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Abstract: We propose a forecasting technique based on multi-feature data fusion to enhance the
accuracy of an electric vehicle (EV) charging station load forecasting deep-learning model. The
proposed method uses multi-feature inputs based on observations of historical weather (wind speed,
temperature, and humidity) data as multiple inputs to a Long Short-Term Memory (LSTM) model
to achieve a robust prediction of charging loads. Weather conditions are significant influencers of
the behavior of EV drivers and their driving patterns. These behavioral and driving patterns affect
the charging patterns of the drivers. Rather than one prediction (step, model, or variables) made by
conventional LSTM models, three charging load (energy demand) predictions of EVs were made
depending on different multi-feature inputs. Data fusion was used to combine and optimize the
different charging load prediction results. The performance of the final implemented model was
evaluated by the mean absolute prediction error of the forecast. The implemented model had a
prediction error of 3.29%. This prediction error was lower than initial prediction results by the LSTM
model. The numerical results indicate an improvement in the performance of the EV load forecast,
indicating that the proposed model could be used to optimize and improve EV load forecasts for
electric vehicle charging stations to meet the energy requirements of EVs.

Keywords: data fusion; deep learning; electric vehicle charging stations; multi-feature; load forecasting

1. Introduction

Recent initiatives to cut greenhouse gas emissions to combat climate change have led
to increasing renewable energy penetration into modern grids [1–3]. Many nations are
planning to phase out automobiles powered by internal combustion engines (ICEs) [2,3].
This has sparked a push to boost electric vehicle (EV) penetration into the modern vehicular
fleet [4–7]. There are three main reasons for the recent adoption of EVs: affordability,
increasing oil prices, and development sustainability [8,9]. In relation to affordability, for
example, battery costs fell drastically from almost $1000 per kWh in 2010 to less than
$156 per kWh in 2019 [10]. An International Energy Agency (IEA) report estimated that the
transportation sector could contribute to reduced CO2 emissions by up to 21% by 2050 [11],
and electric vehicles would be a key factor in achieving this. The Electric Power Research
Institute [12] estimates that for low, moderate and high penetration scenarios, EVs would
represent 20, 62, and 80%, respectively of all vehicles.

However, EV proliferation comes with a number of issues, including battery capac-
ities and range anxiety related to EVs. EVs are means of energy storage [13], but range
anxiety which is concerned with lack of the EV’s energy storage capacity to traverse the
distance required to reach the destination, is still a major problem. A survey conducted
by Consumer Reports indicated that 49% of a total of 3323 respondents wanted at least a
300-mile charging range for their EVs, and a lot more (about 63%), expected a minimum
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of 250 miles of range [14]. Such an issue is considered one of the most significant psycho-
logical impediments to widespread public adoption of EVs. Because of this, the electrical
demand for EVs is more uncertain than that for residential energy need, and is seen in
the variety of EV travel patterns and range anxiety. In addition, increased penetration
and uncertainty of EVs may have several effects on the power system when the charging
stations are connected to the grid. Effects of EV charging/discharging on the energy grid
have been investigated previously [15,16]. Charging and discharging of EVs could cause
imbalances between power supply and demand, and could lead to power quality and
stability issues [17,18].

From the viewpoint of the power system, EVs can influence power system flexibil-
ity [19]. PEV charging has a random pattern depending on drivers, and demand can
coincide with peak loads. Since this is uncontrollable, it may result in an uncertain load
profile. Therefore, aggregators have been introduced in the power sector [20,21]. In [2],
information on the demand charge of PEVs is provided. In addition, strategies that assure
profitability are considered, and rewording for PEV drivers is discussed. An important
factor influencing the model in [2] is the accuracy of forecasting the PEV’s demand, as
discussed in [3]. It is important to estimate the aggregated EV charging station demand on
a power system to aid in power generation planning to keep up with load increases as EVs
acquire more market dominance.

