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Abstract: To effectively improve the dust reduction rate of fine dust and prevent the occurrence of
secondary dust, surfactant-charged water mist dust reduction technology is proposed. First, the
water mist induction-charged atomization mechanism was perfected by an induction-charged spray
experiment and the optimal atomization-charged voltage was determined to be 10 kV. Second, by
surface tension and spray experiments on AEO-9-charged solutions, the lower the surface tension
and viscosity of the solution, the better the atomization effect; the best atomization solution was
10 kV and 0.02% AEO-9. Finally, according to an electrostatic adsorption experiment, it was identified
that there was an electrostatic interaction between coal dust and charged droplets. The contact angle
experiment showed that the contact angle of the AEO-9 droplets decreased by 68.44% compared
with water after 3 s of contact with coal dust. The wetting effect of bituminous coal was significantly
improved by adding AEO-9 to water. A molecular simulation was used to study the molecular
interaction mechanism among the H2O, AEO-9, and bituminous coal molecules. The simulation
results showed that AEO-9 was more active than water, it easily interacted with bituminous coal, and
the hydrophilic group covered the surface of the bituminous coal molecules, which increased the
electrostatic interaction between the water molecules and bituminous coal surface molecules. After
adding AEO-9 to H2O, the intermolecular interaction energy of the H2O/AEO-9/bituminous coal
system was enhanced more than that of the H2O/bituminous coal system. This study provides the
basis for the application of surfactant-charged water mist dust reduction technology.

Keywords: AEO-9-charged solution; spray droplet size; charged and atomization mechanism; molec-
ular simulation; dust reduction mechanism

1. Introduction

China is the largest coal producer in the world. Coal plays a major role in the country’s
energy consumption structure, but the dust pollution caused by the process of coal mining is
a serious concern [1–3]. Currently, there is a high incidence rate of pneumoconiosis in China
due to the presence of fine dust (PM2.5) as the main source of pollution. Fine dust adsorbs
toxic and harmful gases into the human body, which can cause pneumoconiosis [4–6].

Charged and surfactant sprays are the two main components used to reduce dust [7–10]
by decreasing the surface tension of water and increasing the activity of water molecules [11,12].
However, there are many limitations involved in this technique. In the charged spray dust
reduction technique, the collision landing of the charged water mist and coal dust results
in the disappearance of the charge of the water mist. Upon air drying the system, the
settled fine dust rises with the wind and causes secondary dust pollution. The surfactant
spray dust reduction increases the interaction between the coal dust and water mist, but
there is no electrostatic attraction between them, resulting in a low collision efficiency.
Surfactant-charged water dust reduction technology can maintain an effective collision rate
and prevent secondary dust.

In the field of charged spray dust reduction, Teng et al. studied the influence of
charging voltage, dust air velocity, and dust concentration on the dust reduction effect
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through experiments [8]. D’Addio et al. studied the adsorption of 100~450 nm ultrafine
particles by employing free-falling charged droplets. The results showed that the collection
efficiency of the charged droplets on ultrafine particles was very significant [13]. Carotenuto
et al. analyzed the influence of contact time between mist droplets and dust particles, water
consumption, relative velocity of water/gas, and droplet size on the droplet-charged dust
reduction effect and developed a mathematical model for charged spray dust reduction [14].
In the field of surfactant spray dust reduction, Yan et al. performed chemical modifications
on sodium alginate and selected an environment-friendly and economical surfactant with
high water retention, appropriate viscosity, and good wettability [15]. Sun et al. used
starch, methyl methacrylate, acrylamide, and a surfactant as raw materials to prepare a
dust suppressant with good wind resistance and hardness [16]. Chang et al. studied the
dust reduction efficiency of different surfactant solutions through a wind tunnel test [17].
Although there have been remarkable advancements in the field of charged spray and
surfactant spray dust reduction techniques, the performance and mechanisms of dust
reduction of the combination of the two technologies remain to be further studied.

In this study, a highly efficient and environment-friendly fatty alcohol polyoxyethy-
lene ether (AEO-9) was selected as the surfactant. By comparing the droplet size and the
growth rate at different distances and charged voltages in a water mist induction-charged
spray experiment, the mechanism of water mist induction-charged atomization was im-
proved and the optimal charging voltage was determined. The surface tension values
of the AEO-9 solution at different concentrations were also measured by a contact angle
measuring instrument. Based on the surface tension values, three concentrations of AEO-9
solution were selected for the spray experiment and compared with the spray droplet size
to determine the optimal AEO-9 concentration. The optimal charged voltage and concen-
tration were then selected to compare the droplet size and the growth rate of the charged
water mist, AEO-9 water mist, and AEO-9-charged water mist at different distances, and
the atomization mechanism of the AEO-9-charged water mist was proposed. Finally, the
dust reduction mechanism was revealed through an electrostatic adsorption experiment of
the coal dust and charged droplets, a contact angle experiment of the AEO-9 solution at
different concentrations, and a molecular simulation of the orbital information, electrostatic
potential, and intermolecular interaction energy in different systems.

