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Abstract: Object detection of overhead transmission lines is a solution for promoting inspection
efficiency for power companies. However, aerial images contain many complex backgrounds and
small objects, and traditional algorithms are incompetent in the identification of details of power
transmission lines accurately. To address this problem, this paper develops an object detection
method based on optimized You Only Look Once v5-small (YOLOv5s). This method is designed
to be engineering-friendly, with the objective of maximal detection accuracy and computation sim-
plicity. Firstly, to improve the detecting accuracy of small objects, a larger scale detection layer and
jump connections are added to the network. Secondly, a self-attention mechanism is adopted to
merge the feature relationships between spatial and channel dimensions, which could suppress
the interference of complex backgrounds and boost the salience of objects. In addition, a small
object enhanced Complete Intersection over Union (CIoU) is put forward as the loss function of
the bounding box regression. This loss function could increase the derived loss for small objects
automatically, thereby improving the detection of small objects. Furthermore, based on the scaling
factors of batch-normalization layers, a pruning method is adopted to reduce the parameters and
achieve a lightweight method. Finally, case studies are fulfilled by comparing the proposed method
with classic YOLOv5s, which demonstrate that the detection accuracy is increased by 4%, the model
size is reduced by 58%, and the detection speed is raised by 3.3%.

Keywords: overhead transmission line; object detection; larger scale detection layer; self-attention;
bounding box regression; lightweight

1. Introduction

Insulators and fittings are vital components of overhead transmission lines; their
condition determines the safe operation of power systems. In their application, their
working environment is harsh. No physical protection against the natural changes of
the environment, such as wind and rain, determines a high probability of accelerating
degradation and faults for insulators and fittings [1]. To understand their health state,
routine inspection is normally adopted by power companies. Traditional manual inspec-
tion [2] requires field engineers to climb the tower to inspect the transmission line. With
the increasing size of transmission lines, manual inspection methods are no longer a cost-
effective solution. As an alternative, power companies adopt unmanned aerial vehicles
(UAVs) for inspections [3]. UAVs would capture the images of transmission lines through
equipped high-definition cameras. These would then send data, including the status of the
transmission line equipment, to the ground station for processing.
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Similar to all emerging technology, UAV power inspection brings new challenges
because it requires engineers to evaluate and analyze the captured images [4]. With
the increasing use of UAVs power inspection, the object detection demands for power
companies shift from detecting large objects to detecting objects of different sizes. This
incurs a problem of missing inspections if manual visual assessment still dominates. The
efficiency will not be satisfactory as well. To address these problems, many investigations
have developed object detection algorithms, which push UAV power inspection technology
from offline detection to online detection [5]. Those methods can improve the efficiency of
inspections and turns mass-scale application of UAV power inspection into a possibility.

From the technology development perspective, the existing object detection algorithms
for transmission lines can be classified into two categories:

(1) Two-stage detection algorithms, such as Fast Region-Based Convolutional Neural
Network (R-CNN) [6] and Faster R-CNN [7]. These algorithms would generate candidate
regions before predicting the locations and classes of the objects in those regions. Among
them, the literature [8] adopted the ImageNet dataset to pre-train the ResNET-101 network
and realized the detection of insulators and bird nests. However, it was difficult to achieve
real-time detection because of the high costs of the large capacity of memory. Study [9]
utilized the improved Faster R-CNN for the detection of insulators and other components.
This method improved the backbone with lightweight convolutional neural networks and
added refinement modules at the output, which increased the detection speed without
compromising detection accuracy. However, it did not focus on the interference of complex
backgrounds in detection.