Regarding future smart grids, establishing efficient charging infrastructure control
and scheduling schemes is essential to accommodate more clean energy, reduce carbon
emissions, and alleviate peak charging loads. The type of data used in the prediction
process could also affect the accuracy of the results generated. Majidpour et al. in [22]
forecasted EV charging loads considering various datasets, such as charging records (cus-
tomer profile) and charging station (outlet measurement) records. The authors concluded
that the charging record is more accurate than the outlet measurement record after four
different prediction algorithms were used to test the model. The research in [23] presents a
short-term forecasting model for PHEV aggregate loads. A mathematical model was used
to observe the features of real-world data, which was then used for forecasting. However, a
theoretically infinite number of vehicles were considered, and therefore the model is not
suitable for a smaller EV vehicular fleet. To predict the sales of plug-in EVs, Duan et al. [24]
used customer preferences determined by historical data between hybrid EVs and internal
combustion engine (ICE) automobiles. The forecast model was based on the assumption
that factors related to vehicular choice between EVs and ICEs would shift from convenience
to cost. In [25], statistical data of travel patterns of electric buses, together with a backdrop
propagation neural network, was involved in the prediction of the number of electric
buses needed for battery swapping at hourly time intervals. The authors also considered
forecasting uncertainties using a modification of the kernel density estimator.

Artificial intelligence (AI) techniques have been employed in several aspects of EV
applications. These include load demand and battery capacity prediction [26], charging and
discharging [27,28], and energy management [29,30]. In [4], an overview of the growth of
AI technologies and how they have been applied to EVs is presented. The authors provide
a good perspective on the most popular AI techniques and how new techniques are gaining
more prominence in their application to EVs. Much research work involving AI related
to EVs has been geared towards optimizing user experience and enhancing the resilience
of the power grid to the load patterns of EVs. The authors in [6] employed a transformer-
based deep learning model to classify various topics among EV users, and reported a high
accuracy greater than 91%. The only downside of this model was its training and testing
time of 1 to 4 h, compared to 1 to 90 min for CNN and LSTM models. The study in [7]
examined how adaptable and capable of regulation EV aggregators are in participating in
electric power markets. Demand response and spot market dynamic pricing strategy were
solved using the DDPG reinforcement learning algorithm to maximize transaction revenue.
In [31], a new hybrid classification approach considering RNN and LSTM networks is
proposed. An unsupervised classifier was first utilized to find the hidden travel patterns in
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the historical PEVs data. The PEV data were then classified into a cluster-specific forecasting
network by a supervised classifier. Deep learning forecasting networks were implemented
according to LSTM networks to investigate the LSTM features of PEV behaviors. Although,
the model brought about improvements in generating realistic travel patterns, the model
used only the departure time for its classification, which could affect its efficiency.

Other prediction models using AI techniques have been implemented within several
areas of electric vehicle research. In [32], a graph convolution network model was imple-
mented to determine the level of use of charging stations within a particular period. In [33],
historical charging data were used to forecast future charging load. This forecasting was
done using a variant of LSTM known as the gated recurrent unit (GRU) model. Other
prediction models have focused on the batteries of EVs. Forecasts for the end of battery life
are discussed in [34]. A hybrid approach was utilized for this prediction. First, the authors
employed empirical mode decomposition (EMD) to break down the various time indices
of the forecast. Then, a sequential importance sampling (SIC) was used in implementing a
particle filter for the estimation process. Some research has focused on the range prediction
of EVs. The authors in [35] present a review of electric vehicle range prediction. Factors
that affect the range of the EV, such as the vehicle design, environment, and human factors
are thoroughly discussed. Furthermore, the authors present methods and approaches
that are implemented for range prediction of EVs. In [36] data on EV trips were utilized
in models for the prediction of EV energy consumption. The authors combined three
different base models, K-Nearest Neighbor, Random Forest, and Decision Tree, to form an
Ensemble Stack Generalization approach for prediction to improve the results offered by
each base model. A comparative analysis between several data-driven machine learning
and statistical techniques for battery state of charge estimation is presented in [37].

