 1500 rpm and BMEP = 6 bar. The 

Figure 2. Two-stage combustion systems: (a) Passive prechamber; (b) Active prechamber [20].

Studies conducted with the use of prechambers have indicated the possibility of
obtaining about a 2–9% reduction in fuel consumption [21].

In the article, IMEP denotes the indicated mean effective pressure, while BMEP stands
for the break mean effective pressure. Sens and Binder [21], conducting research on
prechambers, pointed out differences in the combustion process when using active and
passive chambers. The tests were carried out at n = 1500 rpm and BMEP = 6 bar. The
passive chamber enables the combustion of lean mixtures at the maximum value of λ = 1.5.
Making the mixture even leaner is only possible with the use of an active chamber. The
combustion process was maintained up to the excess air coefficient value of λ = 2.3. With
this value of λ, the coefficient of variation became 5%. The use of a passive chamber caused
the stability of the operation at the level of CoV(IMEP) = 5% to already occur at λ = 1.4.
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It was also found that the combustion at a crankshaft angle of 10–70 deg increases as the
mixture becomes leaner. Whether the initial combustion time (AI10–50) or final combustion
time (AI50–90) increases or not has not been analyzed (angle of 10 or 50% mass burn fuel,
AI10 or AI50).

Studies with active and passive chambers were conducted by Soltik and Hilfiker [22].
In the research, they used methane and a mixture of methane and hydrogen (3.5% mass H2;
8% energy) to power the engine. They found that the active chamber allowed the combus-
tion of charges up to λ = 1.7 (pure methane) and λ = 1.9 (mixture: methane + hydrogen).
The active chamber enabled the process for values up to λ = 2.1 (pure methane) or λ = 2.2
(methane + hydrogen).

Research conducted by Liu et al. [23] more effectively confirmed the performance
indicators of the system with an active chamber. The tests used a constant-volume com-
bustion chamber. It was powered with methane and hydrogen in the ranges of λ = 1.0–1.8
(methane) and λ = 1.0–5.0 (hydrogen). The use of an active chamber (methane, at λ = 1.4)
resulted in an earlier start of the combustion process and increased the process intensity
(dp/dα). Mixtures with a value of λ > 1.4 did not ignite when using the passive chamber.
When fueling with hydrogen, combustion was obtained at λ = 4.0 (methane; very slow
combustion) and λ = 5.0 in the active chamber (hydrogen; slow combustion).

The coefficient of variation CoV [24] is one of the indicators determining the variability
of engine operation. It is most often used to determine the variability of the IMEP [25],
but it is also possible to use it to determine the variability of the 50% combustion location
(AI50), combustion duration, peak pressure and its location, and the maximum rate of
pressure rise and its location [26].

Therefore, the CoV(IMEP) is used to evaluate the combustion stability of a typical
engine. The CoV(IMEP) is the ratio of the standard deviation of pi to the averaged pi
over 100 continuous working cycles, and CoV(IMEP) generally cannot exceed 5% [27,28].
Often in RCCI engines, the CoV(IMEP) value exceeds 5% [27]. In the tests of the hydrogen-
powered engine conducted by [28], at a high excess air ratio (λ > 3.2), the CoV(IMEP) value
exceeded 6%.

Most of the research conducted so far concerns engines and work indicators, as well as
exhaust emissions reduction. The current research focuses on determining the unevenness
of the engine operation relative to a variable prechamber fuel dose; however, it assumes a
constant value of the CoC. The center of combustion (CoC) is defined as the angle of the
crankshaft at which 50% of the fuel mass has been burned, and is also designated as CA50.
This methodology makes the ignition angle control an executive element used to obtain the
desired CoC settings. Such a method of controlling the combustion process has also been
used by other researchers [29–31].

Other methods are based on obtaining the peak combustion pressure at a specific
crankshaft angle. The new methodology takes into account the quality of the combustion
process and engine operation irregularities, as the setting values are determined based on
the many operating cycles (n = 100 cycles). The pressure curves presented in the paper are
averaged from the above 100 cycles and marked Pav, and the maximum value is Pm.

