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Abstract: Parameter estimation represents an important aspect of modeling electromagnetic systems,
and a wide range of parameter estimation strategies has been explored in literature. Most param-
eter estimation methodologies make use of either time-domain or frequency-domain responses as
measured from the terminals of the device under test. Very limited research has, however, been
conducted into exploring the use of modal decomposition strategies on the time-domain waveforms
for parameter estimation applications. In this paper, the use of Empirical Mode Decomposition
for estimating the parameters of a three-section lumped parameter transformer model is explored.
A novel approach is proposed to define the optimization cost function in terms of the intrinsic modes
of simulated time-domain waveforms. The results are compared with results obtained using classical
time-domain and frequency-domain approaches. It is shown through an impulse response test that
weighting the modes obtained from the Inferred Empirical Mode Decomposition approach presented
in this work offers advantages in terms of accurately representing the target model transfer function
dynamics and can assist in interpreting the various dynamic modes associated with the target model.

Keywords: winding model; parameter estimation; particle swarm; empirical mode decomposition

1. Introduction

The harmonics introduced by inverter-based renewable generation mean that trans-
formers are being operated at voltages with a high level of high-frequency harmonic
content [1]. This creates a need for accurate wideband equivalent-circuit transformer
models that represent the expected transfer function characteristics under these operating
conditions, especially for simulation studies aimed at characterizing system behavior. Ad-
ditionally, being able to model transformer responses during transient conditions allows for
early detection of failure and electrical faults using techniques such as Frequency Response
Analysis (FRA) [2]. Aguglia [3] highlights that a model with good parameter accuracy is
important to a transformer designer, while for control purposes, an accurate mathematical
model relating the input to the output of a system is sufficient.

High frequency modeling of transformer windings ideally requires distributed wind-
ing models. These models are, however, commonly approximated using lumped-parameter
equivalent circuit models, and the topologies of these lumped parameter models have
been studied extensively in literature [4,5]. Various methodologies have been proposed
for estimating the parameters of wideband transformer models. Keyhani [4,6] performed
maximum likelihood estimation on a six-section transformer winding model and con-
cluded that unique solutions can only be estimated if the initial values are close to the
target values, or if sectional voltage measurements were included. Brozio [5] used
a constrained Sequential Quadratic Programming (SQP) optimization algorithm to estimate
the parameters of a two-winding power transformer from measured frequency responses.
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Time-domain signals were not employed due to computational limitations, and the overall
simplicity of representing the frequency responses analytically. In a more recent contribu-
tion, Chanane [7–9] applied metaheuristic optimization algorithms, such as Particle Swarm
Optimization (PSO) [10], Crow Search Optimization (CSO) [11], and Grey Wolf Algorithm
(GWA) [12], to estimate the parameters of a fully interleaved continuous-disc winding. The
parameter estimation process was simplified by making use of measured values for the DC
resistance, equivalent inductance, and effective capacitance of the transformer winding.

Empirical Mode Decomposition (EMD), proposed by Huang, represents a methodol-
ogy for decomposing a multi-modal signal into simpler components known as Intrinsic
Mode Functions (IMFs), which can be used to extract features from nonlinear and non-
stationary waveforms [13,14]. Alternative noise-assisted EMD methods, such as Ensemble
Empirical Mode Decomposition (EEMD) and signal masking techniques, have been sub-
sequently proposed to address the issue of mode-mixing [13–15]. EMD and variations
thereof have been used extensively in literature for transformer vibration analysis [16–19].
No existing research applies EMD in the parameter estimation of transformer winding or
complete transformer models.

This paper investigates the use of EMD for estimating the parameters of a three-section
lumped-parameter transformer winding model. The main research objective of the work
is to explore how the classical parameter estimation methodologies can be amended to
incorporate EMD, and whether EMD can improve the performance of these approaches. As
a second objective, the work investigates the performance of the Pseudo-Random Impulse
Sequence (PRIS) [20–22] for the parameter estimation of transformer models.

The model is perturbed using a PRIS, and the simulated time-domain voltage wave-
forms of the winding are decomposed into IMFs. A novel approach is proposed to derive
the cost function from these IMFs, the approach is further expanded to investigate weight-
ing of the derived intrinsic modes. The accuracy of the estimated model parameters is
interpreted by comparing the impulse responses of the targeted and estimated models in
addition to consideration of classical error metrics.