One of the ways of balancing the power system to reduce power quality and stability
issues is to estimate the energy charging demand of electric vehicles within a certain period
(e.g., for one day), and to balance that load. Of course, the exact load would be almost
impossible to ascertain. The load forecast for charging stations should be as close as possible
to the actual demand. Much research has been done in this area to address this problem. A
mixed integer non-linear programming (MINLP) approach was used in [38] to find the best
location and number of fast charging stations. A genetic algorithm technique was applied
to reduce the development costs of the station, the costs associated with EV users, and
the costs associated with grid operators. However, as noted in [9], this approach does not
consider terrain features, available space and weather parameters, all of which could affect
the siting of stations as well as their energy consumption. Furthermore, the model had a
very high computational time of 420 min.

A deep reinforcement learning-based model was developed in [2] to cut down on
origin-to-destination distance and curtail the total time of charging of EVs. The model
included a flexible reward function to balance the charging time and the origin-destination
distance reduction of EVs. However, even though the model improved upon the traditional
forecasting model with a shorter average charging time, the actual traffic and charging
station status data were not taken into consideration. In [39], a reinforcement learning strat-
egy was used to improve charge scheduling and pricing issues. The proposed algorithm’s
decisions regarding charging and pricing each time were based solely on the observation
of prior events. However, in a reinforcement learning problem, the continuous state and
action vary with time.

A novel forecasting technique based on a data fusion and deep learning technique is
presented in this study to provide a possible solution for the deficiencies in LSTM model
prediction and to improve on the accuracy of EV charging load (energy demand) prediction.
This study uses real-world data about local weather conditions, including temperature,
humidity, and wind speed as training data to develop a forecasting model of EV energy
demand, which results in the charging stations’ energy demand. The general overview of
the approach is shown in Figure 1. To the best of the authors’ knowledge, the data fusion
approach has not been implemented to date for EV load forecasting.
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This paper is organized as follows: the proposed data fusion model is introduced in
Section 2; the forecasting approach being implemented is presented in Section 3; the results
of the study are discussed in Section 4, and, the conclusion is presented in Section 5.

2. System Modelling

The system model consists of two key components; (1) the deep leaning (LSTM) model,
which implements the initial prediction of the EV loads, and (2) the data fusion model,
which optimizes the initial prediction by the LSTM model. This section has two parts. First,
the various equations relative to the deep learning model are presented. Furthermore, the
relation of these equations to the prediction model is explained and discussed thoroughly.
The second part of this section discusses details of the data fusion model that are used to
optimize the forecast of the deep learning model. The algorithm for the data fusion model
is presented.

2.1. LSTM Model

Deep learning is an effective technique for studying large-dimensional issues with
intricate relationships, such as time series forecasting, pattern recognition in video and
picture data, and audio processing [17,40,41]. Deep learning concepts have excellent
capacity to derive the key features of a large phenomenon based on past data. This has a
great advantage over other data driven techniques [42].

Recurrent Neural Network (RNN) models are improved versions of neural networks
that can exploit the features of previous information. RNN models are able to exploit se-
quential structure in data and are commonly used in time series predictions [43]. However,
RNN networks have deficiencies in learning and storing information for long periods [17]
and the RNN variant; the long-short term memory (LSTM) model has proven to be better
in correcting these deficiencies. As a result, the LSTM model, which is a derivative of
the RNN, was selected for this forecasting. This was due to its benefit in overcoming the
gradient norm’s sharp decrease for the long-term component within the model [31]. These
models are effective in capturing the short-term variations in energy demand needed for
forecasting [44]. In addition, the long-term trends in the charging patterns can be captured
using the LSTM model.

The collected data are sorted and classified. The features to be captured are the energy
demand, temperature, humidity and wind speed. The LSTM model is then trained using
the data to extract the important model characteristics. The LSTM block is shown in
Figure 2. The block has three operation gates, the input, output and forget gates. The
networks are constructed from stacks of several LSTM blocks. With this structure, the
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output of a particular network at state s − 1 and the preceding network output at state s
serve as the input data for every LSTM block of state s [31].
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In the model, the hidden features to be extracted, such as the temperature and wind
speed, are propagated through different LSTM blocks during training. This increases the
precision of the learning process. Equations (1)–(5) provide the general equations for the
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Algorithm 1 LSTM deep learning classification

1. Start Operation
Sort each trip according to data on temperature, humidity, and wind speed, then assign a certain
forecasting network to each cluster.
Input: Temperature, humidity, wind speed.
Target: Centroid of Clusters

2. Match each input sample of temperature, humidity, and wind speed to its cluster using a
deep LSTM network with the aim being the centroid of each cluster.