(2) One-stage detection algorithms, such as Single Shot Detector (SDD) [10] and
YOLO [11], directly generate the class probabilities and position coordinates of the ob-
jects. Among them, [12] adopted improved SDD for insulators and spacers detection. This
method used a mobile network to replace the original backbone. It also developed a deep
feature pyramid to predict the output of different feature maps. Compared with Faster
R-CNN, this method achieved better detection accuracy and faster speed. However, the
feature collection capability for small objects was not satisfactory. Study [13] detected insu-
lators using the improved YOLOv3. This method involved an additional spatial pyramid
pooling module to merge local and global features. This method improved the detection
effectiveness for objects of vastly different sizes. However, it compromised the detection
accuracy for insulators within complex backgrounds. Study [14] investigated the detection
of major electrical equipment using optimized YOLOv4, which developed a training strat-
egy using CIoU and Generalized Intersection over Union (GIoU), respectively, for large
and small objects. However, the classification of large and small objects was relatively not
satisfactory in real applications. The authors of [15] simplified YOLOv4 by replacing the
backbone network with the MobileNet, which reduced the model’s complexity consider-
ably and promoted its implementation generality on embedded systems. However, the
simplification process sacrificed the detection accuracy. Study [16] used YOLOv5s to detect
insulators, and added a transformer to the backbone to improve detection performance.
The results showed that the detection speed of YOLOv5s is much faster than algorithms
such as Faster R-CNN.

On the whole, of the two-stage algorithms, Faster R-CNN and others are not suitable
for transmission line object detection due to large memory consumption and slow speed.
Among the one-stage algorithms, YOLOv5 adopts the advantages of YOLOv3 and YOLOv4,
and has better detection performance in theory. The case study [17] compared the detection
of insulators by YOLOv3~v5. The case study justified that YOLOv5s has faster detection
speed and smaller model size while having satisfactory detection accuracy. Although some
scholars later proposed YOLOv6 and YOLOv7 on the basis of YOLOv5s, YOLOv5s is still
one of the most widely used algorithms due to its simplicity and stability [18]. Drawing on
the advantages of existing algorithms in the literature, YOLOv5s is chosen as the method
for object detection of overhead transmission lines.
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From the angle of the industrial application, the previous literature focuses on detect-
ing only one piece or a small number of objects of overhead transmission lines. The gap
between research and real application happened due to a lack of research on the scalability
of object detection for overhead transmission lines. In detecting multi-class objects on
overhead transmission lines, compared with objects of relatively apparent features, the
available algorithms have a poor detection effect on objects with small sizes or complex
backgrounds. This creates a data bottleneck and limits the improvement of detection
accuracy. In addition, in previous research, a greater detection accuracy indicates higher
model complexity and a lower possibility to be embedded on microdevices, and vice versa.
There is no guarantee for a “win-win solution”, i.e., improving detection accuracy and
simplicity of detection algorithms at the same time.

To address the above problems, this paper develops an object detection method for
overhead transmission lines based on optimized YOLOv5s. Firstly, the network structure is
optimized by adding larger scale detection layers to retain more detailed features. Mean-
while, jump connections are introduced to achieve a balanced combination of multi-path
features. Then, a self-attention mechanism is developed to combine the relationships be-
tween features from both spatial and channel dimensions into the feature map. Further, to
automatically adjust loss for objects of different sizes, a small object enhanced CIoU loss is
introduced as the loss function of the bounding box. Finally, L1 regularization is utilized to
scale factors of the batch-normalization layers for sparse training. Channels are pruned
according to the derived scale factors. Case studies justify that the proposed method can
apply to object detection for transmission lines because of its high accuracy, small model
size, and high speed.

2. YOLOv5s Principle

YOLOv5 [19] is an open object detection algorithm developed by the company Ultra-
lytics. According to the complexity of the network, it includes several versions: Yolov5s,
Yolov5m, Yolov5l, and Yolov5x. The structure of YOLOv5s is shown in Figure 1.

YOLOv5s mainly consists of four stages, which are introduced as follows.
(1) Input stage. YOLOv5s preprocesses the original image, including adaptive scaling,

data enhancement, and the generation of initial anchors.
(2) Backbone stage. The main function is feature extraction, which consists of a focus

module, convolution batch-normalization SiLU (CBS) module, C3 module, and spatial
pyramid pooling (SPP) module [20]. The focus module is a special down-sampling op-
eration that uses slicing operations to split a high-resolution feature map into multiple
low-resolution feature maps. The CBS module is the most basic module in the network,
consisting of a convolution layer, a batch-normalization layer, and a SiLU activation func-
tion. The C3 module is an efficient feature extraction module that can enhance the learning
ability of the network. It consists of three 1 × 1 convolution layers and a bottleneck layer,
hence the name C3 module. The bottleneck layer uses a 1 × 1 convolution layer to reduce
dimension and a 3 × 3 convolution layer to extract features, which increases the depth
of the network and reduces the amount of calculation. The SPP module uses different
maximum pooling layers to convert feature maps of arbitrary size into a fixed size.

