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Abstract: The rapid development of photovoltaic technology provides more possibilities for the
efficient application of solar energy in buildings. This research proposed a phase change material
(PCM) heat storage wall system with a “four-layer” structure. A performance test platform using
low voltage DC was built to study the mechanism of electric thermal conversion of the graphene
electrothermal film and the heat transfer characteristics of the “four-layer” structure. As shown in
the experimental results, under the voltages of 24 V, 32 V and 42 V, (1) with the increase in voltage,
the temperature of the electrothermal film increases, while its electrothermal conversion efficiency
decreases from 85% to 75%; (2) during the heat storage process, because of its latent heat storage
characteristics, the temperature of the PCM wallboard is 3~5 ◦C lower than that of the cement
wallboard, but the effective heat storage increases by 59~65%; (3) during the heat release process, the
effective heat release of the PCM wallboard increases by 41–78%, and the maximum heat storage
and release efficiency is 98%; and (4) at 32 V, the PCM can completely change phase. The theoretical
calorific value of the electrothermal film is equivalent to the hourly power generation of 1.45 m2 of
photovoltaic modules. The results provide basic data for the integration of photovoltaic and phase
change technology and their efficient application in buildings.

Keywords: photovoltaic electro-thermal system; electrothermal film; composite phase change thermal
storage heating wallboard; heat storage/release performance; comparative experiment

1. Introduction

Photovoltaic technology has become increasingly more developed [1–3] and its ap-
plication costs have decreased year on year. It is now possible to efficiently apply solar
photovoltaic technology in building energy systems. However, due to the low energy
flow density, intermittency, instability and other characteristics of solar energy, the qual-
ity of photovoltaic power is low and it is difficult to absorb sunlight [4,5]. It is of great
significance to study ways to improve the efficiency of photovoltaic power, especially the
self-consumption mode of photovoltaic power.

Previous studies on the application of solar photovoltaic technology in building energy
systems mostly used building integrated photovoltaic systems (BIPV) to provide electricity
for buildings [6–8], or used photovoltaic module cooling systems (BIPVT) to realize the
utilization of photovoltaic module waste heat in buildings [9–11].

The development of electrothermal film technology [12–14] provides the possibility
for the application of solar photovoltaic technology. Xin Meng et al. [15] used 3D graphene-
based composite materials to construct a film with high electrical and thermal conductivity.
When the input voltage was 10 V, the film showed excellent electrical heating performance
at 315 ◦C and a heating rate of 44.9 ◦C/s. Guoqin Leng et al. [16] proposed a new porous
carbon fiber electrothermal material connected by the inorganic compound aluminum
phosphate (CKFC), and combined it to prepare a CKFC/PA composite material. It could
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quickly raise the temperature to 45 ◦C within a safe voltage and delay the heat release.
Deju Zhu et al. [17] developed an electric floor heating system with carbon fiber tape (CFT)
embedded in cement mortar. It could quickly heat indoor air with a floor temperature rise
rate of 1.83 ◦C/min and a heat flux of 16.31 W/m2 at a voltage of 24 V.

Phase change materials (PCMs) have become a highly researched and widely used
material because they can store or release a large amount of latent heat in a very small tem-
perature range. They are also indispensable functional materials for the efficient application
of renewable energy. Barrio et al. [18] conducted a comparative experiment of floor radiant
heating with NPG phase change materials and ordinary concrete in a thermostatic chamber.
The results showed that floor radiant heating with phase change materials was more effi-
cient at regulating temperature. Barbara Larwa et al. [19] conducted an experimental and
numerical study on a circulating floor radiant heating system integrated with phase change
materials. The results showed that the heat flux of the floor could be effectively enhanced
by arranging the phase change materials under the heating pipes and using wet sand as
the floor filling material. Guan Yong et al. [20] designed a phase change heat storage wall
composed of a phase change material layer, a middle bearing layer and an outer insulation
layer, and studied the effect of the wall on improving the thermal environment of a solar
greenhouse. The experimental results showed that the surface temperature of the north
wall of the experimental greenhouse increased on average from 2.1 to 4.3 ◦C at night. The
average soil temperature of the plough layer increased from 0.5 to 1.4 ◦C. Additionally,
the average temperature of the indoor environment increased by 1.6~2.1 ◦C. The experi-
mental results of an active-passive solar phase change heat storage ventilation wall system
proposed by Ling Haoshu et al. [21–24] showed that the heat storage capacity of the wall
increased by 35.27~47.89% and the heat release capacity increased by 49.93~60.21%.