This paper is structured as follows. In Section 2, the transformer winding model
used for the study is presented together with its analytical input impedance frequency
response. Section 3 presents the PRIS source used to perturb the transformer winding.
Section 4 discusses the parameter estimation methodologies being applied. The different
cost function formulations used for the parameter estimation algorithm are presented in
Section 5. Section 6 presents the results obtained from the different parameter estimation
approaches. Additional analysis and results are also presented to provide insight into the
results. The paper is concluded in Section 7 with recommendations for further research.

2. Transformer Winding Model

The investigation targets the model proposed by Chanane [8] for a fully interleaved
continuous-disc winding with 5 discs, consisting of 30 turns per disc, of copper conduc-
tor with a cross-sectional area of 10 mm2. The winding features an insulated core with
insulation thickness and duct spacing corresponding to a 30 kV insulation rating. Figure 1
shows the model topology, while Table 1 summarizes the target model parameters used
by Chanane and in this investigation [8]. The model has a total of 16 parameters to be
estimated. These can, however, be reduced by assuming that the winding sections have
the same physical dimensions such that R1 = R2 = R3 = Rs and L1 = L2 = L3 = Ls. The
dimensions between sections are also assumed to be similar, and thus C12 = C23 = C34 = Cs.
It is furthermore assumed that the capacitances from the individual sections to ground are
equal, aside from the sections closest to the grounded core and tank, which is assumed to be
half the ground capacitance, so Cg1 = Cg4 = Cg

2 and Cg2 = Cg3 = Cg. These assumptions are
used extensively in literature and have shown to accurately model the wideband responses
of the transformer winding [7–9,23–25].
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Figure 1. Three-Section Lumped Parameter Winding Model [8].

Table 1. Parameter values for the model shown in Figure 1.

Rs Cs Cg Ls K12 K13 K23

83 mΩ 970 pF 1.6 nF 181 µH 0.8792 0.8729 0.8564

Analytical Input Impedance Frequency Response

The input impedance Zi(s) of the circuit model shown in Figure 1 can be derived from
the impedance matrix Z of the model, using the relationship

Zi(s) =
Vin(s)
Iin(s)

=
∆Z

CZ(7,7)
, (1)

where ∆Z denotes the determinant of Z and CZ(7,7) denotes the (7,7)-th cofactor of Z. The
resulting analytical expression for the transfer function Zi(s) can be expressed in the form

Zi(s) =
α1s5 + α2s4 + α3s3 + α4s2 + α5s + α6

β1s6 + β2s5 + β3s4 + β4s3 + β5s2 + β6s + β7
, (2)

where α and β denote constant coefficients defined in terms of the circuit parameters.

3. Target Model Perturbation

The winding model is excited at the terminals in MATLAB Simulink using the PRIS
perturbation arrangement presented in Figure 2. The operation of the PRIS source is
extensively discussed in literature [20–22], it is shown that the spectral content and SNR
of the PRIS source is controllable. The controllability makes it well suited for exciting
electromagnetic equipment such as transformer systems where direct current or low-
frequency components of the perturbation signal are undesirable as these can lead to core
saturation [20–22]. The RLC values of the source, i.e., Rpris = 150 Ω, Lpris = 4 mH and
Cpris = 1 µF, are obtained by following the source design considerations presented in [20],
and VDC = 100 V.

The PRIS is generated using a Pseudo-Random Binary Sequence (PRBS) clock fre-
quency, fclk, of 100 kHz, and a 12th order topology for frequency response measurements
and a 6th order topology for time-domain measurements. The higher order PRBS for the
frequency-domain measurements is required to accommodate a high frequency resolution
over a wide frequency band. Figure 3 shows typical simulated time-domain waveforms of
the input voltage and input current, together with the PRBS gating signals. The simulation
is run for three 6th order topology cycles. In order to remove the effects of the initial
transients in the simulation, only the last sequence is captured for analysis.
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Figure 2. PRIS Test Arrangement to Perturb the Three-Section Winding Model.
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Figure 3. Typical Simulated Input Voltage and Input Current Waveforms.