(3) Neck stage. This consists of a feature pyramid network (FPN) and path aggregation
network (PAN) [21]. The FPN transmits high-level semantic information from top to
bottom, while the PAN transmits shallow features from bottom to top. With this structure,
feature maps of different scales are generated for detection.

(4) Output stage. This is responsible for predicting the coordinates, categories, and
confidence scores of the objects. Moreover, it deletes invalid prediction results by non-
maximum suppression (NMS) [22], and the final results are marked on the image.
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Figure 1. YOLOv5s structure.

3. Algorithm Improvement

This paper develops an object detection method for overhead transmission lines
by optimizing the classic YOLOv5s. This method can address the detection problems of
complex backgrounds and small objects in aerial images. Meanwhile, it adopts a lightweight
method to improve computation efficiency, so as to promote the deployment simplicity.

3.1. Optimization of Network Structure

In capturing the images of overhead transmission lines, the UAV normally stages at a
large distance away from the overhead lines. This causes the size of the part of captured
components to be extremely small. This would incur missing detection of these objects,
because of insufficient extractable features. Therefore, this paper optimizes the network
structure to improve the UAV’s ability to detect extremely small objects.

Firstly, taking extracted feature data from original images, YOLOv5s creates feature
layers of 20 × 20, 40 × 40, and 80 × 80 pixels, where the 80 × 80 pixels feature layer has
more detailed features and is used to detect small objects. However, with the development
of camera technology, cameras could provide pictures with a much greater number of pixels
than before. Therefore, adopting the 80 × 80 pixels feature map would cause the loss of
small features during down-sampling. Increasing the scale of the feature layer is a solution
to this problem. But if the feature layer is too large, network complexity will be greatly
increased. To make a tradeoff between complexity and applicability, this paper adopts a
feature layer of 160 × 160 pixels to detect small objects, as shown in the red background
in Figure 2. The process is as follows: the 80 × 80 pixels feature map is upgraded to
160 × 160 pixels by C3, CBS, and upsample modules. Then, the upgraded feature map is
connected with the 160 × 160 pixels feature map derived by the backbone stage to form
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a new merged feature layer. Last, the merged feature layer is integrated by a C3 module
for detection.
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Figure 2. Optimized YOLOv5s structure.

In addition, in order to reduce the feature loss in the down-sampling process, jump
connections are added between the backbone and neck stages to merge multi-path features.
This improves the expression capability of the feature pyramid, as shown in the blue
background in Figure 2. Meanwhile, since the number of channels in the backbone feature
map is twice that of the neck, this paper utilizes 1 × 1 convolution modules to reduce the
number of channels to balance the process of merging the multi-path features.

In order to verify the effectiveness of the optimization, we conducted a comparative
experiment on the model before and after optimization. The results are shown in Figure 3.
It can be seen that the original network misses the detection of some small objects, while
the optimized network can accurately detect the adjusting plates and spacers, and can
detect the occluded suspension clamp. It is verified that the above optimization methods
can improve the extraction of detailed features of the network and can effectively improve
the detection of small objects.
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Figure 3. Comparative experiment. (a) Original network; (b) optimized network.

3.2. Addition of Self-Attention

To overcome the challenge of complex backgrounds of aerial images, this paper
develops a self-attention mechanism called the position and channel self-attention (PCSA)
block to replace the last C3 module of the backbone and neck stages, as shown in the yellow
background in Figure 2. This self-attention mechanism could promote the significance of
key features of objects, thus achieving improved accuracy.

The PCSA block still adopts the structure of C3 module and uses two different
1 × 1 convolution layers to reduce the input feature channels by half for processing, which
can deepen the network while reducing the amount of calculation. The structure is shown
in Figure 4.
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The PCSA is proposed based on the non-local block [23]. It merges the position
attention and the channel attention to make up for the insufficient attention of the non-local
block. This structure is shown in Figure 5.
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The position attention establishes the correlation between any two points in the spatial
dimension as follows: (1) utilizing three different 1 × 1 convolutions to generate the
corresponding feature maps Q, K, and V from original feature maps; (2) deriving the
average value in channel dimension of Q and K; (3) multiplying Q and K to obtain a matrix
of correlation; (4) adopting softmax to derive the position weights; and (5) multiplying V
and the derived weight matrix to obtain the weighted feature map.1. This can be expressed
as Equation (1).

