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Abstract: We have analyzed 127 publications for this review paper, which discuss applications of
Reinforcement Learning (RL) in marketing, robotics, gaming, automated cars, natural language
processing (NLP), internet of things security, recommendation systems, finance, and energy manage-
ment. The optimization of energy use is critical in today’s environment. We mainly focus on the RL
application for energy management. Traditional rule-based systems have a set of predefined rules.
As a result, they may become rigid and unable to adjust to changing situations or unforeseen events.
RL can overcome these drawbacks. RL learns by exploring the environment randomly and based
on experience, it continues to expand its knowledge. Many researchers are working on RL-based
energy management systems (EMS). RL is utilized in energy applications such as optimizing energy
use in smart buildings, hybrid automobiles, smart grids, and managing renewable energy resources.
RL-based energy management in renewable energy contributes to achieving net zero carbon emis-
sions and a sustainable environment. In the context of energy management technology, RL can be
utilized to optimize the regulation of energy systems, such as building heating, ventilation, and
air conditioning (HVAC) systems, to reduce energy consumption while maintaining a comfortable
atmosphere. EMS can be accomplished by teaching an RL agent to make judgments based on sensor
data, such as temperature and occupancy, to modify the HVAC system settings. RL has proven
beneficial in lowering energy usage in buildings and is an active research area in smart buildings.
RL can be used to optimize energy management in hybrid electric vehicles (HEVs) by learning an
optimal control policy to maximize battery life and fuel efficiency. RL has acquired a remarkable
position in robotics, automated cars, and gaming applications. The majority of security-related
applications operate in a simulated environment. The RL-based recommender systems provide good
suggestions accuracy and diversity. This article assists the novice in comprehending the foundations
of reinforcement learning and its applications.

Keywords: machine learning; reinforcement learning; deep reinforcement learning; Markov decision
process; contextual bandits; inverse reinforcement learning; multi-agent RL; energy management system

1. Introduction

Machine learning supports various applications, such as data prediction, classification,
regression analysis, and clustering. In supervised learning (SL) [1], input and output
data (labeled data) are fed into the system that generates a model. Unsupervised learning
(UL) [2] finds associations, similarities, and variations in unlabeled data and extracts hidden
information. SL, UL, and RL [3] are three types of machine learning. The generated model
can predict the output for new unknown data. Spam detection [4], image and object
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detection [5], predictive analytics [6], text classification, and other applications make use
of SL. SL algorithms include logistic regression, linear regression, decision tree, random
forest, and support vector machine (SVM) [7]. Clustering with the k-means clustering
algorithm and dimension reduction with principal component analysis (PCA) are two UL
applications. Deep learning has been able to overcome the shortcomings of machine
learning. Machine learning extracts features separately, whereas deep learning extracts
features automatically and without human intervention. Machine learning cannot handle
large amounts of data, but deep learning can take millions of data points. Deep learning
can process unstructured data such as images and audio. Because of their dynamic nature,
specific real-time scenarios, such as recommendation systems and self-driving cars, do
not have sufficient datasets for training. Reinforcement learning is introduced to address
this issue. The third type of machine learning is RL [8]. RL is appropriate for sequential
decision-making processes and learns through direct interaction with the environment
to achieve long-term goals without external motivation or complete knowledge of the
environment. Figure 1 depicts the RL framework.
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The RL agent examines the condition of the environment and chooses an appropriate
action. If the RL agent performs the correct action, it receives a positive reward. If the
agent makes the wrong move, a negative is generated. RL must balance exploration and
exploitation. Exploitation occurs when an agent attempts to maximize the reward based on
a previously established route. If the agent always tries to explore a new way to reach the
destination, it is called exploration. There are several applications for RL. RL The model
does not need a large dataset and learns by trial and error.

A recommendation system is designed to suggest items valuable to the user. Recom-
mendation systems (RS) are used by most e-commerce [9] websites to increase revenue.
Different types of recommendation systems are content-based, collaborative-based, and
hybrid-based. Another type of RS is location-based recommendation [10,11]. Traditional
RS systems suffer from a cold start, a warm start, a long tail, data sparsity, and scalability.
To address these shortcomings, RL is introduced in RS to provide recommendations that
are accurate, relevant, and diverse. Reinforcement learning-based RS [12] is used in various
applications, including news article recommendations, course recommendations, product
recommendations, movie recommendations, and so on. In conjunction with deep learning,
RL handles high-dimensional sensory input in applications such as Atari games.

The deep Q network (DQN) is the most widely used algorithm in deep reinforcement
learning. Multi-armed bandit comprises multiple arms, each with a different chance of
winning. Contextual bandit solves the exploration-exploitation problem. For personalized
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recommendations, the contextual bandit is used. The most widely used algorithms in
contextual bandit are upper confidence bound (UCB), Thomson sampling, and LinUCB.
In IoT applications, RL is used to protect users from security threats. Most RL works
in security applications are simulation-based, making the transition into the real world
expensive. The most efficient robots are those built with RL. Social robots are primarily
used in healthcare to take care of the elderly. Cognitive empathy is also used in the social
robot to understand human emotions better and make them comfortable with the response.
Natural language processing works much better with RL. Inverse reinforcement learning
(IRL) [13] and the multi-agent RL approach are considered different forms of RL. In some
instances, the rewards and transition probability of the systems are unknown. In such cases,
IRL has been applied to solve this problem. IRL, on its own, learns the reward function.
IRL observes the domain expert’s behaviours to implement the observed behaviour.

One of the critical applications of RL are EMSs. Energy demand continues to increase,
and optimizing energy consumption while maintaining comfort is challenging. Most
EMSs are implemented with the help of RL. In this review, we briefly discuss how the RL
algorithm is built for EMSs. The RL algorithm learns through trial and error, adjusting
the control policy based on the HEV’s performance feedback. The algorithm can consider
various factors, including the battery’s present condition, the vehicle’s speed and power
demands, and the expected driving conditions. This method can result in more effective
use of the HEV’s power sources, leading to longer battery life and better fuel economy.
RL can be used in HVAC control to teach an agent the optimal control approach for the
HVAC system by interacting with a simulated environment that models the building and
its thermal dynamics. The agent can perform actions such as adjusting the temperature
setpoint or changing the airflow and is rewarded or punished based on energy consumption
and thermal comfort level. The agent understands how to make decisions that conserve
energy while sustaining thermal comfort over time. Eco-driving, also referred to as fuel-
efficient driving, is the driving practice aimed at lowering fuel consumption and emissions.
RL can be used to optimize the control of a vehicle’s powertrain to achieve eco-driving.
The vehicle’s powertrain and its surroundings, such as the traffic and road conditions, are
monitored closely in an RL-based eco-driving system. The RL algorithm then uses this
information to determine the best actions for the driver to take, such as adjusting the speed,
gear selection, and engine power to reduce fuel consumption. The algorithm also considers
the driver’s behaviour and preferences, such as the driver’s comfort level and the urgency
of the trip, to provide personalized eco-driving recommendations.