In order to conveniently evaluate the thermal performance of a building structure con-
taining PCMs, Yuan Zhang et al. [25] established two mathematical evaluation parameter
models by using the finite difference method. The thermal performance database of the
building envelope filled with PCMs covered 2401 different configurations. The average
relative error of the model was 7.7%. While modeling with EnergyPlus, Fan Feng et al. [26]
considered the influence of the thermal hysteresis effect in the melting and solidification
process of PCMs on their calculation results. The study improved the calculation accuracy
of the model. Maria T. et al. [27] simulated and evaluated an in-floor solar-assisted heat-
ing system based on a PCM. The PCM was laid under the heating water pipe, the solar
collector area was set to 20 m2, and the storage tank volume was set to 1 m3, which was
the best design scheme of the system. The design increased the indoor temperature by
about 0.8 ◦C. Xiaoqin Sun et al. [28] applied distributed photovoltaics to provide power for
the air conditioning system of a building. An insulation board encapsulated with phase
change materials was embedded into the building wall to reduce the energy consumption
of the air conditioning. The experimental results showed that the use of 5.2 vol% PCM in a
building with an area of 6.25 m2 reduced the carbon emissions by 11.58 kg.

Previous studies have either focused on the phase change thermal storage of the
combination of a solar energy system and the building system, or on the phase change
thermal storage of the constant electricity photovoltaic power supply for building envelopes.
However, there are some problems, such as the large loss of surplus electricity and the high
economic cost of constant electricity photovoltaic systems.

Therefore, this study proposes the design of a photovoltaic electricity–heat direct-
driven composite phase change thermal storage heating wall. The system converts low-
voltage DC generated by a photovoltaic system into heat energy through an electrothermal
film. Additionally, PCMs realize low-cost and high-efficiency self-consumption of photo-
voltaic power. Combined with the previous research results and experimental research
methods, this work deeply studied and identified the electro-thermal conversion char-
acteristics of a graphene, flexible, low voltage, electrothermal film. These included the
surface temperature of the heating fibers of the electrothermal film, the change in the
electro-thermal conversion efficiency and the change in key influencing factors. This paper
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analyzed and established the heat transfer mechanism and variation law of a composite
phase change heat storage wallboard, including the heat transfer characteristics of a PCM
and its influence on the temperature field and the heat storage/release performance of the
composite phase change heat storage wallboard. This research provides the basic data and
a design method reference for the efficient application of solar photovoltaic electro-thermal
phase change thermal storage walls in building energy systems.

2. Solar Photovoltaic Electric-Thermal Wall
2.1. Wall Construction Concept

A solar greenhouse is a semi-enclosed agricultural building composed of walls (north,
east and west walls), a rear roof, a front roof, soil and ground [29]. Studies [20] have shown
that one-third of the solar energy entering the greenhouse through the front roof will be
projected to the north wall of the greenhouse. The area of the north wall is much larger than
that of the east and west gables, about five times as much. Therefore, in previous studies,
our research group has organically integrated solar air heat collection technology and phase
change heat storage technology, proposing a solar active-passive “three-layer” structure
composite phase change thermal storage wall system [30,31] (Figure 1). The wall was built
with a phase change material layer on the inner surface, an air channel and a building block
brick layer in the middle and a heat insulation layer on the outer surface. The structure
maximizes the heat collection and heat storage functions of the north wall, and in particular
plays the role of a “radiator” at night. Thereby, the purpose of active-passive heat storage
of the wall body of the solar greenhouse in winter and improvement of the guarantee of a
thermal environment of the solar greenhouse are achieved.
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Figure 1. Structure of the solar active-passive “three-layer” composite phase change heat storage wall.