The article focuses on the thermodynamic parameters of the two-stage combustion
process of a lean methane mixture. The effect of the control parameters on the engine
operating stability was analyzed. Additionally, the energetic indicators of operation were
determined. The fuel dose distribution method between combustion chambers is also
presented. It is a key issue due to the wide range of excess air ratio values used. The
identification of inter-chamber flows and their changes relative to engine operating points
is also addressed.

2. Materials and Methods

The two-stage combustion process tests were carried out according to the diagram
shown in Figure 3. The AVL 5804 research combustion engine, modified for the use
of gaseous fuel, was equipped with a methane supply system (in the intake duct and
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prechamber). The Micro Motion ELITE CMFS010M Coriolis Meter gas flow meter (with
a measuring range of 0.1–2 kg/h) was used in the injection system in the intake tract,
and Bronkhorst 111B (with a measuring range of 0.1–100 g/h) for small doses of gas in
the prechamber. Pressure sensors were used in both combustion chambers (in the main
chamber: AVL GH14D; and in the prechamber: Kistler M3.5). Engine operating parameters
were recorded using the AVL IndiSmart system (with a resolution of 0.1 deg CA).
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Figure 3. Schematic of the measurement system analysis for the two-stage combustion system with
the AVL 5804 engine and the apparatus for engine indication and exhaust emission analysis.

A throttle with a diameter of 28 mm was used to regulate the air intake (without the
supercharging system). The throttle was controlled using an open Engine Management
Unit—EMU Black by Ecumaster. The ignition system in the prechamber (active precham-
ber) was a Beru pencil coil. The coil control enabled setting both the coil charging time
(tcoil = 3 ms) and the ignition advance time using the M10 spark plug.

The ongoing value of the excess air coefficient was set in accordance with the indica-
tions of fuel consumption (in both chambers) and air consumption. The measurement was
based on the fuel components, not on the amount of oxygen in the exhaust gas.

The engine was equipped with two injection systems (Figure 4) supplied at a pressure
of p = 8 bar to the intake system (PFI) and 3 bar to the prechamber (DI). The pressure was
differentiated due to the requirements as to the size of fuel doses delivered separately to the
PC (preliminary chamber) and MC (main chamber). A constant start of fuel injection was
established at the angle α = 240 deg bTDC (for both injectors). The fuel dose was controlled
by the injection time, which was significantly greater when injected into the intake port.
Figure 4 shows the location of the two injectors (to the prechamber and to the inlet channel).
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The combustion chamber was equipped with a prechamber with a volume of 2.29 cm3.
This value accounted for 0.45% of the total engine stroke volume (at BDC) and 6.6% of
the capacity (at TDC). The prechamber was equipped with an M10 spark plug and a gas
supply (Figure 5a). The prechamber had 6 holes as shown in Figure 5b. Other sizes of the
prechamber are listed in Table 1.
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system [32]; (b) the prechamber used in the current study.

Table 1. Technical specifications of the prechamber used in research.

Parameter Unit Value

Number of holes - 6
Hole diameter mm 1.7

Spark plug M10

VPC/Vss -/cm3 2.29/510→ 0.45% (max)
2.29/35.1→ 6.5% (min)

A single-cylinder AVL 5804 test engine was used; its technical specifications are listed
in Table 2. The engine was equipped with an independent conditioning system for the
cooling fluid and oil, called AVL 577. The AVL AMK DW13-170 asynchronous engine was
used for the engine load.
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Table 2. Technical data of the single-cylinder test engine used.

Parameter Unit Value

Engine – 1-cyl., 4-valve, SI, TJI
Displacement dm3 0.5107
Bore × stroke mm 85 × 90

Compression ratio – 15.5
Fueling – DI and PFI (EM injectors)

Air system – Naturally aspirated

The tests of the two-stage combustion system fueled with methane were carried out
for three engine load values with the excess air coefficient ranging from λ = 1.0 (no fuel
injection into the prechamber) to λ = 1.8 at n = 1500 rpm. During the injection of fuel into
the prechamber, the following relationship was maintained:

qPC + qMC = const (1)

where qPC and qMC indicate the fuel dose in the prechamber and the main chamber.
During the tests, the assumption was made that the ignition angle will be the control

value to be adjusted to achieve a constant CoC value:

αia = f(IMEP, λ) = var→ CoC = const (2)

where the center of combustion is defined as the crankshaft angle at which 50% of the heat
is released (the CoC value was determined to be 8 deg aTDC) [33]:

CoC = α at 0.5×
∫ EOC

SOC

dQnet
dθ

dθ (3)

The tests were carried out with a constant fuel dose (Figure 6) and a varied air dose
(adjustable throttle), regardless of the average indicated pressure value. Such variability of
the tests made it possible to evaluate the engine efficiency, the increase in which indicated
an improvement in the combustion process. Preliminary studies have found that increasing
the prechamber dose in the lean mixture range contributes to the improvement of the com-
bustion process quality, as well as to the assumptions presented in Equations (1) and (2).
Regarding the combustion of near-stoichiometric mixtures, fuel dosing to the PC deterio-
rated engine operation.

Energies 2023, 15, x FOR PEER REVIEW 6 of 18 
 

 

Table 2. Technical data of the single-cylinder test engine used. 

Parameter Unit Value 
Engine – 1-cyl., 4-valve, SI, TJI 

Displacement dm3 0.5107 
Bore × stroke mm 85 × 90 

Compression ratio – 15.5 
Fueling – DI and PFI (EM injectors) 

Air system  – Naturally aspirated 

The tests of the two-stage combustion system fueled with methane were carried out 
for three engine load values with the excess air coefficient ranging from λ = 1.0 (no fuel 
injection into the prechamber) to λ = 1.8 at n = 1500 rpm. During the injection of fuel into 
the prechamber, the following relationship was maintained: 

qPC + qMC = const (1) 

where qPC and qMC indicate the fuel dose in the prechamber and the main chamber. 
During the tests, the assumption was made that the ignition angle will be the control 

value to be adjusted to achieve a constant CoC value: 

αia = f(IMEP, λ) = var → CoC = const (2) 

where the center of combustion is defined as the crankshaft angle at which 50% of the 
heat is released (the CoC value was determined to be 8 deg aTDC) [33]: CoC = α at 0.5 dQdθ dθ (3) 

The tests were carried out with a constant fuel dose (Figure 6) and a varied air dose 
(adjustable throttle), regardless of the average indicated pressure value. Such variability 
of the tests made it possible to evaluate the engine efficiency, the increase in which indi-
cated an improvement in the combustion process. Preliminary studies have found that 
increasing the prechamber dose in the lean mixture range contributes to the improve-
ment of the combustion process quality, as well as to the assumptions presented in 
Equations (1) and (2). Regarding the combustion of near-stoichiometric mixtures, fuel 
dosing to the PC deteriorated engine operation. 

 
Figure 6. Test conditions: prechamber fuel dose values as a function of the engine load. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

qo
_P

C 
[m

g]

λ [-]

IMEP = 6 bar

IMEP = 4 bar

IMEP = 2 bar

Figure 6. Test conditions: prechamber fuel dose values as a function of the engine load.



Energies 2023, 16, 1236 7 of 18

Gaseous fuel was supplied to the engine via two systems (Figure 7): (a) the first
was a low-pressure injection into the intake manifold; (b) the second was also a low-
pressure injection but into the prechamber. Data in Figure 6 indicate early fuel injection
into the intake manifold. The start of fuel injection was 240 deg bTDC. Prechamber
injection also started at 240 deg bTDC. The gas pressure values in the system were different
(PINJ_PC < PINJ_MC). For this reason, the prechamber fuel dose was significantly lower than
that fed into the intake manifold.
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Early injection into the prechamber caused some of the gaseous fuel to enter the
cylinder. At the same time, fuel was injected into the cylinder through the intake manifold.
These conditions resulted in a specific (but not measured) excess air ratio in the prechamber.