Section 2 of this review paper defines reinforcement learning algorithms. We discuss
the application of reinforcement learning in various fields in Section 3.

2. Reinforcement Learning Algorithms

An RL process that satisfies the Markov property (MP) is called a Markov decision
process (MDP) [14]. Different RL algorithms are available in the literature, and the hierarchy
of algorithms is given in Figure 2.

RL algorithms can be value-based [15] or policy-based [16]. The value-based algorithm
begins with a random starting value. Initially, the RL agent chooses a spontaneous action
for a specific state and computes the value function. The RL agent can find the best policy
using the value function. It does not save the policy but preserves the value function.
Value-based RL requires a long time to compute because the q table has more states and
actions. In policy-based RL, the agent begins with a random policy. It selects an action
for a specific state based on policy. Then it computes the value function for the randomly
chosen policy. The policy-based algorithm has a higher rate of convergence. Policy-based
RL is appropriate for large state-space applications. It is possible to learn stochastic policies
using policy-based RL. However, policy-based RL suffers from high variance. It requires
few iterations to converge, but the algorithm is complex. An actor-critic algorithm is a
combination of both value-based and policy-based algorithms.
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2.1. Three Approaches to RL

The other three approaches of RL are Monte Carlo [17,18], temporal difference (TD) [19],
and dynamic programming (DP) [20]. Dynamic programming requires the model to learn
and follow a recursive approach. The model has to define states, actions, rewards, and
transition probability. Dynamic programming is used for solving complex problems. It
resolves a problem by breaking it into sub-tasks/sub-problems after determining the solu-
tion and combining the sub-tasks to form the solution. It can solve interlaced sub-problems,
optimal substructure, and MDP. Monte Carlo (MC) and TD require experience and can
learn by exploration (trial and error) without the model. MC follows the learning approach
and is used for uncertain environments. TD determines the value estimates based on the
estimates of other values, a process called bootstrapping. TD works for continuous tasks
(non-terminating) and does not require a model. After every step, it updates the values
estimates of the value. It does not have to wait till the entire trial and only updates the
values for the visited path. TD is used in online and incremental learning and has low
variance and some bias.

2.2. Different Types of RL Algorithms

Monte Carlo (MC) follows a learning approach based on interacting with the environ-
ment. MC is suitable for episodic tasks and has a starting and ending state (destination
state). No matter what action it takes, the episode will terminate. MC does not require a
model. It learns from the complete episode, and no bootstrapping is performed. When an
agent visits a state for the first time in an episode, it is called the first visit. The episode’s
return can be calculated based on the average of the samples concerning the first visit. In
every visit, the return can be calculated based on the average of state values concerning
every visit. A state is visited multiple times in every episode. The average of every visit is
the sum of all the samples divided by the number of visits. Two types of approaches are
employed: MC Control and MC prediction. MC control is in charge of calculating the state
value function. MC prediction is responsible for finding the optimal policy based on the
value estimates. MC has high variance and zero bias. MC and TD use sampling, but DP
does not perform sampling.
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Q-learning is one of the most widely used algorithms and follows a model-free ap-
proach and off-policy. The RL agent tries to find the maximum Q value. Q-learning is a
value-based algorithm. Initially, all the q values are zero or random. The states and actions
are represented as the rows and columns of the Q table. The Bellman equation is used to
derive the Q value. The best action is selected based on the max Q value for a particular
state using the ε-greedy policy. It starts exploring during ε times and (1-ε) times it finds
the best possible q value (optimal policy). Q-learning has been used in gaming [21] and
robotics [22]. State action reward state action (SARSA) is identical to Q-learning except
that it does not find the max q value and uses on-policy. Utilizing the current set of actions
carried out in the current state enhances the agent’s learning process. Previous states and
rewards are not considered for a new set of states. Electric vehicle route optimization has
been implemented using the SARSA algorithm [23]. It is used in non-stationary appli-
cations. Actor-critic (A2C/A3C) is a combination of both policy-based and value-based
approaches. An actor performs specific actions, and the critic analyzes the value function
of the corresponding action. By using TD error, the critic evaluates the action taken by the
RL agent. Q-learning is not sufficient for vast state spaces and action spaces. For many
states and actions, more computations and time are required. Deep neural networks are
used in deep Q networks (DQN). The Q value is determined using a neural network. DQN
is suitable for significant state space problems.

Proximal policy optimization (PPO) is an on-policy algorithm that generates data and
updates the policy using the existing policy. PPO comprises two parts: a policy network
that maps states to actions and a value network that computes the value of a state or a state-
action combination. The policy network is trained to maximize the predicted cumulative
reward, whereas the value network is taught to evaluate the worth of states and actions. It
is reasonably straightforward to deploy and robust to hyperparameter selection. It has been
employed in various applications, such as robots, gaming, and continuous control. Trust
region policy optimization (TRPO) is another type of RL algorithm. It is similar to PPO.
It is an on-policy algorithm that generates data and updates a policy using the existing
policy. The trust region is used to update the policy settings, and the algorithm uses a
natural gradient rather than a standard gradient. It outperforms the other RL algorithms in
terms of performance. TPRO is utilized in various applications, including gaming, robotics,
and continuous control. Deep deterministic policy gradient (DDPG) is another type of RL
algorithm. The DDPG approach combines Q-learning with policy gradient methods. It
employs the actor-critic network, which comprises two neural networks. The actor network
is in charge of choosing an action, and the critic network examines the action selected by
the actor network. The actor network seeks to maximize the total payoff. It is suitable for
use in environments with continuous action spaces and is utilized in various applications,
including robotics, gaming, and self-driving cars.

Soft actor critic (SAC) is another type of RL algorithm. SAC is a model-based rein-
forcement learning (RL) technique that integrates actor-critic architecture with entropy
regularization. The actor-network chooses actions depending on the current state, whereas
the critic network is employed to assess the worth of those actions. The entropy regulariza-
tion element is introduced to the objective function to stimulate exploration and prevent
premature convergence. SAC has been demonstrated to be highly successful on a vast
scope of continuous control tasks and has been utilized in various applications, including
robotics, gaming, and simulated physical systems. Twin delayed deep deterministic policy
gradient (TD3) is the next step in the evolution of DDPG. It carries out the postponed policy
update. It employs two criteria. The critic network computes the current state-activity
pair’s value, whereas the actor-network selects the best course of action given the current
scenario. TD3 reduces the overestimation of the Q value and increases its accuracy. The
delayed policy update can lessen the overfitting of the network.