The channel attention captures the relationship between different channels as follows:
(1) Q and K are pooled on average in the spatial dimension; (2) they are matrix multi-
plied, followed by a softmax operation to obtain the channel weights; and (3) the channel
weights and V are multiplied to obtain the weighted feature map.2. This can be expressed
as Equation (2).

Finally, feature map.1 and feature map.2 are multiplied by the learnable parameters ω1
and ω2, respectively, and the original feature map X is summed to obtain the final feature
map, as shown in Equation (3).

Out1 = VsoftmaxT(avgT
c (Q)avgc(K)) (1)

Out2 = softmax(avgs(Q)avgT
s (K))V (2)

Out = ω1Out1 + ω2Out2 + X (3)

where Q, K, V are the generated feature maps; avgc is the average of the channel dimension;
T is transposition; avgs is the average pooling in the spatial dimension; ω1 and ω2 are
learnable parameters; and X is the original feature map.

To verify the performance of the PCSA block module, a visualization experiment was
carried out on it. Grad-CAM [24] is a visualization method that uses gradients to calculate
the importance of features in convolutional layers, allowing the regions of interest to be
clearly visible. The comparison results of the Grad-CAM heatmap after the addition of the
PCSA module to the backbone network are shown in Figure 6.
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In Figure 6, the different colors of each area represent the different gradients between
the current layer and the output layer. Red indicates that the area has a significant impact
on the result. With the diminishing color of the area, the importance decreases. In the
figure, we manually marked key objects with white boxes. By utilizing the PCSA module,
we can see that the color of key objects goes deeper. This indicates that key areas become
more distinguished compared to those without the PCSA model, for example, the dampers
on the edge of the pictures in the first column, the bird nest in the middle of the pictures in
the second column, and the insulator in the upper right of the pictures in the third column.
The salience of these key objects has been enhanced, making it easier for the network to
detect them. The improvement justified that using the PCSA model could effectively reduce
the cases of missed and false detection, and improve the detection ability of objects under
complex interference.

3.3. Optimization of Bounding Box Loss

Overhead transmission lines contain components of various sizes. In the process of
bounding box regression, small objects are often more difficult to locate accurately due to
their indistinct features. The detection effect of small objects restricts the overall detection
effect. For the classic YOLOv5, the bounding box loss function uses CIoU loss (LCIoU) [25].
However, it does not consider the influence of different areas. This paper proposes a small
object enhanced CIoU loss (LSCIoU) by adding the influence of the area factor. This function
could automatically adjust the loss for different sizes of objects to improve the detection
accuracy for small objects. Details are shown as follows:

LSCIoU = λ(1−IoU)+areagt

areagt LCIoU

= λ(1−IoU)+areagt

areagt (1− IoU + ρ2(b,bgt)
c2 + αv)

α = v
(1−IoU)+v

v = 4
π2 (arctan wgt

hgt − arctan w
h )

2

(4)
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where λ is the enhancement factor, adjusted by experiment; IoU is the intersection over
union; areagt is the area of ground truth; b is the center point; ρ is Euclidean distance; c is
the diagonal length of the smallest external rectangle of the two boxes; and h and w are the
length and width of the box, respectively, as shown in Figure 7.
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Equation (4) indicates that (1 − IoU) is a small value which is enhanced by λ. When

areagt decreases, the values of λ(1−IoU)+areagt

areagt and LSCIoU increase. If areagt is diminishing,
LSCIoU increases more obviously. If areagt is larger, because λ(1 − IoU) is much smaller than

areagt, the value of λ(1−IoU)+areagt

areagt is roughly equal to 1. At this time, LSCIoU is approximately
equal to LCIoU.

By increasing the bounding box loss of small objects, the weight of this part becomes
larger, which motivates the network to pay more attention to small objects in the training
phase and improve the regression accuracy correspondingly.