A large number of practical application results have shown that the multi-curved
double-tube air collector [30] developed by our research group has a high heat collection
efficiency. However, the higher the outlet air temperature of the collector, the greater the
progressive temperature drop. The actual effective heat collection efficiency of the collector
was not at a high level. In addition, due to the structural characteristics of the air collector
and the low air density and specific heat, the air flow handled by the collector was also very
limited. The actual heat collection was too small. Moreover, most collectors are used in
winter. The utilization rate and the economical profits of the equipment are not high [32,33].

In Figure 2, if the power generation efficiency of monocrystalline silicon solar pho-
tovoltaic modules used in Beijing is calculated as 17%, a single photovoltaic module
(2094 mm × 1038 mm) provides 1.1 kWh a day. This is promising for applications in solar
greenhouses. Therefore, this study proposed a design concept of a “four-layer” struc-
ture composite phase change thermal storage heating wall based on a solar photovoltaic
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electricity-heat system, which would be applied to solar greenhouses (Figure 3). The solar
photovoltaic module replaced the air heat collection system in Figure 1. Electrothermal film
replaced the air channel in Figure 1. During the heating period in winter, the low-voltage
direct current generated by the photovoltaic system is transmitted to the electrothermal
film. The film converts electric energy into heat energy and stores it in the composite
phase change heat storage wall body with the function of a heat reservoir or a heat switch.
At night, the wall heats the solar greenhouse by means of convection and radiation heat
exchange. In other seasons, photovoltaic power is used to supply power for agricultural
production machinery. It achieves the purpose of self-consumption of photovoltaic power
for self-use and efficient utilization of photovoltaic equipment throughout the year. At
present, the PV modules produced in China are about 2 RMB/W (RMB 1 ≈ USD 0.15). The
electric heating film is about 80 RMB/m2. The phase change material is about 27 RMB/kg.
Additionally, the cement is about 5 RMB/kg. The comprehensive cost is basically the same
as that of the solar active-passive “three-layer” structure composite phase change heat
storage wall in Figure 1. However, the photovoltaic system can be used throughout the
year, while the heat collection system has only 30% utilization rate throughout the year.
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2.2. Wall Thermal Performance Evaluation Index

(1) Wall layer temperature

The wall temperature is one of the key parameters that reflects the thermal performance
and heating capacity of the wall [34]. Figure 4 shows the experimental results of the inner
surface temperature of the active-passive “three-layer” structure composite phase change heat
storage wall from November to December 2022 in a solar greenhouse (Beijing, China).
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(2) Wall heat storage/release

The heat storage/release of the composite phase change heat storage wall is divided
into sensible heat and latent heat. For phase change materials, the concept of equivalent
specific heat [35] is used to evaluate their latent heat storage capacity. Therefore, the
storage/release of sensible heat and latent heat of the wall can be calculated according to
Formula (1).

Qd =
∫ t|τ=τend

t|τ=τstart

ρc(t)·Vdt, (1)

where Qd is the heat storage/release (J/m3); ρ is the density (kg/m3); c is the specific heat
(including the equivalent specific heat of the phase change material) (J/kg ◦C); τstart is the
initial time of heat storage or release (s); τend is the termination time of heat storage or
release (s); and V is the wall volume (m3).

(3) Wall heat storage/release efficiency

The ratio of heat release to heat storage of the wall is recorded as the heat storage and
release efficiency. It is used to evaluate the effective utilization rate of heat storage of the wall.