C51 (Categorical DQN) is a well-known Q-learning algorithm for discrete action spaces.
In classic Q-learning, the Q value is expressed as a single value for each state-action pair,
which tackles the problem of classical Q-learning discretization. Instead of employing a
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single Q value for each action, C51 extends the DQN by including a categorical distribution
across the Q values. QR-DQN (quantile regression DQN) is an enhancement to the DQN
algorithm. QR-DQN updates the network’s parameters using a quantile regression loss
function, which differs from the standard mean squared error loss function used in DQN. It
is defined as the sum of the Huber losses for each quantile of the action-value distribution.
This loss function enables the agent to learn various possible action values rather than just
one optimum action. Hindsight experience replay (HER) is another type of RL algorithm.
It enables the agent to learn from previous failures and overcome them by focusing on the
present objective. Additionally, the same experience is replayed with the new aim in mind.
It is beneficial for tasks with sparse rewards and is appropriate for various suboptimal goal
states. HER uses experience replay, which stores all previous experiences and is compatible
with algorithms such as DDPG, DQN, and A3C.

World models are unsupervised algorithms consisting of three parts: a variational
auto encoder (VAE), a recurrent neural network (RNN), and a decoder. The variational
auto encoder encodes environmental observations. The RNN simulates the dynamics of
the environment, and the decoder provides observations based on the VAE and RNN
output. The RNN may be used to predict future environmental conditions. It is employed
in various applications, namely robotics and computer vision. Model-based meta-learning
with flexible computation (MBMF) was proposed in 2021 by a researcher from OpenAI.
The agent learns from a collection of tasks. It quickly learns the new task by sharing
computation across the tasks. It takes advantage of a computing model which is made up
of a collection of previously learned activities. The agent is instructed on a series of tasks
using an environment model called the task model, and the neural network serves as the
task model. This network predicts the following state environment based on the present
state and action. It contributes to the RL algorithm’s sampling efficiency. Model-based
value expansion (MBVE) is a technique for improving the sample efficiency of model-
based algorithms. It forecasts the future using the model environment. This algorithm
calculates the value estimates. Based on the value estimates, it predicts the next state of
the environment and can be combined with model predictive control (MPC) or guided
policy search (GPS) to improve the sample efficiency. Imagination-augmented agent (I2A)
consists of two components: RNN and DQN. RNN acts as the imagination module, and
DQN acts as the control module. The imagination module generates the imaged scenarios
by simulating the environment. The control module forecasts the future based on the
generated scenarios. The control module estimates the return of state and action using the
Q-learning algorithm. AlphaZero is a computer program developed by DeepMind that can
play chess, shogi, and the game of go. It combines deep neural networks and Monte Carlo
tree search algorithms.

3. Reinforcement Learning Applications

RL has been used in many applications in recent years. In this paper, we list several
domains and their applications, which are shown in Figure 3.

3.1. Reinforcement Learning Applications in Recommendations

In course recommendations, user interest belongs to different categories of subjects.
A novel method for course recommendations using the dynamic attention model using
RL has been proposed [24]. This model represents the interaction between the user’s
preferences and the profile reviser. To enhance recommendation accuracy, their model
adaptively modifies the attention weight of the related course during various sessions
to monitor changes in user preferences. They use two real-time datasets from massive
open online courses. It has a high level of recommendation accuracy. In [25], a novel
course recommendation model is proposed, which uses a profile constructor with self-
learning capabilities to recommend courses specifically for each student. They offer a
unique policy gradient method to overcome the exploration-exploitation trade-off problem
in generating user profiles. The model uses a context-aware recurrent approach to capitalize
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on the available knowledge to investigate the user’s potential future preferences. Two real-
world datasets were used for extensive tests to validate the effectiveness of the proposed
HELAR model. The results prove that HELAR performs better than cutting-edge course
recommender systems. Another method providing a personalized learning experience
to students using reinforcement learning has been proposed [26]. The authors employ
the Q-learning algorithm to recommend educational materials to students based on their
present situation rather than their records, building the policies from collected data. At the
initial state, the model generates a random policy, and later, the optimal policy is obtained
based on the Q Value. To overcome the cold start problems, grey sheep, and sparsity
of RS, ref. [27] proposed an RL-based dynamic recommendation. In [28], an RL model
is designed that recommends learning objectives (LO) to students based on sensors that
capture students’ heartbeats, quiz scores, blinks, and facial expressions.
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3.1.1. Deep Recommender Systems in Recommendations

Deep reinforcement learning (DRL)-based RS was developed to provide more accuracy
than traditional RS. DRL can manage more states and actions in a dynamic environment.
A recent study proposed a DRL with user-commodity state representation called UCSR-
DRL [29]. They interpret RS as a sequential process and use the actor-critic algorithm,
which includes long and short-term incentives. The cold start problem and data sparsity
were overcome by their proposed DRL based on a prioritized experience replay network for
capturing user interest changes [30]. Promotion of user engagement using deep reinforce-
ment learning-based RS has been proposed [31]. To handle massive action sequences, a
deep hierarchical category-based RS was implemented, and a two-layered DQN was devel-
oped. The first level selects the item category, and the second recommends the item to the
user. Four real-time datasets are used, including Netflix and, Movielens (ML) (20 M, 10 M,
and 1 M). The recommendation accuracy is higher based on the hit ratio and normalized
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discounted cumulative gain. To solve the cold and warm start problem, ref. [32] proposed
a long-term recommendation model using a recurrent neural network with reinforcement
learning. This model was evaluated using the hit ratio and normalized discounted cumula-
tive gain. The recommendations can be fine-tuned based on the feedback of the user. A
DQN for analyzing both negative and positive feedback of users was proposed by [33].
Positive feedback is given whenever a user clicks or orders an item; negative feedback
is given when the user skips the item. A DRL framework for the interactive suggestion
was developed, comprising convolution neural network and GAN [34]. The proposed
combinatorial product recommendation system includes a consumer behaviour simulator
and utilizes DRL to find appropriate product combinations that can improve the platform’s
sales [35]. A user-specific and biased user-specific DQN for interactive recommendation
problems for explicit feedback has been developed [36]. Matrix factorization is used to
create user-specific states to learn the best recommendation policies. A biased user-specific
DQN was developed to model the user-specific information by including the bias to analyze
the Q values of every user.