3.4. Reducing Computation Complexities

The classic YOLOv5s algorithm can achieve accurate detection on large servers. How-
ever, it does not perform well on mobile devices and other devices with insufficient GPU
performance. To capture small objects, the network structure optimization in Section 3.1
increases the network complexity, which increases the deployment difficulty on less ad-
vanced devices. To promote the practical application of the proposed model, we employ a
lightweight optimization based on the network slimming algorithm [26].

The YOLOv5s network is stacked by a large number of convolution modules. Each
convolution module includes the convolution layer, batch-normalization (BN) layer, and
SiLU activation function. Among them, the BN layer is used to speed up the training of the
network and prevent gradient disappearance and network overfitting. The BN layer [27]
normalizes the input data with a mean of 0 and a variance of 1, as given by:

xi =
xin − µ√

σ2 + δ
(5)

yout = γxi + β (6)

where xin is the input data, µ is the mean of the input data, σ is the standard deviation of
the input data, δ is a constant value, yout is the output of the BN layer, γ is the scaling factor,
and β is the translation factor.

According to Equation (6), the output of each channel in the BN layer is positively
correlated to the scaling factor γ. If the value of γ is too small or close to 0, the channel
output will remain very small and will have little effect on the detection results. At this
time, the network complexity can be reduced by removing the convolution layer of its
input and the channels of their output, as shown in Figure 8.
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However, under normal conditions, the distribution of scaling factor γ in the BN 
layer is close to the normal distribution in the training stage, as shown in Figure 9a. This 
makes it difficult to prune the network. L1 regularization is often used as a penalty term 
for the loss function in machine learning, which can produce a sparse weight matrix. 
Therefore, this paper adds the L1 regularization constraint to the γ value in the loss func-
tion of the BN layer to make sparse the network model, also known as sparse training, 
with the loss function as in Equation (7) [28]. 
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However, under normal conditions, the distribution of scaling factor γ in the BN layer
is close to the normal distribution in the training stage, as shown in Figure 9a. This makes
it difficult to prune the network. L1 regularization is often used as a penalty term for the
loss function in machine learning, which can produce a sparse weight matrix. Therefore,
this paper adds the L1 regularization constraint to the γ value in the loss function of the
BN layer to make sparse the network model, also known as sparse training, with the loss
function as in Equation (7) [28].

L = ∑
(a,b)

l( f (a, w), b) + ϕ ∑
γ∈η

|γ| (7)

ϕ = θ(0.5 cos(
epoch
epochs

π) + 0.5) (8)
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In Equation (7), ∑ l( f (a, w), b) represents the normal training loss function, ϕ∑|γ|
represents the added L1 regularization constraint, a is the input, b is the target, w is the
trainable weight, η is all the BN layer parameters, γ is the scaling factor, and ϕ is the sparsity
parameter. If ϕ is too large, the network will lose too much accuracy, and if it is too small,
the network will be insufficiently sparse. Equation (8) is proposed to adaptively reduce the
sparsity parameters. At the beginning of training, a large sparsity parameter is given to
make the network rapidly sparse. As the epoch increases, the sparsity parameter is reduced
to compensate the accuracy. In Equation (8), θ is an adjustable parameter, determined by
experiment; epoch is the current epoch; epochs is the total epoch.

After sparse training of the network, the values of some scaling factors γ in the BN
layer converge to 0, as shown in Figure 9b. The values of this part have little effect on the
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detection results. The network parameters can be reduced by removing the convolution
layer of its input and the channels of their output. A global threshold can be set to
adjust the pruning ratio according to the value ordering of all scaling factors γ. When
the pruning ratio is high, it may result in accuracy loss, which can be partially recovered
by fine-tuning the model. In this way, a more lightweight model can be obtained while
maintaining accuracy.

4. Experiment and Analysis
4.1. Dataset Production

The dataset used in this paper consists of the public dataset of Chinese Power Line
Insulators [29] and other real overhead transmission line aerial images, with a total of
1688 images. Most of the pictures were taken on alternating circuit transmission lines. The
dataset involves various scenarios such as urban, rural, field, lake, and plain, including
insulator, damper, shielding ring, spacer, counterweight, DB adjusting plate, grading ring,
suspension clamp, sign, and bird nest, as shown in Figure 10.
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Figure 10. Objects to be detected.