2. Experiment and Simulation
2.1. Experiment Details
2.1.1. Materials and Instruments

In this study, the purity of AEO-9 was ≥99%, produced from Shandong Yousuo
Chemical Technology Co., Ltd., Qingdao, Shandong, China. The experimental coal sample
was obtained from Lingshi County, Jinzhong, China. The coal samples were obtained by
crushing and sieving; the particle size of the coal dust was ≤74 µm. The prepared coal dust
was placed in a desiccator for storage.

The instruments and models used for the experiment are shown in Table 1.

Table 1. Experimental instruments and models.

Equipment Name Model

Ball mill GMJ–2
Vibrating screen BZS–−300 mm

Vacuum drying oven 101–00AS
Air compressor 1500–2

High–voltage electrostatic DC generator (−) TD2202N50–2000–A03
Blender ZH18T

Laser particle size analyzer HELOS (H4116) and UNIVERSAL
Magnetic stirrer SN–MS–H

Contact angle measuring instrument SDC–350
Tableting machine YP–15
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2.1.2. Measurement of the Droplet Size of the Spray

To measure the fog droplet size, a fog droplet measurement platform was built, as
shown in Figure 1.
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Figure 1. Schematic diagram of the experimental device.

It mainly included a water tank, rotator, air compressor, pressure regulator, siphon air
atomization nozzle (grounded), electrode ring, high-voltage electrostatic DC generator (−),
and laser particle size analyzer. The relevant parameters were set to 0.005%, 0.02%, and
0.04% mass concentration of the AEO-9 solution; 0.4 MPa atomization air pressure; 1 mm
nozzle aperture (grounded); 50 mm electrode ring diameter; 5 kV, 10 kV, and 15 kV charged
voltages; and 0.01 µm measurement accuracy of the laser particle size analyzer [18], which
was characterized by the volume mean droplet (VMD) size. The measurement process was
as follows: the AEO-9 solution was continuously stirred using a mixer, the air compressor
was turned on, the water mist was ejected, the electrode ring was located in front of the
nozzle and connected to a negative high-voltage electrostatic DC generator (grounded) to
charge the water mist, and finally the water mist droplet sizes at 5 cm, 30 cm, 60 cm, 90 cm,
and 120 cm away from the nozzle were measured by the laser particle size analyzer.

2.1.3. Measurement of the Surface Tension and Contact Angle

The AEO-9 solutions with mass concentrations of 0.005%, 0.007%, 0.01%, 0.02%, 0.03%,
0.04%, and 0.05% were taken, and their surface tension was determined using the contact
angle measuring instrument. The measurement accuracy was 0.001 mN/m. We turned on
the automatic liquid supply and surface tension measurement function, and the surface
tension value of the solution was measured when the droplets broke up instantaneously. In
addition, the surface tension and contact angle of the 0.02% AEO-9 and water solution were
measured, and the measurement accuracy was 0.001◦. First, the coal sheet was prepared
in a tableting machine under a coal dust mass of 50 mg, pressure of 20 MPa, and time of
1 min. We then placed the prepared coal sheet on the workbench, adjusted the workbench
and injector, and started the drip. When the droplets were about to fall, we opened the
continuous shooting function to capture the instantaneous contact between the droplets
and the coal sheet. The automatic fitting method was used to measure the contact angle of
the coal dust.

2.1.4. Electrostatic Adsorption Experiment for Coal Dust and Charged Droplet

The experiment was performed using a contact angle measuring instrument and a
negative high-voltage electrostatic DC generator. The negative high-voltage electrostatic
DC generator was connected to the metal part of the syringe and grounded. The charged
voltage was set to 3 kV. About 50 mg of coal dust was placed directly below the charged
droplets. The distance between the charged droplets and coal dust was varied to observe
the motion state.
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2.2. Simulation Details

In this paper, a classical Wiser bituminous coal model [19,20] was used. The molecular
structures of the bituminous coal and AEO-9 are presented in Figure 2.
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Figure 2. Molecular models: (a) bituminous coal; (b) AEO-9. The red, grey, white, yellow, and blue
balls represent O, C, H, S, and N, respectively.