3. Inter-Chamber Flows Analyses

The change in the fuel dose fed into the prechamber was also associated with inter-
chamber flows (Figure 8). The analysis of the inter-chamber flows (blue lines) for different
values of IMEP is shown in the background of the pressure waveform in the chambers of
the system at a load of 2 bar.
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At low values of the IMEP values, the mixture flowed into the main chamber (phase I
in Figure 8). Then, during compression, it flowed into the prechamber (phase II in Figure 8).
Ignition of the mixture in the prechamber caused the mixture to flow into the main chamber.
In the final phase of the outflow, the pressure in the prechamber reached higher values
than in the main chamber (phase IV; Figure 8). Increasing the average IMEP did not change
the nature of the flow. However, an increase in IMEP caused an increase in the pressure
difference (Delta_P; Figure 8). Based on the flow analysis, it was found that increasing
IMEP caused an increase in the pressure difference, while maintaining a constant pressure
in the prechamber (area II; Figure 8). A small angular change in the flows resulted from the
need to maintain a constant CoC value (Equation (2)).

4. Engine Thermodynamic Performance Indicators

A complete analysis of the pressure curve in the cylinder is shown in Figure 9. As
previously mentioned, the excess air ratio was adjusted by changing the amount of intake
air (at a constant fuel dose). The thick line shows the changes in pressure in the cylinder
at λ = 1.0. The dashed line indicates the pressure in the cylinder at λ = 1.8. Points (a) and
(b) mark the course of pressure in the cylinder (MC) and in the ignition chamber (PC),
respectively. There is an apparent shift in the prechamber start of combustion towards
earlier ignition angles in order to maintain a constant CoC value.
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Figure 9. Pressure value in the cylinder: (a) in the main chamber; (b) in the prechamber.

Changing the value of the excess air coefficient caused the start of combustion to
be advanced (due to the necessity to meet condition (2)) depending on the average indi-
cated pressure:
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(a) at IMEP = 2 bar: SOCPC = 6 to 0 CA deg bTDC,
(b) at IMEP = 4 bar: SOCPC = 6 to 2 CA deg bTDC,
(c) at IMEP = 6 bar: SOCPC = 10 to 2 CA deg bTDC.

While researching the combustion process, 100 consecutive cycles of engine opera-
tion were analyzed. The engine operation uniformity analysis was carried out using the
CoV(IMEP) non-uniformity coefficient. Figure 10 shows selected engine operating points
(at various λ-values) at the constant engine load value of IMEP = 2 bar. The blue dots
indicate the maximum pressure value in subsequent cycles. It should be noted that this co-
efficient was determined with small load values that were characterized by high variability
of engine operation. The conducted analyses indicated the existence of small changes in
CoV(IMEP) values below 2%. This means that despite the large values of the difference
between the extreme peak pressure Pmx values, the changes in CoV(IMEP) were small.
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Figure 10. Evaluation of the combustion process at IMEP = 2 bar: (a) changes in the extreme
combustion pressure values based on the maximum combustion pressure values; (b) the heat release
rate curve and its value; (c) the heat release rate curve for all IMEP values and its maximum-value.

The net heat release rate (without heat loss) is determined by applying the first law of
thermodynamics using the following equation:

dQ =
dQnet

dα
=

γ

γ− 1
p

dV
dα

+
1

γ− 1
V

dp
dα

, (4)

and heat release is given by:

Q =
∫ EOC

SOC

dQnet
dα

dα, (5)



Energies 2023, 16, 1236 10 of 18

where p is the instantaneous cylinder pressure, α is the crank angle, γ is the ratio of the
specific heats and V is the instantaneous cylinder volume. The instantaneous cylinder
volume was calculated from the engine geometry and crank angle values.

The analysis of the heat release rate indicates the best combustion process curve
(among those presented) at λ = 1.3 (Figure 10b). As the excess air coefficient increased,
higher values of the amount of released heat could be observed. This indicated an increase
in the overall engine efficiency, which at the same time indicated the possibility of reducing
fuel consumption. This reduction in fuel consumption resulted from the high value of the
excess air coefficient and the simultaneous increase in the amount of heat released. The heat
release rate curve for all IMEP values and its maximum value are presented in Figure 10c.