3.1.2. Recommendation Using Contextual Bandits

The contextual bandit is an extension of the multi-armed bandit. Contextual bandit is
used for solving the exploration-exploitation dilemma. The RS considers items or users as
one of the arms in the contextual bandit framework. Contextual bandit aims to minimize
regret. Based on previous experience, the bandit chooses the arm which maximizes the re-
ward. The newly trained RS tries to exploit the products that the users are already engaged
with. To overcome this problem, ref. [37] proposed an advertisement recommendation
system using contextual bandits that uses two exploration algorithms: upper confidence
bound (UCB) and Thomson sampling. They built a hybrid method combination of boot-
strap and dropout. Based on the CTR, the model recommends an item to the users, and
instead of training the RS, the model learns by dynamic interaction with users. Ke-LinUCB
is a model proposed for personalized recommendations in a changing domain [38]. The
dynamic preferences of the users are captured by this proposed system. The intention-
selection method is used to analyze the behaviour of users. LinUCB uses an exploitation
and exploration strategy to recommend the items to the users. Amazon-book and Yelp2018
were benchmark datasets used in this work. The recommendation accuracy of this model
depends on the information of items and users. In [39], a news recommendation system is
proposed that uses three different algorithms: CoLin, LinUCB, and Hybrid-LinUCB. Each
algorithm is implemented on different datasets, such as MovieLens20M, Yahoo FrontPage
Today Module, Synthetic, and LastFM. Each news article is considered an arm, and the
reward is different for different users. The confidence bound is calculated based on the
three algorithms. This system makes more accurate and diverse recommendations. An
implicit feedback-based recommendation system that uses multi-armed bandit (MAB) was
suggested by [40]. In this system, clicks and favourites are considered implicit feedback,
which is divided into three categories: strong interaction, non-interaction, and weak inter-
action. The item category is considered an arm, and the number of arms is fixed. Thomson
sampling is applied to balance the exploration-exploitation dilemma. To handle the cold
start problem, the best-selling or popular items are recommended to new users. For old cus-
tomers, items are recommended based on their behaviour history. The authors successfully
verified the model on three datasets. In most of the recommendations using contextual
bandit, either the item or user is used as an arm. The binary upper confidence bound can
be employed to regard users and things as arms of each other [41]. This method also solves
the cold start problems for items and users. The method was compared using five baselines.
Considering precision, BiUCB provides a high precision value when compared with the
five baselines. In another work, ref. [42] applied a contextual bandit algorithm to recom-
mend personalized online learning objectives. The algorithm makes recommendations
based on the student’s history and current state. Using a dataset from e-learning systems,
which contained 365 students, 2519 events, and 78 Learning Outcomes(LO), they found the
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correlation of two actions by conditional probability. The RL agent recommends the LO,
and the reward is generated based on the click through rate (CRT). Contextual bandit algo-
rithms resulted in a higher CRT than the ε-greedy, greedy optimal, and upper confidence
bound algorithms. Table 1 provides an overview of RL recommendation applications using
different datasets and models.

Table 1. Reinforcement learning applications for recommendation systems.

S. No References Product Datasets Model

1 [24] Courses MOOC Dynamic attention and hierarchical
reinforcement Learning (DARL)

2 [25] Courses MOOCCourse and MOOCCube Hierarchical reinforcement learning
with a dynamic recurrent mechanism

3 [29] E-commerce items Item-info, trainset, and track2_testset Actor-critic with state representation

4 [30] Movies MovieLens Deep Q network

5 [31] Movies MovieLens and Netflix Deep Q network

6 [32] Movies MovieLens 100K, MovieLens 1M
and Steam Recurrent neural network

7 [33] E-commerce items JD.com(E-commerce website) Deep Q network

8 [34] E-commerce items E-commerce website Deep Q network with CNN and GAN

9 [35] E-commerce items E-commerce website LSTM and DDPG

10 [36] Movies and Music ML100K, ML1M, and YMusic User-specific deep Q-learning

11 [37] Advertisements ADS-16 Deep bayesian bandits

12 [38] E-commerce items Amazon book and Yelp2018 Knowledge-enhanced Ke-LinUCB

13 [39] News and Movies Yahoo Front Page Today Module,
Lastfm, and MovieLens20M LinUCB, Hybrid-LinUCB, and CoLin

14 [40] Item
Yoochoose,
IJCAI-15

Retailrocket
Thompson sampling

15 [41] Movies MovieLens BiUCB (Binary upper
confidence bound)

3.2. Reinforcement Learning in Gaming

RL is widely used in many gaming applications. RL learns the game through trial
and error based on short- and long-term rewards. Sometimes the RL agent has to sacri-
fice the immediate reward for the long-term reward, which yields good results. An RL
model to learn the Othello game without the intervention of human knowledge has been
proposed [21]. In [43], the authors implemented a DRL to play Atari games. They used
Q-learning with convolutional neural network (CNN). Image pixels were used as input,
and value functions were the outputs. They developed the algorithm for seven Atari games
with this CNN and Q-learning and found that it performs better than the previous methods.
In other research, the DDPG algorithm was proposed to track the pursuer and seize the
evader quickly [44]. RL can also provide game-based learning in which students can
efficiently learn through the interactive RL environment. In their article, ref. [45] presented
game-based learning in a reinforcement learning environment. Many gaming scenarios
have successfully deployed self-play RL, where the RL agents learn by interacting with
themselves [46]. The game of go is a classical game involving two players, and one player
has to surround more places than the other. The AlphaGo program, which comprises
neural networks and Monte Carlo, was developed by [47]. AlphaGo performed better than
the other Go programs. A general reinforcement learning framework called AlphaZero has
been developed for three games: go, chess, and shogi (Japanese chess) [48]. The game rules
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were provided to the RL model without domain knowledge, and the RL model learned by
self-play. AlphaZero defeated the world champions in these games. To prevent time delays
during online execution, automated decision-making with DQN has been developed in
the Boulder Dash game [49]. Self-play is one of the applications of RL games. The model
plays against itself and learns the environment by interacting, and experience replay has
been added to improve the effectiveness of the actor-critic algorithm [50]. This model was
implemented with benchmark Atari and Mujoco. The value function is calculated without
using Q-learning, and the model can also be used for both continuous and discrete jobs.
Table 2 lists the gaming applications implemented using RL.