3. End operation

2.2. Data Fusion Method

Data fusion is the process of combining various data sources to create information
that is more reliable, accurate, and practical than information that can be obtained from a
single data source alone. The capacity of humans and animals to combine information from
numerous senses to improve their survival gave rise to the concept of data fusion [45]. A
fusion of sight, touch, smell, and taste, for example, might indicate whether or not a thing
is edible. Three sorts of data fusion approaches exist: data association, state estimation,
and decision fusion [45]. Our research mainly implements the Dempster-Shafer evidence
theory (D-S theory) [46], a decision fusion approach of data fusion techniques to optimize
the EV charging demand forecasting using the LSTM technique.

D-S theory is a theory for dealing with situations involving uncertainty. The use
of “interval estimate” rather than “point estimation” for the representation of uncertain
information is the most important feature of D-S theory, which has, remarkable flexibility
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in defining unknowns and uncertainty and in properly capturing evidence. D-S theory can
emphasize not only the objectivity of things but also the subjectivity of human estimation.
D-S theory requires the classification of four fundamental ideas: frames of discernment,
basic probability assignment (BPA), belief function, and plausibility function [47]. The
D-S theory presupposes that the sets of items that make up the frames of discernment,
represented by U, are exhaustible and mutually exclusive, and is given by the equation:

U = {u1, u2, . . . , un} (6)

Note that a set of size n including itself has exactly 2n subsets that defines the power set,
denoted as 2U in D-S theory. Furthermore, there is a one-to-one correspondence between 2U

and the correct answers to all possible questions corresponding to the environment [47,48].
For example, for:

U = {A, B, C} (7)

The corresponding 2U is:

2U = {∅,{A},{B},{C}.{A,B},{A,C},{B,C},{A,B,C}} (8)

In our research, the possible prediction results for the EV load forecast can be regarded
as possible inputs A, B, and C in the D-S theory, and the corresponding power subset in our
load prediction instances denotes the average of inputs, which makes the prediction system
more robust. Furthermore, there is no subset component ∅ in this model, and therefore,
for the three different electrical vehicle load predictions in this model there would be only
seven subset components. For instance, the component subset {A, B} would be an average
of the original prediction A and B.

The second concept in D-S theory is BPA. In D-S theory, it is customary to consider
trust of evidence similar to the quality of a physical object, i.e., the quality (mass) of the
evidence supports a trust. Each mass can be formalized as a function that maps each
element of the power set to a real number within the interval [0, 1], [49]. The function is
described formally as:

m : 2U → [0, 1] (9)

The term “mass” is derived from comparisons between the actual charging load data
and the predicted loads. The quantity of mass in our studies increases as the similarity
between the realistic loading data and the prediction data increases. Ideally, if the predicted
load data and the real load data are exactly equivalent to each other, the mass for this
prediction would be 1. The mass of an empty set is usually defined as 0, and the mass sum
of all subsets of the power set 2U of U is 1.

∑
X∈2U

m(X) = 1 (10)

Table 1 illustrates that mass has a much larger degree of freedom than probability:

Table 1. Comparison of D-S Theory and Probability Theory.