5. Stability of Engine Operation

The cylinder peak pressure analysis (averaged over 100 work cycles; Figure 11a)
indicated that the maximum value was obtained with an excess air coefficient between
1.3 > λ > 1.6. The fact that lower values could be observed for the prechamber is character-
istic for this setup. This was also confirmed by the data in Figure 8. The comparison of the
specific indicated fuel consumption (Figure 11b) pointed to the existence of a minimum for
lean mixtures in the range of 1.5 < λ < 1.6. An increased engine load indicated a specific
indicated fuel consumption of less than 180 g/kWh. This means that the maximum motor
efficiency values could also be expected in this range.
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Figure 11. Operating indicators of the tested engine: (a) average maximum pressure values in the
main chamber and in the prechamber; (b) specific indicating fuel consumption vs. lambda-value.

Figure 12 shows the engine operation variability analysis. The presented data refer
to the prechamber and the main chamber. They show that the largest values of work
variability fell within 1.0 < λ < 1.2 at IMEP = 2 bar. These values may have resulted from
the start of the injection of fuel into the prechamber. This indicates a deterioration of the
combustion process in the prechamber due to low air flow values or limited inter-chamber
flow. Increasing the amount of air (at the same fuel dose) resulted in an improvement
in the combustion process quality, as indicated by a sharp reduction in CoV(IMEP). It is
worth noting that in the range λ = 1.2–1.6, the value of CoV(IMEP) was < 2%. Such values
indicate a very good combustion process quality and high repeatability of the engine’s
work cycle. A further increase in the excess air coefficient (charge depletion) led to an
increase in variable and uneven operation and it reached its maximum values at λ = 1.8
(CoV(IMEP) ~ 10%). Increasing the engine load value caused no increase in CoV(IMEP) in
the range of small excess air coefficient values. A characteristic element is the operation of
the engine with a high excess air coefficient. Regardless of the engine load, an increase in
CoV(IMEP) was observed, where it reached values of up to 10%.
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Figure 12. Non-uniformity of the indicated mean engine pressure for different values of fuel mixture
leanness: (a) in the main chamber; (b) in the prechamber.

The so-called return maps are widely used in dynamic problems. They help visualize
the current and next engine cycle. Using them widely together with the coefficient of
variation (CoV) in engine processes has been demonstrated in many other papers [34–36].

Return maps are shown in Figure 13. The small dispersion of the maximum pressure
value in subsequent work cycles resulted in a large concentration of points in a small area.
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Figure 13. Analysis of work cycles in return map format for various engine load values for
n = 1500 rpm.

The reverse map version enabled the imaging of successive cycles, and the coefficients
of variation were quantified only by the result of this dispersion. For this reason, maps
make it possible to “track” uneven and variable engine operation. A large scattering of
successive work cycles caused the areas in Figure 12 to occupy more space. For this reason,
the largest scatters of the maximum combustion pressure values are additionally marked.
It shows that a large variability in these parameters especially occurred in the range of low



Energies 2023, 16, 1236 12 of 18

load and high excess air coefficient values (IMEP = 2 bar). Large variability values also
occurred at other values of IMEP. The figure is only a qualitative view of the issue of engine
operation stability. Therefore, a detailed analysis in the form of a two-dimensional system
was not performed.

Large variability at IMEP = 2 and at λ = 1.1 may have resulted from a change in the
power supply method: the switch from the passive chamber system to the active chamber.
In the case of a small engine load, the velocities of inter-chamber flows were quite small,
which caused large changes in the excess air coefficient in the prechamber. Such results
may be an excuse not to use the two-stage system for small engine loads and λ ~ 1.

The engine work variability assessment was also made in relation to the engine load
map. The variability was found to be lower in the main chamber than in the precham-
ber. This was particularly evident when increasing the excess air coefficient (Figure 14).
Up to λ < 1.4, the CoV(IMEP) value was almost the same, regardless of the engine load.
Increasing the value of λ created a very lean mixture in the prechamber that failed to
ignite properly. Such behavior resulted in high operation variability (CoV(IMEP) > 5%).
Such values indicate the need to limit the excess air coefficient above λ > 1.6, because then
CoV(IMEP) > 5.5%.
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Figure 14. Maps of engine operation variability relative to the fuel mixture proportions: (a) in the
main chamber; (b) in the prechamber.