The HOMO orbital information, LOMO orbital information, and molecular surface
electrostatic potential were obtained through a quantum mechanical simulation. The
relevant parameters were set as follows: the module was Doml3, the task was geometry
optimization, the quality was fine, the maximum iterations were 500, the functional was
GGA, the employed method was BLYP, and the basis set was DNP.

The AC module was used to construct H2O sphere, AEO-9, and bituminous coal
molecule crystal models [21,22]. The water molecular density was set to 0.98 and the spher-
ical diameter was set to 30 Å. The number of AEO-9 and bituminous coal molecules were 2
and 3, respectively. The build layer tool was then used to build the water/bituminous coal
and water/AEO-9/bituminous coal models. The size of the models was 30 Å × 30 Å × 150 Å,
as shown in Figure 3. First, the geometry optimization of the water/bituminous coal and
the water/AEO-9/bituminous coal system was performed by the Forcite module, and the
bond length, bond angle, and molecular configuration of the molecules in the systems
were optimized. The relevant parameters were set as follows: the quality was ultrafine,
maximum iterations were 50,000, the forcefield was compass II, the electrostatic summation
method was Ewald, and the van der Waals summation method was Ewald. After opti-
mization, a molecular dynamic simulation was performed under the relevant parameters
mentioned as follows: the canonical ensemble (NVT) was selected, the thermostat was set
as Nose, and the total simulation time was 1000 ps (the temperature and energy tended to
be stable, and the systems had reached an equilibrium) [23].
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Although the molecular simulation conditions differed from the experimental con-
ditions, the setting of the above two system parameters was the same. Therefore, by
comparing the interaction energy of the two systems, the wetting properties and mecha-
nism of the AEO-9 solution on bituminous coal could be qualitatively determined.

3. Results and Discussion
3.1. Water Mist Induction-Charged Atomization Mechanism

Figure 4 presents the water mist droplet size at different distances and charged voltages.
At 0 kV and a 5 cm distance, the water mist droplet size was larger than it was at 5 kV and
10 kV. In the range of 30–120 cm, the droplet size of the water mist under 0 kV was less
than that of the charged water mist. Based on former research [24] and the above results,
the mechanism of the water mist-induced charged atomization was perfected, as shown
in Figure 5. An electrode ring was placed directly below the nozzle, and an electric field
was formed between the nozzle and the electrode ring [25]. According to the principle
of induced charging, when the water mist was sprayed from the nozzle, a thick electric
double layer was formed at the contact between the water and the nozzle. Under the action
of the electrostatic field, the water mist carried positive charges, and the negative charges
of the electric double layer were introduced into the earth from the nozzle. The water mist
contained the same charges; thus, they repelled each other, leading to the breakup of the
droplets. When the positive water mist passed through the negative electrode ring, there
was a higher voltage difference between the electrode ring and the droplets. When the
distance between the droplets and the electrode ring was small, the air was broken down
and part of the droplets carried negative charges. After the water mist left the electrode
ring, a large number of positive and negative charges remained within the system. With
the increase in the distance, the droplets reunited under the action of static electricity and
hydrogen bonding. The larger the growth rate of the spray droplets’ size, the better the
spray charging effect.
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Figure 4. The water mist droplet size at different distances and charged voltages.

Figure 6 shows the growth rate of the spray droplets’ size at different distances
and charging voltages; the optimum charge voltage was 10 kV. With the increase in the
induction-charged voltage, an optimal value was observed for the charged effect of the
droplets because a corona discharge occurred after the voltage reached a certain value. The
corona discharge was opposite to the charge of the induced charged spray droplets [18] and
attracted each other. Therefore, the VMD was the largest at a distance of 5 cm and 15 kV.
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3.2. Atomization Mechanism of the AEO-9-Charged Solution
3.2.1. The Atomization Effect of the AEO-9 Solution

Figure 7 shows the surface tension of different concentrations of the AEO-9 solution.
With the increase in concentration, the surface tension initially decreased and tended to
stabilize when the concentration reached 0.02%, reaching a critical micelle concentration.
Therefore, three concentrations—namely, 0.005%, 0.02%, and 0.04%—were selected for the
spray experiments.