D-S Theory Probability Theory

m(U) does not have to equal 1 ∑
j

Pj = 1

If X ⊆ Y, m(X) ≤m(Y) is not necessary If X ⊆ Y, P(X) ≤ P(Y) is necessary
there is no relation between m(X) and m(−X) P(X) + P(¬X) = 1

Next is the concept of belief function. Belief Function (Bel) is the total trust of a set and
all its subsets and is defined as following:

Bel(X) = ∑
Y⊆X

m(Y) (11)
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Mass is trust about a set, and not any of its subsets. Mass is a more local trust, whereas
the belief function applies to a set and any subset of that set, and Bel is a more global trust.
The plausibility function is also a basic concept of D-S theory which denotes the confidence
of not denying the estimated charging load result. In our approach, the term A denotes
one prediction result of the EV charging load. It is the sum of the underlying probability
assignments for each subset that intersects A. For instance, in our three loading predictions
A, B, and C, all subsets intersecting the prediction A would be {A}, {A, B}, {A, C} and
{A, B, C}, meaning that Bel(X) would be the sum of the masses of the subsets {A}, {A, B},
{A, C} and {A, B, C}. Bel

(
X
)

represents subsets excluding all subsets intersecting with A. In
this study, Bel

(
X
)

corresponds to {B}, {C}, and {B, C}. Pls,(X) read as plausibility of “X” is
given by:

Pls(X) = 1− Bel
(
X
)
= 1− ∑

Y⊆X

m(Y) (12)

The overall procedure of the D-S theory task, which is employed to find the optimal
charging loads forecasting, is demonstrated in Algorithm 2.

Algorithm 2 The Proposed D-S Theory Algorithm Pseudocode

input: Frames of Discernment U = {A,B,C}
output: Optimal Result
1: n = length (U)
2: function MassFunction(U)
3: 2U= {all subnets of U}
4: X = ∀2U

5: if ∑m(X) = 1 then m: 2U→ [0, 1]
6: end if
7: return m(2U)
8: end function
9:
10: function SynthesisRule(X = ∀2U, m1(X), m2(X))
11: SynthesisMass = 0
12: K = 0
13: A = ∀2U

14: B = ∀2U

15: if A ∩ B = ∅ then
16: K = K + m1(A) ∗ m2(B)
17: end if
18: if A ∩ B = X then
19: SynthesisMass = SynthesisMass + m1(A) ∗ m2(B)
20: end if
21: SynthesisMass = SynthesisMass/(1 − K)
22: return SynthesisMass
23: end function
24:
25: function ConfidenceInterval (X = ∀2U)
26: A = ∀2U

27: Bel(X) = 0
28: Pls(X) = 0
29: if A ∈ X then
30: Bel(X) = Bel(X) + m(A)
31: else
32: Pls(X) = Pls(X) + m(A)
33: end if
34: Pls(X) = 1 − Pls(X)
35: CI(X) = [Bel(X), Pls(X)]
36: return CI(X)
37: end function
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3. System Implementation

In this section, the approach to implementing the actual model is discussed. First,
we define the various inputs to the model and then the implementation of the DS-
theory technique.

Figure 2 shows an overview of how the model is implemented. The description of the
various input parameters is also presented in Figure 3. The various input parameters (1, 2,
and 3) represent the following samples:

I. (1) represents the sample load data of the last moment and the parameters of that
moment used to predict the current load.

II. (2) represents the sample load data of the last moment and the parameters of the
current moment used to predict the current load.

III. (3) represents the sample load data of the last several moments and the correspond-
ing parameters of the last several moments used to predict the current load.
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These three samples serve as the input for the developed LSTM model. The output
of the LSTM model now becomes the input of the data fusion model for the purpose of
optimizing the initial predictions from the LSTM model. To implement the D-S theory
technique, the predictions of the LSTM model with different input features based on
different information of previous days is used. The results of these three predictions are
V1, V2 and V3, respectively. D-S theory selects the appropriate course of action based on
the output from the LSTM model to produce the most accurate forecast of the loads for the
next 24-hour time horizon. To verify the credibility of predictions of V1, V2 and V3, the
previous realistic charging loads are employed to show the accuracy of predictions. The
predictions of V1, V2 and V3 in last 5 h, last 5 h to 10 h and last 10 h to 15 h are employed
for this comparison purpose. The comparison results between the predictions and real
(actual) loads are the events (E1, E2 and E3).
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The mass (quality) function of the LSTM model predictions with different input
features based on the definition of D-S theory are given by:

M(EiVj) =
∑5

k 100−
(

LdEiVj
−Ldrealityk

)
Ldrealityk

× 100

5
(13)

Based on the mass function of EiVj and D-S theory, the decision matrix for combining
the forecasting results of the events E1 and E2 results as shown in Tables 2 and 3.