(4) Electrothermal conversion efficiency of electrothermal film

The ratio of the effective calorific value to the theoretical calorific value of the elec-
trothermal film is called the electrothermal conversion efficiency (η) of the electrothermal
film. It is used to evaluate the electric heating performance of the electric heating film. Ob-
viously, the larger the value is, the stronger the effective heating ability of the electrothermal
film. That is,

η =
Qact

P
, (2)

where Qact is the effective calorific value of the electrothermal film (kJ), which refers to
the actual calorific value after deducting the loss of the electrothermal film due to its own
material characteristics, and P is the theoretical calorific value of the electrothermal film
(calculated according to Formula (3)) (kJ).

P = UI, (3)
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where U is the input voltage of the film (Volts) and I is the input current (Amperes).

3. Construction of Test Platform
3.1. Electrothermal Performance Test Platform of Electrothermal Film
3.1.1. Experimental Overview

In this experiment, a graphene, low-voltage, flexible, electrothermal film (referred to as
an electrothermal film), which is relatively well-established, low cost and widely applied in
China, was selected as the experimental object. The electrothermal film consists of a copper
current-carrying strip, graphene heating fibers and a polyester net. The distance between
the two current-carrying strips is 750 mm, the diameter of the heating fibers is 0.68 mm
and the space between the heating fibers is filled with a polyester mesh at a distance of
20 mm (Figure 5). The electrical characteristics of the electrothermal film follow Ohm’s law.
Each graphene heating fiber is both a resistance element and a heating element.
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3.1.2. Experimental Conditions

In order to grasp the electrothermal conversion characteristics of the electrothermal
film for solar photovoltaic power, an electrothermal performance test platform (Figure 6)
was built in this study. It could investigate the electrothermal conversion characteristics of
a single heating fiber and multiple heating fibers in parallel.
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Figure 7 shows the volt–ampere characteristics of the solar PV module. When the
output voltage is less than 42 V, the output current of the photovoltaic module is relatively
stable and is hardly affected by the change in the output voltage. The output power
increases linearly with the increase in the output voltage. On the contrary, the output
current and power both decrease sharply and approach zero when the voltage is 50 V. The
working voltage and current of the PV module vary with the load resistance. If the load
resistance value is selected to maximize the product of the output voltage and current, the
maximum output power (Pm) can be obtained. The corresponding operating voltage and
current are the optimum operating voltage (Um) and the optimum operating current (Im),
respectively [36]. The results show that the optimum operating voltage of the solar cell is
about 42 V when the solar radiation reaches 200~600 W/m2.
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Considering the volt–ampere characteristics of the solar photovoltaic module and
the safety of the electrothermal film, the input voltage of the electrothermal film is 45 V,
the maximum safe length is 2 m and the power per unit area is 750 W/m2. The relevant
experimental conditions are shown in Table 1. The experimental process was as follows:
(1) The input voltage for a single heating fiber was changed every 4 min. The surface
temperature of the heating fiber was studied under different voltage and power conditions.
(2) The input voltage of the electrothermal film was changed according to the different
length of the electrothermal film (the number of parallel heating fibers). The surface
temperature and electrothermal conversion characteristics were studied under different
voltage and power conditions.

Table 1. Experimental conditions of electrothermal film.

Case 1 Case 2 Case 3 Case 4 Case 5

Number of parallel connections 1 25 50 75 100
Length 0.022 m 0.5 m 1 m 1.5 m 2 m

Resistance 135 Ω 5.3 Ω 2.7 Ω 1.8 Ω 1.4 Ω

A Testo 872 infrared imager (Testo Instrument International Trading Co., Ltd., Shanghai,
China, measurement range: −20~280 ◦C, accuracy: ±2 ◦C, thermal sensitivity: <0.12 ◦C) was
used to measure the surface temperature of the heating fiber, and the data acquisition interval
was 10 min. The voltage was measured with a multimeter (Delixi Electric Co., Ltd., Leqing,
China, current measurement range: 0~10 A, accuracy: ± 0.1 mA, resolution: 0.1 mA), and the
initial voltage was set as 5 V with measurement increments of 5 V.
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3.2. Test Platform for Thermal Performance of Wallboard
3.2.1. Experimental Overview