4. Parameter Estimation Methodology

The parameter estimation approaches target the parameter vector given in (3), where
the parameters are normalized by applying the normalization constants given in (4). The
optimization bounds for parameters other than the coupling coefficients are chosen to be
an entire order of magnitude so as to assume little a priori information about the parameter
values. The coupling coefficient bounds are selected close to unity to reflect the assumption
of a well designed transformer [26]. Table 2 summarizes the bounds of the search space
adopted in the investigation.

θ = [Rs, Cs, Cg, Ls, k12, k13, k23] (3)

θnorm = [10−3, 10−12, 10−9, 10−6, 10−2, 10−2, 10−2] (4)

Table 2. Parameter Boundary Constraints.

Parameters Rs Cs Cg Ls K12 K13 K23

Lower
Bound 1 1 1 1 85 85 85

Upper
Bound 1000 1000 1000 1000 95 95 95

Figures 4 and 5 present an overview of the parameter estimation strategies imple-
mented in the investigation. In simulation, the target model is perturbed using a PRIS
source [20]. In practice, it cannot be guaranteed that the time-domain samples obtained
from the device under test align perfectly with the samples obtained through simulation of
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the estimated model. Two strategies to align these time-domain waveforms are considered.
The first strategy, as presented in Figures 4a and 5a, uses the sampled input current, iin(t),
produced during the target model perturbation as an input to the estimated model. The
second strategy, as presented in Figures 4b and 5b, simulates the target and estimated model
PRIS perturbation arrangements separately, and then aligns the waveforms by aligning the
bipolar PRBS voltages produced by the H-Bridge, vprbs(t), in each simulation.

The initial studies considered various optimisation algorithms, including interior-
point, patternsearch, particle swarm and genetic algorithm. The particle swarm optimiza-
tion algorithm, which is a global solver that generates a population of points to find a global
minimum in a widely bounded search space, is used throughout the investigation [8]. The
algorithm is chosen based on the assumption that limited a priori knowledge is available on
the model parameters to be estimated and the superior runtimes in comparison to the ge-
netic algorithm. The algorithm runs 250 search iterations, with a population of 1000 points
generated using a random seed. After the global optimization procedure is completed, the
optimization results are refined using a local solver, fmincon. The classical time-domain
approach to parameter estimation, whereby the measured output voltage waveforms from
the target and estimated models are compared and used in a cost function formulation, is
presented in Figure 4.

Figure 5 presents the proposed EMD approach, whereby the time-domain voltage
waveforms are first decomposed into IMFs, from which the cost function is derived. Cost
functions defined in terms of both Root Mean Squared Error (RMSE) and correlation
coefficient (ρ) based metrics are implemented for all approaches.

Three implementations of modal decomposition are investigated. The first performs
standard EMD on the target model and estimated model voltage waveforms, and formu-
lates the cost function in terms of the resulting IMFs and residuals. The second computes
inferred IMFs to represent the estimated model, from which the cost function is derived.
The third derives the cost function from weighted inferred IMFs to represent the esti-
mated model.

(a)

(b)

PRIS
Perturbation

PRIS
Perturbation

Target Model

Estimated Model

Target Model

Estimated Model

Particle Swarm
Optimization

Particle Swarm
Optimization

Cost Function

Cost Function

Align Waveforms

PRIS
Perturbation

Figure 4. Classical Time-domain Parameter Estimation Methodology: (a) Alignment Strategy 1 and
(b) Alignment Strategy 2.
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Figure 5. Time-domain Modal Decomposition Parameter Estimation Methodology: (a) Alignment
Strategy 1 and (b) Alignment Strategy 2.