Table 2. Decision Matrix of Combining Event 1 and Event 2 Based on D-S Theory.

E1V1
30%

E1V2
26%

E1V3
44%

E2V1
31%

V1
9.3%

V1V2
8.06%

V1V3
13.64%

E2V2
34%

V1V2
10.2%

V2
8.84%

V2V3
14.95%

E2V3
35%

V1V3
10.5%

V2V3
9.1%

V3
15.4%

Table 3. Decision Matrix of Combining Event 2 and Event 3 Based on D-S Theory.

V1
9.3%

V2
8.84%

V3
15.4%

V1V2
18.26%

V1V3
24.14%

V2V3
24.05%

E3V1
24%

V1
2.23%

V1V2
2.12%

V1V3
3.70%

V1V2
4.38%

V1V3
5.79%

V1V2V3
5.77%

E3V2
41%

V1V2
3.81%

V2
3.62%

V2V3
6.31%

V1V2
7.49%

V1V2V3
9.90%

V2V3
9.86%

E3V3
35%

V1V3
3.26%

V2V3
3.09%

V3
5.39%

V1V2V3
6.39%

V1V3
8.45%

V2V3
8.42%

V1 V2 V3 V1V2 V1V3 V2V3 V1V2V3
2.23% 3.63% 5.39% 17.80% 21.20% 27.68% 22.06%

4. Simulation Results and Discussion

Our research proposes a novel method for forecasting EV charging load (energy
demand). The forecast of charging load of EVs is very important as it allows EV charging
stations to plan to meet energy requirements. First, a multi-input LSTM model was modeled
to take three different forecast parameters for prediction of the charging load required. The
input forecasting parameters consisted of data on weather conditions such as temperature,
humidity and wind speed. These data were sourced from the UCI database [50]. The data
was then put in a format that the algorithm could process to generate results. The values
of the temperature, humidity, wind speed, and the power were normalized on a scale of
0–1 to make the data easier to handle, and the weight of the input parameters were set
as the same. The model was then implemented using Python 3.8. The results from the
initial prediction from the LSTM model for the various input parameters are shown in
Figures 4–6. Descriptions of the various inputs utilized for the prediction are shown in
Figure 3 and described in Section 3. Figures 4–6 show the forecasts with inputs (1), (2) and
(3) respectively. To improve further upon this prediction, the data fusion model (DS-Theory)
was used to enhance the predictions in Figures 4–6. A comparison between the forecast
of the optimized model through data fusion and the various inputs of the LSTM model is
presented in Figure 7. The performance of the created model was assessed using the widely
used performance indicator, mean absolute error (MAE). The MAE was calculated as [51]:

MAE =
1
N ∑|ŷi − yi| (14)
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where N is the sample number, ŷi is the forecasted load demand and yi is the actual
load demand.
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The optimized prediction is shown in Figure 8. To compare the performance of the
LSTM predictions (using the various input parameters) and the optimized prediction by
the data fusion (DS theory) model, the relative mean squared error was found for all the
prediction models. Figure 7 shows a graphical comparison between the various models
and the actual energy demand of the EVs from the charging stations. Figure 9 shows
a comparison of the prediction errors of the various prediction models (the LSTM and
optimized data fusion). From Figure 9, the proposed model has a prediction error of 3.29%,
which is better than other prediction models.
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5. Conclusions

To increase the precision of forecasts of the energy demand of electric vehicles using a
deep learning model, we used a forecasting approach based on multi-feature data fusion.
First, an initial prediction model based on LSTM was developed and implemented. Using
data on weather conditions and charging load demands from UCI, the LSTM model was
used to make three different initial predictions. The proposed DS-theory model was then
used to optimize the initial predictions generated by our multi-input LSTM model. The
proposed DS-theory model had a relative error of 3.29% which was an improvement
on predictions generated by the LSTM model alone. This e proves the viability of the
proposed model in improving EV load forecasting, which is important in planning for
charging stations.
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