The composite phase change thermal storage heating wallboard (referred to as the
PCM wallboard) used in this experiment was mainly composed of an XPS extruded
polystyrene insulation board (layer I) (50 mm), cement (layer II) (50 mm), the electrothermal
film (layer III), cement (layer IV) (10 mm) and a PCM (layer V) (50 mm). Layer V (50 mm)
of the cement heating wallboard (referred to as the cement wallboard) was a cement layer
and the others were the same as above (Figure 8a). The model and specification of the
electrothermal film were the same as those in Section 4.3.1, and the length was 1 m. The
location of each experimental measuring point is shown in Figure 8.
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Figure 8. Layout of experimental wallboard and measuring points. (a) Phase change/cement
wallboard. (b) Picture of the PCM wallboard. (c) Picture of the cement wallboard. (d) Layout plan of
temperature measuring points.

The PCM in the experimental wallboard is a GH-20 paraffin-based composite shape-
stabilized PCM developed by our research group [34,35]. The PCM was prepared by using
a self-adaptive packaging process method. It was prepared by taking paraffin as the heat
storage material, crosslinked high-density polyethylene as the main supporting material
and expanded graphite and SBS together as the encapsulating materials. Among these, the
content of paraffin, as the main heat storage agent, is as high as 78%. The phase change
range is 17.5~27.5 ◦C, the phase change latent heat is 128.1 kJ/kg and the leakage rate is
less than 5%. The curve of equivalent specific heat and temperature obtained from the DSC
curve of the material is shown in Figure 9. The physical parameters of each material layer
of the wallboard test piece are shown in Table 2.

Table 2. Material physical parameters of each layer of the experimental wallboard.

Material Thermal Conductivity W/(m ◦C) Specific Heat
kJ/(kg ◦C)

Density
kg/m3

PCM 0.54 Figure 8 900
Cement 0.93 1.02 1500

Insulation 0.03 1.38 30
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Figure 9. Equivalent specific heat of PCM.

3.2.2. Experimental Conditions

The temperature measuring points of the two experimental wallboards are arranged
as shown in Figure 8. Forty-two temperature measuring points were arranged on each
layer of each experimental part, and six measuring points were arranged on each layer. The
temperature sensor was a copper-constantan T-type thermocouple (produced by Chengdu
Liangsen Electric Appliance Co., Ltd., Chengdu, China, measuring range: −40~200 ◦C,
accuracy: ±0.5 ◦C, resolution: 0.1 ◦C). Temperature data processing was performed by an
Agilent DAQ970A inspection instrument (produced by Shanghai Agilent Technology Co.,
Ltd., Shanghai, China, measurement range: −100~400 ◦C, accuracy: ±0.1 ◦C, resolution:
0.1 ◦C). Temperature data were collected and recorded at a frequency of 10 s.

Figure 10 is a schematic diagram of the experimental system, which is composed of
a low-voltage DC heating wallboard, a multimeter, an AC/DC converter, a temperature
sensor, an inspection instrument and a computer.
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In view of the fact that our research group has carried out a large number of initial
studies on the thermal performance of solar active-passive “three-layer” structure compos-
ite phase change heat storage walls, this study focuses on the influence of the electrothermal
characteristics of the graphene low-voltage flexible electrothermal film as an “internal heat
source” on the storage/release characteristics of the composite phase change heat storage
wallboard. In addition, in order to reduce the influence of the temperature fluctuation
of the external environment, the experiment was carried out indoors where the ambient
temperature is relatively stable.

According to Figure 7, considering the classification of low voltage in China, 24 V,
32 V and 42 V low-voltage DC voltages were selected as the experimental voltages in
this experiment.