5. Parameter Estimation Cost Function Formulations
5.1. Frequency-Domain Approach

To validate the Simulink model, the frequency response of the input impedance of the
target model is obtained from the simulated input voltage and input current signals during
PRIS perturbation using Welch’s method [27], and compared to the analytical frequency
response. Figure 6 shows the frequency responses of the input impedance of the target
model obtained analytically and through perturbation. The responses exhibit a strong
correlation between the analytical and estimated frequency responses.
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Figure 6. Frequency Responses of the Input Impedance of the Target Model Obtained Analytically and
Through Perturbation [28]. (© 2023 IEEE. Reprinted, with permission, from EEEIC/I&CPS Europe).
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For the frequency-domain parameter estimation, the RMSE based cost function, Cz
rmse,

is calculated as

Cz
rmse =

√√√√ 1
Nk

Nk

∑
k=1

(ε(ωk))2, (5)

where

ε(ωk) = log10 Zi(ωk)− log10 Z̃i(ωk), k = 1, ..., Nk. (6)

The error ε(ωk) between the input impedance frequency responses of the target model
Zi(ω) and estimated model Z̃i(ω) is calculated on a point-by-point basis for each frequency
sample up to Nk samples. The sample frequencies ωk are distributed logarithmically such
that the contributions from ε(ωk) to the cost function are distributed equitably across the
frequency range of interest.

The correlation coefficient metric is used to compute the correlation based cost function,
Cz

ρ, as

Cz
ρ = −ρ{Zi(ω), Z̃i(ω)}+ 1 (7)

by adjusting the correlation coefficient, ρ, between Zi(ω) and Z̃i(ω) such that a value of
zero represents a perfect match in frequency responses.

5.2. Time-Domain Approach

The time-domain target voltage waveform, shown in Figure 3, is defined by vin(t).
The cost function using the RMSE metric, Cv

rmse, is calculated as

Cv
rmse =

√√√√ 1
Nk

Nk

∑
k=1

(ε(tk))2, (8)

where

ε(tk) = vin(tk)− ṽin(tk), k = 1, 2, ..., Nk. (9)

The errors between the voltage waveforms of the target model vin(t), and estimated
model ṽin(t) are calculated on a point-by-point basis for each time sample tk up to Nk samples.

Similar to the frequency-domain approach in (7), the correlation coefficient based cost
function, Cv

ρ , is defined in terms of the correlation between the target and estimated voltage
waveforms as

Cv
ρ = −ρ{vin(t), ṽin(t)}+ 1. (10)

5.3. Empirical Mode Decomposition Approach

The simulated time-domain voltage waveform shown in Figure 3 is decomposed into
IMFs using EMD [13]. This yields six IMFs and one residual, as shown in Figure 7.

The voltage waveforms associated with the target model and estimated model, de-
noted by v(t) and ṽ(t), respectively, can be represented by the relationships

v(t) =
Ni

∑
i=1

vm
i (t) + vr(t) (11)

and
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ṽ(t) =
Ñi

∑
i=1

ṽm
i (t) + ṽr(t), (12)

where vm
i (t) and ṽm

i (t) denote the ith IMFs, Ni and Ñi denotes the total number of IMFs, and
vr(t) and ṽr(t) denote the residuals, of the target model and estimated model, respectively.
The IMFs and residuals for the target model and estimated model are represented by the
sets Γ and Γ̃, respectively. The set sizes of the target model and estimated model are denoted
as Nr and Ñr, respectively, as shown in (13) and (14).

Γ = {γr(t)r = 1, 2...Nr} (13)

Γ̃ = {γ̃r(t)r = 1, 2...Ñr} (14)
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Figure 7. Target Model Voltage Intrinsic Mode Functions [28]. (© 2023 IEEE. Reprinted, with
permission, from EEEIC/I&CPS Europe).

The set with fewer IMFs is padded with zeros such that the sets are of equal length
and can be compared.

The Normalized RMSE (NRMSE) based cost function, Cm
nrmse, for the Empirical Mode

Decomposition approach is calculated as

Cm
nrmse =

Nr

∑
r=1

1
ψr

√√√√ 1
Nk

Nk

∑
k=1

(εr(tk))2, (15)
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where

εr(tk) = γr(tk)− γ̃r(tk). (16)

The error εr(tk) is thus defined as the difference between the rth waveforms in sets Γ
and Γ̃ at sample time tk.

The respective errors are then normalized by applying the normalization constant

ψr = max{γr(t)} −min{γr(t)}, (17)

where max{γr(t)} and min{γr(t)} denote the maximum and minimum amplitudes of the
rth target IMF waveform, respectively. This normalization is required to counter biasing
of the cost function towards waveforms with higher amplitude, as the measurement set
consists of waveforms with varying amplitudes. The normalization constant is omitted in
cases when the target data set is zero-padded as it results in a ψr = 0.