Considering the insufficient number of images in the dataset, data enhancement meth-
ods were used to expand the images and improve the network generalizability. The data
enhancement methods are shown in Figure 11. Each image needs to be randomly en-
hanced using two different methods. After data enhancement, 3376 images were generated.
Training sets and test sets were divided in an 8:2 ratio.

4.2. Experimental Settings

The hardware and software parameters of the equipment used in the experiments are
shown in Table 1.

The values of some important adjustable parameters involved in the experiments are
as follows: the input image size is 640 × 640, the batch size is 16, the epoch is 250, the
optimizer is stochastic gradient descent, the initial learning rate is 0.01, the final learning
rate is 0.2, the momentum is 0.937, the enhancement factor λ is 20, and the sparsity training
θ is 0.001.

4.3. Experimental Settings

In this paper, precision (P), recall (R), mean average precision (mAP) [30], and frame
per second (FPS) are the main indicators for model performance, and the formulas are
as follows:

P =
TP

TP + FP
(9)
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R =
TP

TP + FN
(10)

mAP =
∑N

i=1 APi

N
(11)

where TP is the number of positive samples predicted to be positive; FP is the number of
negative samples predicted to be positive; FN is the number of positive samples predicted
to be negative; AP is the area enclosed by the P–R curve and the coordinate axis, which
refers to the single-category accuracy rate; and N is the number of categories.
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Table 1. Parameters of hardware and Software equipment.

Configuration Parameters

CPU Intel(R) Core (TM) i5-10300H CPU @ 2.50GHz
GPU Nvidia GeForce RTX 1660ti SUPER 6GB
RAM 16GB

GPU acceleration library Cuda11.0, Cudnn10.0

4.4. Experimental Results and Analysis

The comparison of the loss curves between YOLOv5s and the proposed method in the
training stage is shown in Figure 12.

Energies 2023, 16, x FOR PEER REVIEW 12 of 17 
 

 

4.4. Experimental Results and Analysis 
The comparison of the loss curves between YOLOv5s and the proposed method in 

the training stage is shown in Figure 12. 

  
(a) (b) 

Figure 12. Loss curves. (a) Bounding box loss; (b) total loss. 

In Figure 12, the initial bounding box loss of the proposed model is larger than that of 
YOLOv5s. This is because the LSCIoU proposed in this paper increases the bounding box loss 
of small objects. However, with the increase in the number of epochs, the final convergence 
value is almost the same as that of YOLOv5s. In addition, compared to YOLOv5s, the total 
loss of the proposed model decreases faster, and the convergence value is lower. This indi-
cates that the training effectiveness of the proposed model is better. 

After the training phase, the best weight of each model (unpruned) was selected for 
testing. Table 2 presents the comparison of detection accuracy between YOLOv5s and the 
proposed method. Compared to YOLOv5s, the proposed method improves the average 
detection accuracy for each type of object. Among them, the mAP of the adjustment plate 
increased by 6.9%, and that of suspension clamp increased by 10.6%; both of these sizes 
are relatively small, indicating that the proposed method can improve the detection per-
formance of small objects. The total mAP of the proposed model exceeds that of YOLOv5s 
by 4.2%. 

Table 2. Comparison of detection results in the test set. 

 YOLOv5s Proposed Method 
Category P (%) R (%) mAP@0.5 (%) P (%) R (%) mAP@0.5 (%) 
Insulator 95.7 93.1 94.6 95.9 93.6 96.1 
Damper 93.3 86.6 89.5 93.4 88.9 92.2 

Adjusting plate 92.5 85.1 88.9 95.1 91.0 95.1 
Spacer 95.0 94.0 95.2 95.8 95.1 96.9 

Shielding ring 97.3 95.0 96.4 97.4 96.0 96.9 
Grading ring 92.1 83.5 86.6 95.7 89.4 91.9 

Counterweight 94.8 84.4 87.5 96.8 87.3 90.9 
Sign 92.3 78.6 84.3 92.6 89.4 91.8 

Suspension clamp 86.0 80.7 83.9 94.1 86.9 92.8 
Bird nest 93.3 91.6 92.0 93.4 92.0 92.3 

All 93.2 87.3 89.9 95.0 91.0 93.7 

To analyze the lightweight method, pruning experiments were carried out on the 
model. The above best weight was pruned and fine-tuned after the sparse training stage. 
The sparse model was pruned in different ratios, and the experimental results are shown 
in Table 3. It presents, with a 20% pruning ratio or less, the mAP of the network remains. 
This indicates that the deleted channel is correctly selected. Pruning these channels would 

Figure 12. Loss curves. (a) Bounding box loss; (b) total loss.