The experiment was divided into the heat storage process and the heat release process.
In the heat storage process, the wall was continuously powered for 8 h under the input
voltages of 24 V, 32 V and 42 V. The heat release test was started immediately after the heat
storage test, and continuous natural cooling was carried out for 16 h.

4. Experimental Results and Analysis
4.1. Electrothermal Characteristics of Electrothermal Film
4.1.1. Single Heating Fiber

The experimental results in Figure 11 show that under the experimental conditions,
as the input voltage increases, the corresponding input power increases and the surface
temperature of a single heating fiber also increases in the same way. The difference is
that when the surface temperature of the heating fiber is lower than 60 ◦C, its resistance is
relatively stable at about 143 Ω. When the surface temperature of the exothermic fiber is
above 60 ◦C, its resistance decreases at a rate of 0.17 Ω/◦C with the increase in temperature.
The figure also shows that when the surface temperature of the heating fiber is lower than
60 ◦C, the resistance stability is better.
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4.1.2. Multiple Heating Fibers

Figure 12 shows the electrothermal characteristics of multiple parallel heating fibers
with lengths of 0.5 m, 1.0 m, 1.5 m and 2 m under the experimental conditions. According
to Ohm’s law, as the number of single heating fibers in parallel increases, the correspond-
ing total resistance will decrease. That is to say, with the increase in the length of the
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electrothermal film, the number of parallel single heating fibers increases and the total
resistance decreases.
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On the whole, the electro-thermal characteristics of multiple heating fibers in parallel
are similar to those of a single heating fiber. When the length of the electrothermal film
was changed from 0.5 m to 2 m, the current of the electrothermal film with a longer length
under the same input voltage was larger (Figure 12a). However, the power per unit area of
the electrothermal film hardly changes as the length increases (Figure 12b). This is because
when the distance between the heating fibers of the electrothermal film is fixed, the number
of parallel heating fibers per unit area of the electrothermal film is fixed. Consequently,
the corresponding resistance value is also fixed. Therefore, the variation in the surface
temperature of the electrothermal film per unit area with the increase in the input voltage
is basically the same (Figure 12c).

4.2. Temperature Characteristics of Wallboard
4.2.1. Heat Storage Process

Figure 13 shows a comparison of the temperature variation characteristics between the
PCM layer V of the PCM wallboard and the corresponding cement layer V of the cement
wallboard under different input voltages. The experiment was carried out at an ambient
temperature of about 16 ± 1 ◦C.

Affected by the thermal storage characteristics of phase change materials, no matter
how the input voltage changes, the temperature of the PCM layer is always lower than that
of the corresponding layer in the cement wallboard. When the input voltages are 24 V, 32 V
and 42 V, the temperatures of the PCM wallboard are about 3 ◦C, 6 ◦C and 8 ◦C lower than
that of the cement wallboard. With an 8 h heat storage process, the temperature of PCM
layer V is about 3~5 ◦C lower than that of the cement wallboard.

In addition, with the increase in the input voltage, the heating rate of the wallboard
also increases, but then gradually decreases with time. In the phase change temperature
range, the heating rate of PCM layer is always lower than that of the same layer in the
cement wallboard. When the temperature exceeds the phase change temperature range, the
heating rate of the V layer is higher than that of the cement wallboard, and then gradually
tends to be the same.
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4.2.2. Heat Release Process

After the end of the heat storage process, the heat release process was started, which
was also carried out at an ambient temperature of about 16 ± 1 ◦C (Figure 14).
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Figure 14. Temperature comparison of layer V between the two wallboards (exothermic process).