In the case of the correlation coefficient based cost function, the larger set between
the target and estimated sets is truncated to the length of the shorter set, denoted by Ns,
as correlation coefficient metrics do not allow for zero-padded waveforms. Due to this
manipulation, a variance occurs in the number of IMFs from iteration to iteration in the
optimization procedure, and the result is thus normalized by Ns. The correlation coefficient
based cost function, Cm

ρ , is thus defined as

Cm
ρ =

1
Ns

Ns

∑
r=1

[−ρ{γr(t), γ̃r(t)}+ 1]. (18)

5.4. Inferred Empirical Mode Decomposition

In this method, the IMFs produced by the estimated waveforms are never computed.
Instead, a set of inferred IMFs (iIMFs) is produced to represent the estimated model. The
target model set, Γ, remains the same as in (13). The rth iIMF, ṽi

r(t), for the estimated
model voltage waveform, ṽ(t), and is determined by subtracting waveforms 1 to r− 1 and
waveforms r + 1 to Nr in Γ from ṽ(t). This is represented by the relationship

ṽi
r(t) =ṽ(t)−

r−1

∑
k=1

γk(t)−
Nr

∑
k=r+1

γk(t). (19)

The estimated model set, while in the same form as in (14), consists of the iIMFs of the
estimated voltage waveform as given in (19). The number of iIMFs produced is always the
same as the number of target IMFs, and the length of Γ̃ thus becomes Nr, such that

Γ̃ = {γ̃r(t)r = 1, 2...Nr}. (20)

This decomposition approach creates a set of iIMFs that each contain the error dynam-
ics of the estimated signal, whilst also containing the corresponding target IMF dynamics
that are present in the estimated waveform. The cost function for the NRMSE based metric
is calculated as

Ci
nrmse =

Nr

∑
r=1

1
ψr

√√√√ 1
Nk

Nk

∑
k=1

(εr(tk))2, (21)

where the errors, εr(tk), and normalization constants, ψr, are defined as in (16) and (17),
respectively.
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The correlation coefficient based cost function in the context of the Inferred EMD
(IEMD) approach does not require truncation of the IMFs nor normalization. The cost
function Ci

ρ is thus reduced to the form

Ci
ρ =

Nr

∑
r=1

[−ρ{γr(t), γ̃r(t)}+ 1]. (22)

5.5. Weighted Inferred Empirical Mode Decomposition

In this approach, the set of correlation coefficients between the target model IMF
waveform and the respective iIMF waveform of the estimated model are weighted using
a binary weighting vector, v(r). The weighted correlation coefficient cost function is
defined as

Cwi
ρ =

Nr

∑
r=1

v(r)[−ρ{γr(t), γ̃r(t)}+ 1], (23)

where v(r) is set to either 0 or 1 for the rth waveform in both the target model and estimated
model sets. This allows various combinations of correlation coefficients between the IMFs
and iIMFs to be included in the cost function formulation. The residual IMF waveform in
the set of target model IMFs predominantly contains low-order dynamics. It is expected
that the model parameters to not have a significant effect on the low-frequency dynamics,
as the resonant points are located above 10 kHz. The residual IMF is therefore excluded in
the weighted cost function formulation.

6. Results

Table 3 presents the results of the frequency-domain parameter estimation investiga-
tions, while Table 4 presents the results of the parameter estimation investigations that
utilise the time-domain, EMD and IEMD waveforms. The results are presented as param-
eter error percentages, where the error (err%) of the respective parameters is calculated
using the relationship

err%(n) =
θ(n)− θ̃(n)

θ(n)
× 100 [%], (24)

where θ̃ denotes the final estimated parameter value and θ denotes the target value of the
parameter, as presented in Table 1.

Table 3. Estimated Parameter Error Percentages obtained through the Frequency-Domain Approach.