Table 2. Reinforcement learning applications in gaming.

S. No References Application Algorithm

1 [21] Othello game Q-learning

2 [43] Atari 2600 games Convolutional neural network with Q-learning

3 [44] Pursuit-Evasion differential game Deep deterministic policy gradient

4 [47] AlphaGo Deep neural network and Monte Carlo

5 [48] AlphaZero Monte Carlo tree search

6 [49] Boulder Dash game Deep Q network

3.3. Reinforcement Learning in Automated Vehicles

Autonomous cars use technology to replace human drivers to reduce road accidents
and ensure road safety. These cars work based on rules and imitation. In a model based on
rules, the decisions of the cars are based on the rules framed. In an imitation model system,
supervised learning methods are used to train the model. Deep learning-based automated
vehicles require excessive data to train the model and cannot correct accumulated faults.
RL has been introduced into automatic vehicles to learn by trial and error and overcome
these issues. Self-driving cars are one of the critical application areas of reinforcement
learning. Two tasks of these cars are perception and decision making systems (DMS). The
car’s state is observed using the sensors, cameras, global positioning system (GPS), etc. [51].
Decision-making systems using perception systems are in charge of moving the car from the
starting position to the desired goal. A model for self-driving cars using confidence-aware
reinforcement learning has been proposed [52]. These researchers created an RL policy
as well as a benchmark rule-based policy. The RL policy deals with the situation when
the classic rule-based approach fails. Sometimes RL agents produce the wrong decision
that is not encountered during the learning, leading to failure of the systems. To handle
such uncertainty, ref. [53] proposed a model for uncertain environments using DeepSet-Q
with a Gaussian mixture (DwGM-Q). Their experiments showed that uncertainty was well
detected in the simulation environment, and the computation time was shorter than the
existing ensemble method.

3.4. Reinforcement Learning in Natural Language Processing (NLP)

NLP is a notable AI application in which the computer recognizes human language
and responds to its queries. Some examples of NLP are intelligent assistants, language
translation, text analytics, etc. In their review article, ref. [54] discuss NLP applications
such as syntactic parsing, language understanding, text generation systems, and machine
translation using RL. In syntactic parsing, states are considered as parse trees of all possible
combinations. Grammar rules are considered as actions, and the reward depends on the
number of arcs identified correctly in the final parse tree. In text generation, states are
formed with the feature vector and by adding/deleting the word as an action. Rewards
are generated based on feedback from the user. Machine translation takes input in one
language and converts it into another language with a similar meaning. States are the set
of all possible input strings, actions are added/deleted, and rewards are generated based
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on a match between the input and output meanings. The complexity of natural language
and its constant change make it challenging to build an NLP model. DRL can store many
grammatical structures as a neural model. RL models are suitable for problems which
continue changing. RL models jointly applied with DRL can provide better results. There
are two types of text summarization: abstract and extract. Extract summarization highlights
the critical sentence. Paraphrasing is performed in abstract summarization, which is
complex. In their review article, ref. [55] discuss papers on automatic text summarization
using RL and transfer learning in terms of algorithms, datasets, challenges, solutions,
and performance metrics. Chatbots can perform conversations with customers to answer
queries. DRL has been used with an ensemble-based model to build a chatbot [56].

3.5. Reinforcement Learning in the Internet of Things Security

Security is a significant problem in IoT systems due to the many smart devices linked
to the internet, and protecting users’ data from security threats is a challenge. Supervised
machine learning algorithms can detect only trained threats. RL can learn by trial and
error without training and does not need a massive volume of data. In their review article,
ref. [57] discuss RL methods to overcome security threats such as jamming, spoofing, and
denial of service attacks. Other authors [58] have reviewed the DRL methods for identifying
the intrusions in the system and their challenges. Most of the studies implemented the
IDS in a simulated environment. Training the DRL for IDS in a real-world environment is
costlier and more complex.

3.6. Reinforcement Learning in Finance

The dynamic nature of the financial systems can cause difficulty in framing equations,
a problem called the curse of modeling. RL learns by trial and error to overcome the curse
of modeling by interacting with the environment. The authors of [59] proposed portfolio
management in finance using DRL. They studied how the total rewards were influenced
by earlier states and actions using RNN (recurrent neural network). The optimal portfolio
management policy was obtained by combining RL with DRL.

3.6.1. Trading

Framing adaptive stock trading policies is difficult due to the dynamic properties of
stocks. An adaptive stock trading technique using DRL has been suggested [60]. To extract
the characteristics of the financial data, a gated recurrent unit (GRU) is used. The model
designers developed strategies for performing quantitative stock trading using GRU along
with a deterministic policy gradient and gated DQN. They solved the disadvantages of
traditional trading strategies which are constrained to single market patterns. In the ever-
changing stock market, a critic-only network with GDQN is less stable than GDPG with an
actor-critic structure. A multi-model RL for trading, which considers price fluctuations and
sentiment analysis on news articles, has been proposed [61]. Other authors have suggested
algorithmic trading based on historical data, correlation of features, and technical analysis
indicators [62]. A deep neural network (DNN) model was proposed to forecast the number
of shares to trade [63]. These authors used DQN to find suitable action techniques for
improving the profit in the market. A long short term memory (LSTM) model along a with
proximal policy optimization algorithm for constructing a Bitcoin trading strategy has been
proposed [64]. ResNet and LSTM provide outperforming results for automatic trading
compared with RL algorithms [65]. A random neural network based on DRL was proposed
to forecast market data’s upward, downward, and similar trends [66]. Short-term memory
is required in stock market analysis rather than long-term history. A multi-agent DQN was
proposed for automatic trading [67], and the DQN was fine-tuned by adjusting the hyper-
parameters, such as activation function, number of q networks, learning rate, discount
factor, etc., using a Forex (EUR/USD) dataset. The model uses performance metrics
such as sharp ratio, average cumulative return, maximum cumulative return, minimum
cumulative return, etc. A DQN model for automated trading, trained on the same dataset
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multiple times to predict future market conditions was suggested [68]. This model was
applied to intraday trading. The majority of research in trading applications employs
value-based RL. An asynchronous advantage actor-critic (A3C) algorithm is proposed for
stock selection [69], which makes use of both policy-based and value-based models. Table 3
shows the references and their corresponding datasets, Modes, and performance metrics
for trading applications.

Table 3. Reinforcement learning applications in finance.