Figure 8 shows the spray droplet size of the AEO-9 solution with different concen-
trations and distances. The spray droplet size of 0.02% AEO-9 solution was the smallest.
Although the surface tensions of 0.005% and 0.04% AEO-9 solutions were less than that
of water, the viscosity was larger than that of water, which plays a major role, so the
atomization effect of the water solution was better. Based on the above results, surface
tension and viscosity together determined the atomization effect of the AEO-9 solution.
In this study, the optimal atomization concentration of the AEO-9 solution was found to
be 0.02%.
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3.2.2. Atomization Effect of the AEO-9-Charged Solution

Figure 9 shows the spray droplet size of 10 kV water, 0.02% AEO-9, and 10 kV and
AEO-9 solutions. At 5 cm, the order of the spray droplet sizes of different solutions were
10 kV water < 10 kV and 0.02% AEO-9 < 0.02% AEO-9 because of the low viscosity and
surface tension of 10 kV water (according to Figure 10). Figure 10 shows the surface
tensions and shapes of 0.02% AEO-9 and water droplets at different charged voltages. With
a further increase in the charged voltage, the surface tension of the droplets gradually
decreased, resulting in the breakage of droplets. When the charged voltage was 10 kV, the
AEO-9-charged droplets and water-charged droplets could not maintain their spherical
shape and dripped continuously from the syringe. As the viscosity of water was relatively
low, the droplet size was smaller. For 10 kV and 0.02% AEO-9 and 0.02% AEO-9 solutions,
the viscosity was the same, but the surface tension of the former was lower (according to
Figure 10), so the droplet size of 10 kV and 0.02% AEO-9 was slightly smaller.
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The droplets’ reunion with the increase in distance and the growth rate of the spray
droplet size is shown in Figure 11. Along 30–120 cm, the order of the droplets’ reunion
rate was 0.02% AEO-9 < 10 kV and 0.02% AEO-9 < 10 kV water. According to the water
mist-induced charged principle as described in Section 3.1, more positive and negative
charges accumulated in the spray with a higher spray droplet growth rate, and the better
the charged effect. At 0–120 cm, considering the charged and atomization effect of the
different solutions, the optimal solution was found to be 10 kV and 0.02% AEO-9.
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3.3. Dust Reduction Mechanism of the AEO-9-Charged Solution
3.3.1. Electrostatic Adsorption Process

The schematic diagram of the interaction between 0.02% AEO-9-charged droplets and
coal dust particles is given in Figure 12. As the distance between the coal dust particles
and AEO-9-charged droplets decreased, the AEO-9-charged droplets gradually stretched
and the electrostatic interaction between them was enhanced. This was mainly because the
AEO-9-charged droplets induced positive and negative charges. As the distance between
the droplets and coal dust particles decreased, the surface of the coal dust particles induced
opposite charges under the action of mirroring force, increasing the electrostatic interaction
between the two. The smaller the distance, the stronger the electrostatic interaction between
the two. In summary, the AEO-9 solution was charged, increasing the dynamic collision
probability between the coal dust particles and spray droplets.
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Figure 12. The interaction between the 0.02% AEO-9-charged droplets and coal dust particles.

3.3.2. Process and Contact Angle of Droplet-Wetting Coal Dust

After the combination of coal dust and charged droplets, the wettability of the droplets
to coal dust determines the dust reduction efficiency. The contact angle is an important
index to evaluate the wettability of a solution. The wettability is enhanced with a decrease
in the contact angle [26,27]. Figure 13 is the wetting process and contact angle of water and
0.02% AEO-9 droplets to coal dust (time interval of 1 s). As the time changed, the droplets
were slowly immersed in coal dust and the contact angle gradually decreased. After adding
AEO-9 into the water, the contact angle decreased and the wettability increased.
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3.3.3. Front Orbital Analysis

The activities of the H2O and AEO-9 molecules were determined by obtaining the
energy values of the HOMO and LOMO orbitals. The HOMO occupies the highest energy
and generally promotes the loss of electrons. As the energy of the HOMO level increases,
the ability to lose electrons is enhanced. The LUMO occupies the lowest energy and
usually accepts electrons. With the decrease in the energy of the LUMO level, there is an
enhancement in the electron-accepting nature. The molecular activity becomes stronger
with the decrease in the energy difference between the HOMO and LUMO levels [28,29].
Table 2 shows the HOMO and LOMO orbital energy information of the H2O and AEO-9
molecules. AEO-9 showed a higher electron loss and electron acceptance capacity than
H2O. The difference between the two values of AEO-9 was less than H2O. Therefore, the
activity of AEO-9 was higher than that of H2O, which effectively combined the bituminous
coal molecules.

Table 2. HOMO and LOMO orbital energy values of H2O and AEO-9 molecules.