Approach Frequency-Domain
Cost Function Cz

rmse Cz
ρ

Rs (err%) −242.50 45.23
Cs (err%) −3.09 −0.50
Cg (err%) 0.67 37.50
Ls (err%) 2.55 −40.25

K12 (err%) −8.83 −3.73
K13 (err%) 0.03 -8.80
K23 (err%) −5.29 −6.70

Runtime (h) 29.88 11.81

The frequency-domain RMSE based optimization yields errors below 10% for all
parameters aside from Rs. Parameter Rs does not influence the cost function significantly,
as it predominantly affects the damping at the resonant points of the frequency response. In
considering Tables 3 and 4, it is observed that the run times of frequency-domain parameter
estimation, in most cases, are longer compared to time-domain and modal decomposition
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based approaches. This is attributed to the need for longer simulation times to obtain a
high frequency resolution over a wide frequency band.

It is clear from Table 4 that cost functions using the EMD approach are not able to
obtain parameters as accurately as the classical time-domain approach. This is attributed to
the content within each IMF being dependent on the dynamics present in the original signal.
EMD does not guarantee the presence of specific modes within a specific IMF. Although
the presence of certain modes within the estimated waveform may be correct, it cannot
be predicted which IMF these will be decomposed into. This characteristic makes the
optimization challenging when only comparing the nth IMF of the target with the nth IMF
of the estimated waveforms. The EMD approach is thus very sensitive to minor changes
in the time-domain waveforms, thereby making the search space extremely stochastic, as
shown in Figure 8. Figures 8–11 present graphical representations of some of the search
spaces. The figures are created by incrementally moving the parameter away from its target
value by 0.2%. The search spaces are one-dimensional, meaning that each parameter is
varied individually whilst all others are kept at their target values. For legibility purposes
Figures 8–11 show the cost function as Rs, Cs, Cg and Ls are varied. Figure 8 shows the
search space of Cm

nrmse generated using the first alignment strategy, but this stochasticity is
typical of all of the search spaces generated using the EMD approach.

Table 4. Estimated Model Parameter Error Percentages obtained through the Time Domain Approaches.

Approach Time-Domain Empirical Mode Decomposition Inferred Empirical Model Decomposition

Alignment Strategy 1 Strategy 2 Strategy 1 Strategy 2 Strategy 1 Strategy 2

Cost Function Cv
rmse Cv

ρ Cv
rmse Cv

ρ Cm
nrmse Cm

ρ Cm
nrmse Cm

ρ Ci
nrmse Ci

ρ Ci
nrmse Ci

ρ

Rs (err%) 1.14 83.13 −392.75 4.62 36.90 −941.37 −575.99 −395.22 1.14 −84.61 −392.63 −101.221
Cs (err%) −1.91 47.17 −2.01 −0.93 −3.03 25.25 −2.30 −3.03 −1.91 21.58 0.99 10.62
Cg (err%) −0.59 −723.11 1.30 8.31 −59.55 37.50 −33.19 34.50 −0.59 −3.74 −0.17 −1.45
Ls (err%) 1.73 86.26 1.90 −8.80 33.47 −51.22 26.99 −74.00 1.73 −0.91 1.77 1.47

K12 (err%) −4.78 −4.85 −3.60 2.31 −5.03 0.42 −5.03 −5.66 −4.78 0.67 −1.15 −2.24
K13 (err%) −3.15 −5.45 2.63 1.15 2.50 −3.10 −7.94 0.33 −3.15 1.88 −3.64 2.43
K23 (err%) 0.53 −8.03 −8.63 −4.93 −0.50 −0.41 −6.46 0.65 0.53 0.74 −3.66 −6.36

Runtime (h) 12.32 4.31 6.66 6.22 5.92 1.76 14.65 9.07 8.33 8.87 6.72 9.49
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Figure 8. Empirical Mode Decomposition Cost Function Cm
nrmse versus Distance from the Target

Model Parameter [28]. (© 2023 IEEE. Reprinted, with permission, from EEEIC/I&CPS Europe).