S. No References Datasets Source Model Performance Measures

1 [62] Yahoo Finance Time-driven feature-aware jointly
deep reinforcement learning model

Total profit, transaction times, the
annualized rate of return, and

sharp ratio

2 [63] Thomson Reuters and
Yahoo Finance

Deep neural network regressor and
DQN (Deep Q network) Total profit

3 [64] Cryptodatadownload LSTM and PPO Profit rate

4 [66]

UK house prices, Gold,
Bitcoin, FTSE, and

Brent oil
Market Validation

DRL with random neural network Accuracy,
RSME, MAE, MAPE

5 [67] Forex Multi-agent DQN
Sharp ratio, average cumulative return,
maximum cumulative return, minimum

cumulative return, etc.

6 [68]

Standard & Poor’s
500 (S&P500) and the

German stock
index (DAX)

Q-learning Equity curve, accuracy, coverage,
maximum drawdown, and Sortino ratio

3.6.2. Comparison between ML and RL in Credit Risk

Plenty of research work has been published about using machine learning to analyze
credit risk. In their research, ref. [70] categorized credit card defaulters by combining
DALEX and XGBoost. The performance metrics employed were sensitivity, specificity,
and accuracy. In other research [71], a deep learning and machine learning strategy for
categorizing credit risk was proposed. They used machine-learning approaches such as
random forest, logistic regression, and gradient boosting. In addition, the four DL model
vary in the neurons, hidden layer, and regularization methods. In their review of credit risk
analysis and its limitations, ref. [72] concluded that DL models provide better prediction
accuracy than ML and statistical methods. Credit, market, and operational risks can be
assessed using ML, as reviewed by [73]. In their work, ref. [74] provided a suggestion
for banking risk management utilizing ML and AI. These suggestions apply to small and
mid-sized banks in developed and developing markets. They evaluated the client risk
based on the credit score before granting a loan to a customer. A credit risk analysis
using an RL model was recommended by [75]. The credit score can be used to analyze
the customer risk category. Another paper calculated credit scores using DQN and the
changing reward function [76]. They tested the model on five different datasets including
Australia (AU), Chongqing (CH), credit card fraud (CR), German (GE), and Leadingclub
(LE). The evaluation measures used by them were true negative rate (TNR), area under the
ROC curve, percentage correctly classified (PCC), true positive rate (TPR), precision, and
F1 score. The specific threshold was defined to differentiate between good and bad credit.

3.7. Reinforcement Learning in Robotics

The most popular application field of RL is robotics. The authors of [77] examined the
use of social robots, which are designed with a different form of reward mechanism. They
addressed three types of reward mechanisms: interactive reinforcement learning, intrinsic
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motivation, and task performance. In classical RL, an agent obtains the reward from the
environment by utilizing a predetermined reward function. Interactive RL interacts with
humans to obtain explicit and implicit feedback. Explicit feedback was direct based on
ratings and labels. Implicit feedback was indirect and based on non-verbal cues such
as emotions, speech, and gestures. The third form of reward was based on the robot’s
performance while interacting with a human. Nowadays, Robots are used in various
applications such as manufacturing, packing, disaster management, healthcare, logistics
warehouses, space, etc. Robots can also be used to understand human emotions and
make them feel comfortable. The authors of [78] suggested a framework to introduce
cognitive empathy in social robots. This model identifies the user’s affective state based on
their facial expression and sends them an empathic behaviour. If the user’s affective state
changes from a negative to a positive or neutral state, the robot receives a positive reward;
otherwise, it receives a negative reward. In this experiment, the researchers investigated
four basic emotions and three types of people. RL robots have been deployed in airways,
waterways, and on land. The authors of [3] reviewed the applications of RL in different
domains. A DRL-based algorithm was proposed to explore underwater [79]. With the help
of RL, mobile robots that are moved from one location to another to perform specific tasks
have become popular. Such robots face a slew of navigational challenges. The authors
of [80] review listed mobile robots’ challenges and solutions to these challenges. The
authors of [81] discuss the challenges of motion planning for mobile robots. Finding the
optimal route for the mobile robot without colliding with an obstacle is difficult. In their
work, ref. [82] proposed a method to optimize the indoor path for mobile robots. Other
researchers proposed development of a DQN for planning the most efficient route for the
mobile robot [83]. They made a comparison of conventional DQN and enhanced DQN.
Excellent outcomes were achieved by increasing the reward value and decreasing the loss
function. Mobile robots suffer from the problem of deadlock and redundant paths. To
overcome this problem, ref. [84] proposed a fusion model which consists of fuzzy logic,
long short term memory (LSTM), and RL algorithms. In their work, ref. [85] proposed
continual learning with RL to optimize a mobile robot’s trajectory and reach the current
destination in the real world and simulation environment. Another review discusses the
advantages and disadvantages of robotics in RL [86].

3.8. Reinforcement Learning in Healthcare

A large number of people have lung cancer, but early diagnosis and discovery can
lower the death rate. In their work, ref. [87] suggested a computer-aided diagnosis system
for detecting lung cancer using deep reinforcement learning. They used value-based
algorithms such as DQN, hierarchical DQN, and deep successor Q-network. In other
research, supervised learning and RL gave a dynamic treatment recommendation [88].
These researchers used two signals: an indicator signal and an evaluation signal. The
indicator signal matches the signal with the doctor’s prescription, and the evaluation
signal is the overall reward obtained from the survival rate. They also used the actor-critic
algorithm and recurrent neural network for treatment recommendations. The authors
of [89] reviewed methods to analyze disease detection and recommended the medications
to the patients using RL. In their article, ref. [90] suggested context-aware RL for analyzing
human health using sort retention double DQN. They compared DQN and sort retention
double DQN and concluded that this proposed method achieves better results. Precision
medicine is one of the essential applications of RL. It provides personalized treatment
recommendations based on the disease’s symptoms. In their work, ref. [91] proposed a
precision medicine model using RL. They clustered the patients based on their same states
and recommended treatments to them. Diabetes affects a large number of people and
necessitates lifelong medication. A treatment recommendation for diabetic patients is given
using an RL-based approach [92].
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3.9. Inverse Reinforcement Learning (IRL)

MDP and reward functions are not known in some applications. In such cases, inverse
reinforcement learning is used. IRL learns the reward function on its own. There is no
need to specify the reward function explicitly. IRL is a demonstration learning in which
the learner tries to learn the reward function of the instructor giving the lessons. In earlier
forms of IRL, the expert provided demonstrations, whereas in later IRL, demonstrations
are given as trajectories (state-action pairs). Different categories of IRL algorithms are
max margin, Bayesian method, and maximum entropy [13]. In specific environments, the
transition probability is unknown, a situation called model-free. IRL can be applied to the
model-free approach. IRL is applied in dynamic route recommendations [93]. In the model-
based approach, the reward function is estimated in linear and non-linear systems [94].
When IRL is used in a system where the developer cannot frame the rewards explicitly,
expert behaviour is transferred to the RL agent so that it can perform well in the desired
task. Inverse RL has been applied in a multiplayer, non-cooperative environment [95].
The authors of [96] proposed data-driven IRL for multiplayer environments. IRL with
Dijkstra’s algorithm was modelled to optimize the route for food delivery applications [97].
Based on the delivery staff’s preferences, it recommends the optimized route. The authors
of [98] suggested a model using IRL to predict commenting behaviour among the users and
inattentive user groups on YouTube. They considered each user as an individual contextual
bandit problem. Based on the commenting behaviour of the user, they grouped the users
into different clusters. Their primary research conclusion was that viewers were eager to
leave comments on popular videos.