In the initial stage of heat release, the temperature of the PCM layer of the phase change
wallboard is about 3~5 ◦C lower than that of the same layer in the cement wallboard. With
the progress of the exothermic process, especially in the phase change temperature range,
the temperature drop rate of the PCM layer is lower than that of the cement wallboard.
The higher the input voltage under the heat storage process, the higher the difference
between the temperature drop rates. The difference between the PCM with both sensible
and latent heat storage/release properties and the cement material with only sensible heat
storage/release properties is also shown.
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4.3. Heat Storage/Release Characteristics of Wallboard
4.3.1. Heat Storage

Figure 15 shows the variation in the heat storage capacity of the PCM wallboard and
the cement wallboard with time under the experimental conditions of 24 V, 32 V and 42 V
input voltage. According to the experimental analysis results in Figure 4, this study focuses
on the situation where the surface temperature of the two experimental wallboards is below
35 ◦C. The heat storage capacity of each material layer of the wallboard can be calculated
according to Formula (1).
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Figure 15. Comparative experimental results of heat storage capacity of layer V between the
two wallboards.

With the increase in input voltage, the heat storage of the two experimental wallboards
increases. The difference is that in the phase change temperature range, the effective heat
storage of the PCM layer is about 169%, 173% and 185% higher than that of the same
layer in the cement wallboard. When the temperature is higher than the phase change
temperature (27.5~35 ◦C), the effective heat storage is about 31% and 37% higher than
the cement wallboard at the input voltages of 32 V and 42 V, respectively (the highest
temperature of the two experimental wallboards corresponding to the input voltage of
24 V can only reach 25 ◦C). When the temperature exceeds 35 ◦C, the PCM mainly stores
sensible heat, and its heat storage capacity is not as good as that of the same layer in the
cement wallboard.

Figure 16 reflects the trends in sensible heat storage, latent heat storage, heat exchange
with the surrounding environment, and calorific value difference (the difference between
the theoretical calorific value of the electrothermal film and its effective calorific power) of
the two experimental wallboards with time under different input voltages. The sensible
heat and latent heat storage were calculated according to the Formula (1). The amount of
heat exchange with the ambient environment was calculated according to Formula (4). The
sum of the sensible heat storage, latent heat storage and heat exchange with the surrounding
environment can be regarded as the effective heating value of the electric heating film. The
difference in the heating value of the electric heating film can be calculated by combining
Formula (3).

Q = hF(t− tf), (4)

where ∆Q is the heat exchange quantity between the outer surface of the wallboard and the
surrounding environment (W); h is the comprehensive convective heat transfer coefficient
between the environment and the wallboard (W/(m2·◦C)); F is the external surface area of
the wallboard (m); t is the surface temperature of the wallboard (◦C); and tf is the ambient
air temperature (◦C).
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Figure 16. Variation in heat storage of the wallboards with time.

When the input voltage is 24 V (Figure 16), with the progress of the heat storage
process, the temperature of the two experimental wallboards and the difference with the
environment increase, and the heat storage and heat exchange with the surroundings also
increase. The difference is that the weight of the PCM is only 8% of the whole wallboard,
but its latent heat storage accounts for 34% of the total heat storage. The temperature of the
material layer of the cement wallboard is relatively high; therefore, the heat exchange with
the surrounding environment is 13% higher than that of the PCM wallboard. At the end of
the heat storage process, the total heat storage of the PCM wallboard is 3135 kJ, which is
59% higher than that of cement wallboard under the same temperature conditions. The
experimental results (Figure 16b) when the input voltages are 32 V and 42 V are basically
similar to those when the input voltage is 24 V.

According to Figure 16 and Formula (2), it can be calculated that the electrothermal
conversion efficiencies of the PCM wallboard electrothermal film are 85%, 80% and 75%,
respectively, under the experimental conditions of input voltages of 24 V, 32 V and 42 V. Ob-
viously, an excessive voltage will restrict the improvement in the electrothermal conversion
efficiency of the electrothermal film.