The RMSE based cost functions using the first alignment strategy for the classical
time-domain and IEMD methodologies converge to the same parameter values. This is
attributed to the search spaces being very similar with slight differences in amplitude. The
IEMD approach does, however, provide a noticeable improvement in runtime, as well as



Energies 2023, 16, 1668 12 of 16

lower error percentages when comparing the results of the second time-domain alignment
strategy. The IEMD search space of the NRMSE based cost function, Ci

nrmse, using the first
alignment strategy is shown in Figure 9. The lower parameter errors obtained through
the time-domain and IEMD approaches, in comparison with the EMD approach, can be
attributed to the overall downward trend in the cost function as the parameter values range
closer to the target model parameters in Figure 9, as opposed to the stochastic search space
shown in Figure 8.
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Figure 9. Inferred EMD Cost Function Ci
nrmse versus Distance from the Target Model Parameter [28].

(© 2023 IEEE. Reprinted, with permission, from EEEIC/I&CPS Europe).

In the case of correlation coefficient based cost functions, the time-domain and IEMD
approaches converge to different results, where the IEMD approach obtains parameter
values with lower error percentages in alignment strategy 1. This can be attributed to
the correlation based cost function formulations Cv

ρ and Ci
ρ producing different search

spaces, where the IEMD search space of alignment strategy 1, shown in Figure 10, places
equal emphasis on all modes of the system. The weighted IEMD approach is introduced
to investigate whether using different combinations of target IMFs and estimated iIMFs
can assist in improving the parameter estimation results. This investigation is limited to
binary weights that either include or exclude certain IMFs and iIMFs from the cost function
formulation. The parameter estimation procedure is executed for all possible weighting
combinations for the vector v(r). The best result is presented in Table 5.

The best results for alignment strategy 1 are obtained with v(r) = [1, 1, 0, 0, 0, 0, 0],
whilst the best results for alignment strategy 2 are obtained with v(r) = [0, 1, 0, 1, 0, 1, 0]. The
weighted IEMD approach cycles through all possible weighting options and completes the
parameter estimation procedure for each option. The runtimes are, therefore, significantly
longer in comparison with the approaches presented in Tables 3 and 4. In comparison
with the error percentages achieved with the correlation coefficient based IEMD approach,
there is improvement in the resistive, inductive, and coupling elements of the model
using alignment strategy 1, by only including the higher order dynamics of the first and
second IMF. Alignment strategy 2 yields no significant improvement in the individual
parameter error percentages by comparing only the 2nd, 4th, and 6th IMFs and iIMFs. The
search space in Figure 11 is generated using the weighted IEMD approach cost function
formulation for time-domain alignment strategy 2.
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Figure 10. Inferred EMD Cost Function Ci
ρ versus Distance from the Target Model Parameter [28].

(© 2023 IEEE. Reprinted, with permission, from EEEIC/I&CPS Europe).

Table 5. Estimated Model Parameter Error Percentages obtained through the Weighted IEMD approach.

Cost Function Cwi
ρ

Alignment Strategy 1 Strategy 2

Rs (err%) –52.55 –133.64
Cs (err%) 17.23 10.82
Cg (err%) –3.28 –2.11
Ls (err%) 0.038 1.62

K12 (err%) –2.35 –6.63
K13 (err%) 0.24 0.54
K23 (err%) 0.73 –2.99

Runtime (h) 297.68 487.35

Figure 11 is less stochastic compared to the search spaces generated using alignment
strategy 1. The stochasticity of the previous search spaces is due to the discretized time-
domain current waveform subsequently being used as an input to the estimated model
simulation. Due to the discretization of the current waveform, the simulated input current
to the estimated model contains less frequency content compared to the simulated current
waveform of the target model. Strategy 2 allows the estimated model to simulate the input
current over a wider range of frequencies.
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Figure 11. Weighted Inferred EMD Cost Function Cwi
ρ versus Distance from Target Parameter.
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As discussed by Keyhani [6] and Banks [22], determining unique transformer model
parameters cannot be guaranteed when only terminal measurements are available. This is
due to the fact that some of the individual parameters may not be fully observable from
terminal measurements alone. While obtaining the correct model parameters is important
for the condition monitoring of equipment, obtaining a model with a transfer function that
is representative of the device under test is adequate for many simulation purposes [3].
Therefore, in addition to considering the error percentages, the performance of the estimated
model is also interpreted by considering the impulse response. Impulse response tests are
commonly applied to linear dynamic systems in control theory to determine their time-
domain properties [29]. The ideal impulse exhibits a flat frequency response magnitude
across the entire frequency spectrum, and the impulse response represents the transfer
function of the system in the time domain. The impulse response waveforms of the
target and estimated models are generated through the inverse Laplace transform of their
analytical input impedance transfer functions. The waveforms produced by the target
model and the estimated model are compared through an RMSE metric, and the results are
presented in Table 6.