3.10. Multi-Agent Reinforcement Learning (MARL)

In multi-agent RL, multiple agents are involved in decision-making. Each agent is
solely accountable for their actions. There are three types of environments for MARL:
competition between agents, cooperation between agents, and a combination of both.
Agents compete against each other to win the game in a competition situation. In a
cooperative situation, agents work together to attain a common goal. Intelligent traffic
light control has been implemented with multi-agent DRL [99]. This model solves traffic
congestion in less time. The experiments were conducted on three different datasets and
achieved good results. Job scheduling has been implemented using multi-agent deep
reinforcement learning [100]. Dynamic route optimization for human drivers using multi-
agent DQN was implemented by [101]. Predictive maintenance has been performed
with multi-agent RL [102]. The agent observed the machine’s state and performed the
maintenance task based on the prediction, which improved performance by 75%. Multiple
agents try to learn simultaneously to improve the cumulative reward. In this case, the
agent’s policies were difficult to converge. An entropy regularizer is used along with an
actor-critic algorithm to overcome this scenario [103].

3.11. Energy Management

EMSs are used for achieving various goals, such as lowering energy consumption,
controlling energy supply and demand, enhancing the use of renewable energy and low-
ering energy expenses. Energy management in a smart grid is a difficult challenge. The
authors of [104] proposed a smart grid modelled as a Markov decision process and used
Q-learning to reduce energy consumption and cost. The authors of [105] investigated
power grid operation and maintenance implemented using a Q-learning-based artificial
neural network (ANN). Reinforcement learning has been used in energy management in
various contexts, such as building energy management systems, reducing the consumption
of electric vehicles, and renewable energy integration. RL has been used in building en-
ergy management systems to control heating, ventilation, and air conditioning (HVAC),
thereby minimizing energy use while keeping the consumer in their comfort zone. RL has
been applied to reduce the fuel consumption of electric vehicles. RL can also be used to
optimize the control and management of renewable energy. The authors of [106] reviewed
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the advantages and disadvantages of using RL in the energy consumption of intelligent
buildings. Real-time deployment of RL in intelligent buildings to reduce energy usage may
pose difficulties in real-world scenarios as training takes a long time.

3.11.1. HVAC Control in Buildings

Most people like to spend time inside their homes, and indoor air quality affects
human health. Higher levels of CO2 cause ill health in human beings. It is essential to
maintain the level of CO2. RL-based approaches have been proposed to monitor and
manage the level of CO2 [107,108]. These authors proposed smart home-based energy
management using RL. The smart home consisted of thermal storage systems, rooftop
photovoltaics, battery storage systems, etc. They designed the energy management with
a constrained MDP. A primal-dual deterministic policy gradient algorithm was used to
reduce consumption and cost function. Similarly, thermal comfort is necessary for the
employees in an office environment to work comfortably and also to avoid health issues.
The system has to provide both comfort and consume less energy. The authors of [109]
proposed a cooling water system using multi-agent reinforcement learning based on a
model-free algorithm. The energy consumption of their proposed method was better than
the rule-based model and close to the model-based design. A multi-actor attention critic
approach has been proposed for controlling HVAC [110]. These researchers used a model-
free algorithm and framed their own Markov decision process, which consists of states,
actions, and rewards. They used comfort-related performance metrics such as average
temperature deviation and average CO2 concentration deviation. In another work [111], it
was suggested that control systems do not need models since they learn through interaction
with their environment. These researchers used a double deep Q network and performed
the hyperparameter tuning in the double deep Q network to obtain the desired results.
In addition, they compared the results with a model predictive control. Their proposed
method outperformed the model predictive control regarding the deviation of temperature
and period.

An actor-critic-based model was proposed for regulating ventilation, air conditioning,
and heating [112]. These authors investigated the relationship between energy usage and
thermal stability and found that the SAC algorithm outperformed the existing algorithms.
The authors of [113] framed the occupant behaviour as a Markov decision process. The
thermostat was adjusted based on the behaviour of the occupants. In the winter season,
the model had to raise the temperature. In this case, the model receives positive rewards.
When the occupant feels a neutral temperature, the model increasing or decreasing the
temperature results in negative rewards. The researchers performed the simulation for four
different seasons with reinforcement learning. In addition, they used transfer learning to
transfer the trained RL model to a separate building with only a few pieces of information.

The authors of [114], applied a DRL-based system to minimize energy use while
keeping the occupant in their comfort zone using a DDPG algorithm. Another work
reviewed the challenges of managing the energy consumption system in buildings [115].
These researchers divided the work into single-building RL, clusters of buildings, and
MARL. MDP modifications, off-policy algorithms, and model-based RL can improve the
sample efficiency of an RL model. Expert knowledge can reduce the RL’s training time.
Therefore, they used transfer learning instead of starting from scratch in different buildings.
The conclusions of their review were that model-based RL provides good results in terms
of sample efficiency. They also mentioned that transfer learning shows promising results.
Most of the research work focused on single-variable control.

The authors of [116] proposed a multi-variate control using a branching dueling Q-
network. This agent was pre-trained in the simulated environment and then deployed
in a real-world environment. They reduced the cooling energy by 14% and improved
thermal acceptability by 11%. The authors of [117] proposed an attention-based multi-
agent DRL which does not require prior knowledge of an uncertain environment. They
promoted the coordination between the personal comfort system and HVAC. In another



Energies 2023, 16, 1512 16 of 23

work [118], researchers framed a non-stationary MDP. Whenever there is a degradation in
the performance, this DRL model relearns to improve the performance. To improve the
sample efficiency, they used elastic weight consolidation. They compared it with the classic
rule-based model, model predictive control, PPO, and DDPG models. Table 4 provides an
overview of HVAC control in buildings using RL algorithms.