In Figure 12, the CoV(IMEP) peaks at λ = 1.1 are visible, which are not visible in
Figure 14. This is due to the way the map in Figure 14 was created, which contains only
one point with a CoV(IMEP) value > 12%. Such a point does not provide grounds for
determining large areas with high CoV(IMEP) values present at low engine loads. Several
values in a similar load range already significantly affect the map image, CoV(IMEP) values
at a high value of λ and high load (Figure 14b).

6. Initiation and Phases of the Combustion Process

Subsequent analyses of the combustion process required the precise determination
of the start of combustion angle (SOC). Conventionally, in an SI engine, this angle can
be assumed to be determined by the timing of ignition (or in a TJI engine with an active
combustion chamber). Determining the ignition of the charge in the main chamber is not
possible in the above-mentioned way. Thus, the SOC was calculated based on the pressure
increment relative to the angle of the crankshaft. The largest value of the pressure increment
was considered the start of combustion. A common way to determine this quantity is to
use the equation:

αSOC = α at
(

dp
dα

)
max

(6)

where dp is the pressure change in the cylinder.
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Equation (6) holds true for typical combustion systems (without a prechamber). In this
situation, slightly different equations should be used. As shown in Figure 15, Equation (6)
may result in an incorrect SOC calculation for the prechamber. This is mainly due to the
rapid pressure increase in this chamber as a result of the ignition and combustion of the
fuel dose.
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Figure 15. The method of determining the start of combustion at a given pressure in the main
chamber and the prechamber of the tested engine (both pressures were presented on a much larger
scale than in reality).

In order to avoid the incorrect determination of SOCPC (start of combustion in precham-
ber), it was proposed that the start of combustion in both chambers should be defined as
a 2% increase in the pressure value from the theoretical line of compression pressure in
both chambers:

SOCMC →
(
PMC − PMCcomp

)
≥ 2% (7)

and
SOCPC →

(
PPC − PPCcomp

)
≥ 2% (8)

This approach made the possibility of incorrect SOC determination independent of the
variable start of ignition (CoC regulation with a value of 8 deg aTDC). Having determined
the SOC values (for both combustion chambers), they were related to the degree of how lean
the mixture was (Figure 16a). The presented data showed that making the mixture leaner
required increasing the ignition advance in order to obtain a constant value of CoC = 8 deg
bTDC. It follows that the leaner the mixture, the greater the ignition advance angle value
required. This relationship applied to each of the analyzed engine load values. It should
be noted that increasing the engine load reduced the need to advance the ignition angle.
With a load of IMEP = 4 bar and IMEP = 6 bar, the ignition advance was practically the
same. The values of the start of combustion in the prechamber were about 3 deg higher
than in the main chamber at λ = 1 and they increased with a leaner mixture. With large
λ-values, the differences reached 4 deg CA. The increase in the difference between the
start of combustion in the prechamber and the main chamber resulted from the leaner fuel
mixture dose and the difficulty in flame development in those lean mixtures.

The full characteristics analysis of the difference in the start of combustion timing in
both chambers is shown in Figure 16b. In general, it could be stated that the difference
increased as the mixture became increasingly leaner, regardless of the engine load. The max-
imum differences were found for the leanest mixtures and a high load (at delta > 4 deg CA).
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Figure 16. Changes in the start of combustion (SOC) due to engine load and mixture composition:
(a) SOC changes in both chambers; (b) a map of the differences in the ignition start in the prechamber
and the main chamber.

The combustion center calculated as described in Equation (3) also allowed the deter-
mination of the 5% heat release (AI05) and 90% heat release (AI90) values. These values,
once obtained in this way, allowed the determination of the first and second phases of com-
bustion. The ratio of phase I to phase II made it possible to indicate the longer combustion
phase. The comparison of the combustion phases in relation to the mixture composition
showed that the first phase was longer than the second (Figure 17a). Only at the smallest
load value of IMEP = 2 bar and at λ = 1 was the duration of the first phase shorter than
the second. With increasingly leaner mixtures, the duration of the first phase of combus-
tion rose. This was mainly due to the prechamber mixture becoming leaner, resulting in
impeded flame development. The above also caused a slower discharge of the burning
mixture into the main chamber. A decrease in the duration of the first phase was observed
at a high engine load. The reflection of this phenomenon was also observed in the full
characteristics analysis (Figure 17b). In the area of high load and high value of λ, an area
with a limited duration of the first phase (less than 50%) was observed.
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Figure 17. Analysis of the share of heat release time for the first and second combustion phases:
(a) Percentage differences taking into account the load; (b) a map of percentage differences against
changes in mixture composition and engine load.
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7. Performance and Efficiency Analysis