In Figure 12, the initial bounding box loss of the proposed model is larger than that of
YOLOv5s. This is because the LSCIoU proposed in this paper increases the bounding box loss
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of small objects. However, with the increase in the number of epochs, the final convergence
value is almost the same as that of YOLOv5s. In addition, compared to YOLOv5s, the
total loss of the proposed model decreases faster, and the convergence value is lower. This
indicates that the training effectiveness of the proposed model is better.

After the training phase, the best weight of each model (unpruned) was selected for
testing. Table 2 presents the comparison of detection accuracy between YOLOv5s and the
proposed method. Compared to YOLOv5s, the proposed method improves the average
detection accuracy for each type of object. Among them, the mAP of the adjustment
plate increased by 6.9%, and that of suspension clamp increased by 10.6%; both of these
sizes are relatively small, indicating that the proposed method can improve the detection
performance of small objects. The total mAP of the proposed model exceeds that of
YOLOv5s by 4.2%.

Table 2. Comparison of detection results in the test set.

YOLOv5s Proposed Method

Category P (%) R (%) mAP@0.5 (%) P (%) R (%) mAP@0.5 (%)

Insulator 95.7 93.1 94.6 95.9 93.6 96.1
Damper 93.3 86.6 89.5 93.4 88.9 92.2

Adjusting plate 92.5 85.1 88.9 95.1 91.0 95.1
Spacer 95.0 94.0 95.2 95.8 95.1 96.9

Shielding ring 97.3 95.0 96.4 97.4 96.0 96.9
Grading ring 92.1 83.5 86.6 95.7 89.4 91.9

Counterweight 94.8 84.4 87.5 96.8 87.3 90.9
Sign 92.3 78.6 84.3 92.6 89.4 91.8

Suspension clamp 86.0 80.7 83.9 94.1 86.9 92.8
Bird nest 93.3 91.6 92.0 93.4 92.0 92.3

All 93.2 87.3 89.9 95.0 91.0 93.7

To analyze the lightweight method, pruning experiments were carried out on the
model. The above best weight was pruned and fine-tuned after the sparse training stage.
The sparse model was pruned in different ratios, and the experimental results are shown
in Table 3. It presents, with a 20% pruning ratio or less, the mAP of the network remains.
This indicates that the deleted channel is correctly selected. Pruning these channels would
not influence the model’s performance. The mAP of the model slightly reduces when
the pruning ratio is 30% and 40%. This decrease is acceptable, compared to the decrease
in the number of parameters and the floating point of operations (FLOPs). However,
the mAP of the model drops sharply when the pruning ratio is above 40%. Under this
circumstance, a part of the channels with high weights is pruned. They perform vital
functions in feature extraction. Therefore, to minimize the model complexity as much as
possible while maintaining the model accuracy, the model with a pruning ratio of 40% is
selected as the benchmark for further comparison in this paper.

Table 3. Comparison of models with different pruning ratios.

Pruning Ratio mAP@0.5 (%) Parameters (M) FLOPs (G) FPS Model Size (MB)

0% 93.7 6.4 19.3 49 12.5
10% 93.7 5.5 18.0 52 11.0
20% 93.7 4.7 17.0 55 9.3
30% 93.6 3.6 15.8 60 7.5
40% 93.5 2.7 14.6 63 5.7
50% 88.1 2.1 13.3 68 4.6
60% 74.6 1.6 11.9 72 3.4

After the pruning experiments, the proposed model was tested on real images. Several
typical images are selected for display, as shown in Figure 13. It can be seen that when
the picture is filled with objects of different sizes, the proposed model is basically able to
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detect them. At the same time, the proposed model has a high confidence in detecting
small objects such as a suspension clamp and adjusting plate. In addition, the proposed
model has a strong ability to detect objects in complex backgrounds.
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To further investigate the effects of the improved methods proposed in this paper on
various aspects of the model, ablation experiments were conducted. The results are shown
in Table 4, and the ‘

√
’ represents the adoption of this method. The improvement of the

network structure significantly improves the mAP but also increases the parameters and
FLOPs, and reduces the speed. Using self-attention to replace the C3 module improves the
mAP while reducing the parameters and FLOPs. Using LSCIoU improves the mAP slightly
without changing others. Pruning (40%) can greatly reduce parameters and FLOPs at a
slight sacrifice of the mAP.