Table 4. Reinforcement learning applications for HVAC control.

S. No References Applications Algorithms

1 [109] Water cooling system Multi-agent DRL

2 [110] HVAC control in commercial buildings Multi-agent DRL with actor attention critic

3 [111] Control of HVAC considering dynamic
occupant patterns Double deep Q networks

4 [112] HVAC control by maintaining the thermal stability Actor-critic

5 [113] HVAC control based on occupant behaviour for
different buildings Q-learning

6 [114] Multi-zone HVAC control Deep deterministic policy gradient

7 [116] Multi-variant occupant-centric HVAC Branching dueling Q-network

8 [117] HVAC control in office buildings Attention-based multi-agent DRL

9 [118] HVAC control for non-stationary buildings A deep reinforcement learning model

3.11.2. Energy Management in Vehicles

Vehicle fuel management has received attention due to the scarcity of energy and oil
and environmental issues such as the greenhouse effect. The authors of [119] proposed
a reverse RL based on the energy management of hybrid vehicles. In [120], a DRL-based
automated guided vehicle (AGV) is presented that controls its speed according to the
environment. These researchers designed a deep deterministic policy gradient according to
the actor-critic algorithm. This method reduced energy consumption by 4.6%. In hybrid
electric vehicles, hydrogen is used to reduce pollution. Fuel cell vehicles typically need a
combination of various power sources to satisfy driving demands. Different power sources
can be optimized with an EMS. A deep Q-learning system with priority experience replay
and DDPG with priority experience replay to reduce consumption has been proposed [121].
Fuel cells have some disadvantages such as delays in response and the inability to recover
braking energy. Researchers have proposed a TD3 algorithm for logistic trucks to reduce
hydrogen consumption and extend the fuel and battery life span [122]. They compared
a deep deterministic policy gradient and a non-linear programming algorithm. Their
proposed algorithm minimizes the ageing of core components and hydrogen consumption.
Eco-driving is an effective technology for reducing energy consumption in vehicles. An
EMS using the Q-learning algorithm has been implemented [123]. These authors compared
their algorithm with dynamic programming. The RL-based model adjusts the vehicle’s
speed based on road conditions and maintains a suitable distance from the leading ve-
hicle. The RL model simulation results provided near-optimal performance compared
with dynamic programming. Other researchers have proposed a SAC algorithm [124].
They employed cooperative optimization and implemented the MARL for eco-driving by
optimizing energy management. They framed the reward function concerning collision
avoidance, driving comfort, and energy efficiency. This model outperformed the hierarchi-
cal model used as a predictive control. Table 5 provides the RL algorithms for reducing
energy consumption in hybrid vehicles.
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Table 5. Reinforcement learning applications of energy management in vehicles.

S. No References Applications Algorithms

1 [120] Automated guided vehicle Actor-critic and DDPG

2 [121] Reducing the fuel consumption in hybrid vehicles Deep Q-learning and DDPG

3 [122] Energy management strategy for logistic trucks TD3

4 [123] Energy-efficient eco-driving by controlling the
speed in electric vehicles Q-learning

5 [124] Eco-driving in hybrid electric vehicles MARL using SAC

3.11.3. Renewable Energy Management

Renewable energy contributes to an eco-friendly environment and sustainable use.
Recently, renewable energy has been used in buildings. Solar energy is one of the fastest-
growing sources of renewable energy. Traditional rule-based and model predictive con-
trollers manage use for optimizing energy resources. Renewable energy optimization has
been examined by [125]. In this study, the Gaussian distribution was used to frame the
reward function. They compared the two DRL algorithms TD3 and DDPG. They tested the
algorithms under both random and extreme conditions. In another work [126], the authors
proposed a DRL-based renewable energy optimization. Their goal was to produce hydro-
gen and sell it to increase revenue, and they created this model to be used in conjunction
with OpenAI Gym and Ray/RLib for deep reinforcement learning applications. They used
three algorithms including TD3, PPO, and SAC. PPO provided stable performance over the
other two algorithms.

Researchers have proposed a storage system for renewable energy based on hydrogen
using DRL [127]. They contrasted this strategy to rule-based and dynamic programming.
The DRL model outperformed the rule-based method in simulation results. They employed
the PPO method with the stochastic gradient descent (SGD) optimizer and fine-tuned
the parameters with hyperparameters. Wind energy is one of the most environmentally
friendly sources of electricity. The authors of [128] applied actor-critic RL for wind turbine
control. Wind turbines are devices that transform kinetic energy into electrical energy. The
simulation was carried out using the OpenFAST simulator. Table 6 shows how renewable
energy can be managed using RL algorithms.

Table 6. Reinforcement learning application of renewable energy.

S. No References Applications Algorithms

1 [125] Off-grid optimization of renewable energy TD3 and DDPG

2 [126] Nuclear renewable integrated energy
system optimization TD3, PPO, SAC

3 [127] Storage systems of renewable energy PPO

4 [128] Control of wind turbines Actor-Critic

4. Conclusions

In this research, we reviewed the literature on reinforcement learning. Because RL can
learn independently, it is well suited to dynamic contexts. In both critical and non-critical
applications, RL is used. Critical applications include self-driving cars, security, healthcare,
energy management systems, and finance. The non-critical applications are those such as
Gaming. RL has the potential to revolutionize energy management by allowing systems
to adapt and optimize energy use in real time. RL algorithms may use previous data to
forecast future energy demand, allowing energy systems to modify energy output and
consumption accordingly. RL-based EMS can result in more efficient energy consumption
and cost savings.
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Furthermore, by forecasting and compensating for swings in energy output, RL may
improve the functioning of renewable energy sources such as wind and solar power.
Overall, RL has the potential to increase the efficiency and efficacy of energy management
systems significantly. Most EMS applications have been tested in simulation environments.
In the future, more EMS should be implemented in real-world world settings. RL has a
broad scope in the future with the potential to enhance the energy efficiency of HVAC
systems dramatically. Still, additional research is needed to build RL algorithms that can
manage the complexity and unpredictability of real-world HVAC systems.

Recommendation systems built with RL work effectively and have high prediction
accuracy. In security-related work, RL is used in a simulated environment, but it may be
used in the real world in the future. With the help of RL, gaming applications are expanding.
RL is also being used in financial applications. More works have been published in trading
applications using RL, but fewer papers have been published about credit risk analysis
using RL. In the future, RL has a broad scope for applications in all fields
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