4.3.2. Heat Release

According to the analysis method in Section 4.3.1, the trends in heat release of the
PCM wallboard and the cement wallboard with time under the corresponding heat storage
process can be obtained (Figures 17 and 18).
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The effective heat release of the PCM layer is about 155%, 188% and 216% higher than
that of the same layer in the cement wallboard in the phase change temperature range
(Figure 17). The effective heat release of the PCM layer is about 39% (32 V) and 31% (42 V)
higher than that of the cement layer in the range of 27.5~35 ◦C.

In the phase change temperature range, the latent heat release of the PCM wallboard
accounts for about 48% of the total heat release. The total heat release (2558 kJ) of the PCM
wallboard (9th~19th h) is 78% higher than that of the cement wallboard (11th~19th h). The
thermal efficiency of storage and discharge is as high as 97%.

In the same way, the heat release processes at input voltages of 32 V and 42 V during
the heat storage process follow similar rules. The latent heat release of the PCM wallboard
accounts for 52% and 49% of its total heat release, and the total heat release of the PCM
wallboard (3193 kJ and 1863 kJ) is 80% and 84% higher than that of the cement wallboard.
The latent heat release of the PCM wallboard accounts for 18% and 21% of the total heat
release, and the total heat releases of the PCM wallboard (1352 kJ and 1911 kJ) are 32% and
17% higher than those of the cement wallboard. The exothermic efficiencies of the PCM
wallboard are about 85% and 77%.

5. Discussion

Considering the application scenarios and the conditions of the solar photovoltaic
electric-thermal system with a “three-layer” structure composite phase change heat storage
heating wall, the output voltage of the photovoltaic system is ≥32 V. This is beneficial for
optimum heat storage of the phase change wall during periods of sunshine in winter.

According to the analysis results in Section 4.3.1, the electrothermal conversion ef-
ficiency of the electrothermal film is about 80%. The corresponding theoretical calorific
value and effective calorific value are 1365 kJ/(m2·h) and 1100 kJ/(m2·h), respectively, at a
voltage of 32 V. Its theoretical calorific value is equivalent to the hourly power generation
of 1.45 m2 (0.73 pieces) of monocrystalline silicon solar photovoltaic modules (Figure 2).
The results provide an important basic data reference for the subsequent matching modes
of photovoltaic systems and electrothermal films, as well as the optimization of the design
of “four-layer” structure composite phase change thermal storage heating walls.

6. Conclusions

In this study, the experimental results of a graphene, low-voltage, flexible, electrother-
mal film and composite phase change thermal storage heating wallboard show that:

1. When the input voltages of the electrothermal film are 24 V, 32 V and 42 V, the surface
temperature of the heating fiber of the electrothermal film increases exponentially
with the increase in voltage. When the surface temperature is lower than 60 ◦C, the
resistance stability is better. The electrothermal conversion efficiency decreases with
the increase in input voltage, which is about 85~75%.
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2. During thermal storage, when the input voltages are 24 V, 32 V and 42 V, because of the
thermal storage characteristics of the PCM wallboard, the temperature of each layer
is relatively low; 3~5 ◦C lower than that of the cement wallboard on average. In the
phase change temperature range, the effective heat storage of the PCM layer is about
169%, 173% and 185% higher than that of the same layer of the cement wallboard. At
a temperature of 35 ◦C or below (including the phase change temperature range), the
effective heat storages of the PCM wallboard are 59%, 58% and 65% higher than that
of the cement wallboard, respectively.

3. During heat release, the effective heat release of the PCM wallboard increases by
78%, 63% and 41%, respectively, compared with that of the cement wallboard in
the temperature range of 35 ◦C and below (including the phase change temperature
range) under the three different voltages. The corresponding heat storage and release
efficiencies are 98%, 85% and 77%, respectively.

On the basis of the above research, further research will be carried out on the dynamic
output characteristics of photovoltaic systems, as well as the photoelectric thermal coupling
mechanism and its influence on the phase change of the wallboard system. This study will
provide applications and design methods for the efficient application of this technology in
energy systems of agricultural buildings.
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