The assessment of the combustion system was also based on determining the indicated
efficiency of each analyzed point of engine operation, in accordance with the equations:

ηi =
1

qo·LHV
=

1
GMC+GPC

Ni
·LHV

(9)

where q0 is a fuel dose, G is fuel consumption (in the main chamber GMC and the precham-
ber GPC), LHV is the lower heat value and Ni is the indicated power, calculated using:

Ni =
Vs·pi·n

τ
(10)

where Vs is the displacement of cylinder, n is the engine speed and τ = 2 (4-stroke engine).
The indicated efficiency of the analyzed engine load values increased as the fuel

mixture became leaner (Figure 18a). The maximum indicated efficiency was obtained in
the range of 1.5 < λ < 1.6. These values were independent of the engine load. It follows that
the two-stage combustion system powered by a natural gas (pure methane) achieved the
highest indicated efficiency of about 42% at a high load and λ = 1.5. This means that despite
the mixture being leaner, it was possible to obtain the highest efficiency of the whole system.
The engine operation at low load also achieved the highest efficiency (ηi = 34.5%) at λ = 1.5.
After exceeding the value of λ > 1.6 at each load value, the indicated engine efficiency
decreased. This means that the prechamber used in the tests enabled the combustion of
lean mixtures with high combustion efficiency for the value of λ = 1.5.
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Figure 18. Evaluation of engine indicated efficiency: (a) as a function of mixture composition; (b) as a
map of load characteristics and excess air coefficient.

The map of engine characteristics showed an increase in the indicated efficiency with
increasing engine load. This means that the analyzed two-stage combustion system was
more efficient than the traditional combustion system by about 8 percentage points at
low loads. However, this efficiency was also higher for high load values: an increase of
5 percentage points (Figure 18b).

The presented analyses showed that the two-stage combustion system can be a valu-
able alternative to the conventional fuel supply and combustion system. A certain level of
its complexity (two fuel supply systems and additional injectors) is compensated by the
possible fuel savings.
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8. Conclusions

The two-stage combustion system presented in the article showed advantages in
relation to the traditional system:

• increasing the excess air ratio with the opening of the throttle at a constant fuel rate
increased the value of the indicative mean effective pressure;

• at low loads, it allowed the increase in the indicated efficiency of the engine up to 36%
at λ = 1.5 (about eight percentage points more in relation to the traditional combustion
system at λ = 1.0);

• at high loads, the engine efficiency reached a value of about 42% at λ = 1.5 (increase
in efficiency of about five percentage points in relation to the traditional combustion
system at λ = 1.0).

A detailed analysis of the two-stage combustion system resulted in the following
statements being made:

• the variability of engine operation in the range λ < 1.6 was below 2%, regardless
of the load. It increased rapidly after exceeding λ > 1.6 and reached values around
CoV(IMEP) = 10%;

• the combustion of lean mixtures at the level of λ = 1.6 enabled the obtention of higher
values of average indicated pressure; further increasing the excess air ratio lowered
the quality of the combustion process;

• lean mixture combustion caused the specific fuel consumption to be much lower than
200 g/kWh. The lowest value of gi was obtained in the range of 1.5 < λ < 1.6;

• the start of combustion in the prechamber was 3–4 deg CA earlier than in the main
chamber; this was due to the start of combustion in the prechamber and inter-
chamber throttling;

• the combustion process analysis indicated the extension of the first combustion phase
as the mixture became leaner.

Further work on the two-stage combustion system will be carried out towards obtain-
ing and using increasingly leaner mixtures, which can be carried out using hydrogen fuel.
Its use is associated with a further increase in combustion efficiency, while also keeping the
increased emission of nitrogen oxides under control.
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