To justify the effectiveness of the proposed model, this paper compares the detection
accuracy and computation simplicity of the proposed model with those of other state-of-the-
art methods. The comparison studies are shown in Table 5. Compared with the traditional
algorithm Faster R-CNN, the proposed method shows a significant improvement in mAP
and speed. Compared with the latest algorithm YOLOv7, the proposed method has a faster
speed under the same mAP. Overall, the proposed model has 2.7M parameters and a 5.7MB
model size, which is significantly less than all other algorithms. This implies that the model
size is small and easy to be applied. In addition, the detection speed is faster than other
algorithms, indicating that it can better meet the requirement for real-time detection. Most
importantly, the mAP of the proposed model is greater than other algorithms, indicating
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that the detection effect is better than other algorithms. In detail, compared to the classic
YOLOv5s, the mAP is improved by 4%, the model size is reduced by 58.4%, and the speed
is improved by 3.3%.

Table 4. Ablation experiments.

Structure
Improvement Self-Attention Box Loss Pruning

(40%)
Parameters

(M)
FLOPs

(G)
Model Size

(MB) FPS mAP@0.5
(%)

7.1 16.4 13.7 61 89.9√
7.3 19.7 14.3 49 91.6√
6.2 16.0 12.0 60 91.1√
7.1 16.4 13.7 61 90.8√ √
6.2 16.0 12.0 60 91.5√ √
7.3 19.7 14.3 49 92.0√ √
6.4 19.3 12.5 49 92.9√ √ √
6.4 19.3 12.5 49 93.7√ √ √ √
2.7 14.6 5.7 63 93.5

Table 5. Comparison of mainstream algorithms.

Algorithm Image Size
(PX)

Parameters
(M)

Model Size
(MB) FPS mAP@0.5

(%)

Faster R-CNN 600 × 600 137.1 522 10 74.6
CenterNet 640 × 640 32.7 124 30 79.6
YOLOv3 640 × 640 61.9 235 19 88.0
YOLOv4 640 × 640 64.4 244 20 89.9
YOLOXs 640 × 640 8.9 34.3 56 89.1
YOLOv5s 640 × 640 7.1 13.7 61 89.9
YOLOv5m 640 × 640 21.8 42.5 19 90.3
YOLOv5l 640 × 640 46.7 89.4 14 90.5
YOLOv5x 640 × 640 87.3 167.0 5 91.2
YOLOv7 640 × 640 37.2 71.4 9 93.4

Proposed Method 640 × 640 2.7 5.7 63 93.5

Figure 14 shows comparison studies on images, with the following observations:
(1) Faster R-CNN and CenterNet have poor overall detection performance. They are
disturbed by the background of the iron tower to cause false detection and cannot accurately
detect small-sized adjusting plates and dampers; (2) YOLOv4 has high confidence in the
detection of various objects, but it fails to detect the adjustment plates; (3) YOLOv5s fails
to detect bird nests in complex backgrounds, as well as small-sized adjusting plates and
dampers. Compared with the classic YOLOv5s, the proposed model greatly improves its
detection effect on both small objects and objects in complex backgrounds. Therefore, the
proposed model is more suitable for transmission line object detection.
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5. Conclusions

This paper develops an object detection method for overhead transmission lines based
on optimized YOLOv5s. The method improves the detection of small objects by improving
the network structure and utilizing a LSCIoU box loss function. Then, a self-attention
mechanism is adopted to suppress the interference of complex backgrounds. Further,
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channel pruning based on BN layers is performed to realize a lightweight model. Case
studies justify that, compared to classic YOLOv5s, the mAP of the proposed model is
improved by 4%, the model size is reduced by 58%, and the detection speed rises by
3.3%. These achievements are vital in real applications, therefore promoting industry
implementation in UAV-based transmission line inspections.
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