Table 6. RMSE Metrics to Cross-Validate the Performance of the Parameter Estimation Results
presented in Tables 3–5 using an Impulse Response Test.

Test Impulse Response

Alignment Strategy 1 Strategy 2

Cz
rmse 6.847 × 107

Cz
ρ 2.104 × 108

Cv
rmse 1.002 × 108 1.205 × 108

Cv
ρ 3.114 × 108 2.030 × 108

Cm
nrmse 1.646 × 108 1.867 × 108

Cm
ρ 2.535 × 108 6.648 × 108

Ci
nrmse 1.002 × 108 9.874 × 107

Ci
ρ 9.173 × 107 7.723 × 107

Cwi
ρ 9.447 × 107 6.784 × 107

With respect to the results presented in Tables 4–6 , it is clear that the lowest indi-
vidual error percentages do not always guarantee the most accurate impulse response
compared to the target model. For example, the RMSE-based cost function formulation
of the time-domain and IEMD approaches using strategy 1 yields the lowest individual
error percentages. However, in terms of the impulse response test, the estimated models
obtained from the RMSE frequency-domain, correlation coefficient IEMD, and weighted
IEMD approaches reproduce the dynamic modes of the target model more accurately. No
significant improvement in parameter error percentages is achieved when applying the
weighted IEMD approach compared to the IEMD approach when using alignment strat-
egy 2. The impulse response RMSE metrics, however, show significant improvement. This
is an indication that the model obtained through the weighted IEMD approach represents
the transfer function dynamics of the target model more accurately. This can be due to
combinations of various parameters affecting the transfer function, rather than the values
of individual parameters. It is also possible that not all parameters influence the model’s
response equitably, with some parameters influencing the overall response in the frequency
range of interest more than others. It is clear from Table 6 that the weighted IEMD approach
using time-domain alignment strategy 2 produces the lowest RMSE, highlighted in green.
It can, therefore, be concluded that this approach produces transfer function dynamics
most similar to the target model.

The best impulse response results for the different alignment strategies seem to differ,
and it is therefore not possible to form a general assumption as to which alignment strategy
is preferred.
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7. Conclusions

This paper explores the use of EMD to estimate the parameters of a three-section
transformer winding from time-domain waveforms obtained whilst applying a PRIS per-
turbation signal. A novel approach is proposed for deriving the cost function from the IMFs.

The results show that making use of standard EMD hinders the optimization procedure
and that some pre-processing of the IMFs is required to arrive at a successful result. Using
the target model IMFs and removing them from the estimated model voltage waveform to
create iIMFs produced similar results to time-domain parameter estimation approaches.
The results are cross-validated through calculating the impulse response of the target model
and estimated model for each approach. It is shown that the inclusion of a weighting vector
that includes only certain iIMFs in the correlation coefficient cost function improves the
impulse responses, and therefore the overall transfer function accuracy, of the estimated
model. It is shown that the most accurate set of model parameters does not provide the most
accurate impulse response, and, therefore, should not be the only metric of the accuracy of
a model when transfer function characteristics are the main consideration.

The research introduces a methodology for determining the optimal IMF weighting
vector by cycling through all possible combinations. The methodology proves the ap-
plication of modal decomposition in the parameter estimation of transformer winding
models. Improved modal decomposition methodologies such as Ensemble Empirical Mode
Decomposition (EEMD) and Iterative Filtering should be investigated as potential options
for further improvements to the methodology. EEMD, however, introduces a significant
additional computational burden. Determining the optimal weighting vector is, however,
time consuming. There is therefore scope to investigate other methodologies for determin-
ing a set of weighting vectors that improves the parameter estimation results obtained from
the EMD approach. In this work, the weighting vector is limited to binary values of either
0 or 1 in order to decrease complexity. Other weighting values should be investigated.
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