Molecules HOMO (Hartree/e) LOMO (Hartree/e) ∆E (Hartree/e)

H2O 0.0313 −0.2458 0.2771
AEO-9 0.0173 −0.2049 0.2222

3.3.4. Electrostatic Potential Analysis

The electrostatic potential of molecules reflects the electrostatic interaction among
them [23,30]. Figure 14 displays the electrostatic potential of the H2O, AEO-9, and bitu-
minous coal molecules. Table 3 shows the electrostatic potential values of the different
molecules. The maximum positive potential of the bituminous coal was greater than that
of H2O, and the maximum negative potential was less than that of H2O. The electrostatic
attraction of H atoms connected with the O, N, and S atoms in the bituminous coal to the O
atom in H2O was greater than that of H atoms in H2O, and the electrostatic attraction of O,
N, S, and the benzene ring to the H atoms in H2O was less than that of the O atom in H2O.
However, the proportion of H atoms connected to the O, N, and S atoms of the bituminous
coal molecules was small, and the electrostatic effect between H2O was stronger, leading to
poor wettability of the water with the bituminous coal molecules.
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Table 3. The molecular electrostatic potential values of H2O, AEO-9, and bituminous coal.

Molecules Maximum Positive Potential
(Hartree/e) Location Maximum Negative Potential

(Hartree/e) Location

H2O 0.09173 Near H −0.06565 Near O

AEO-9 0.09368 Near hydroxyl H −0.0607 Near ether group
and hydroxyl O

Bituminous coal 0.1219 Near H connected
with O, N, and S −0.05364 Near O, N, S, and

the benzene ring

The addition of AEO-9 in water connected with the H2O and bituminous coal molecules,
changing the hydrophobicity of the bituminous coal. The maximum positive potential of
AEO-9 was greater than that of H2O, and the maximum negative potential was less than
that of H2O. The electrostatic attraction of the hydroxyl H atom in AEO-9 to the O atom
in H2O was greater than that of the H atoms in H2O. The electrostatic attractions of the O
atom in the ether and hydroxyl groups to the H atoms in H2O were less than that of the O
atom in H2O. However, the number of H atoms in H2O was greater than that of the O atom,
so a part of the H2O attracted the O atoms in the ether and hydroxyl groups of AEO-9,
which caused the number of hydrogen bonds between the H2O molecules to be reduced
from 825 to 801. Therefore, the hydrogen bond interaction between the water molecules
was weakened and the activity of the water molecules was enhanced. The corresponding
electrostatic potential of the hydrophobic group in AEO-9 was near 5.461 × 10−3 Hartree/e.
Under an electrostatic interaction, the hydrophobic groups were attached to the O, N, S,
and benzene rings of the bituminous coal molecules.

3.3.5. Intermolecular Interaction Energy Analysis

The interaction energy characterizes the intermolecular interaction of the simulated
system. The higher the interaction energy, the better the wettability of the coal dust [31,32].
In this paper, the potential energy was chosen to characterize the interaction energy of
the simulation system, which was mainly composed of electrostatic and van der Waals
energies. Table 4 displays the interaction energy of the different simulation systems. Upon
the addition of AEO-9 to water, the electrostatic energy and van der Waals energy were
increased between the water and bituminous coal molecules, and the wettability of the
bituminous coal was improved.
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Table 4. The interaction energy of different simulation systems.

System Potential Energy
(kcal/mol)

Electrostatic Energy
(kcal/mol)

van der Waals Energy
(kcal/mol)

H2O/bituminous coal −378.284 −286.405 −87.553
H2O/AEO-9/bituminous coal −499.718 −309.297 −186.757

4. Conclusions

The water mist induction charging mechanism was under the action of the electric
field between the nozzle and the electrode ring. The water mist carried a large amount of
positive charge, and the negative charges of the electric double layer flowed into the earth
from the nozzle. When the water mist with a positive charge passed through the electrode
ring with a negative charge, there was a high-voltage difference between the electrode
ring and the water mist. The distance between the water mist and the electrode ring was
small; under the action of the voltage difference, the air decomposed and part of the water
mist had a negative charge. When the water mist left the electrode ring, the water mist
contained a large number of positive and negative charges.

The droplet size of the AEO-9-charged solution decreased with the decrease in surface
tension and viscosity of the solution. The optimal atomized solution was 10 kV and 0.02%
AEO-9. As the spray distance increased, the AEO-9-charged droplets reunited under the
action of electrostatic and hydrogen bonds, thus increasing the size of the droplets.

Compared with the water solution, the AEO-9-charged solution increased the electro-
static adsorption between the coal dust particles and droplets. It reduced the contact angle
of the AEO-9 solution on the surface of the coal dust and increased the wettability of the
coal dust.

The mechanism of the AEO-9 solution in improving the wettability of coal dust was
revealed at a micro-level by a molecular simulation: the electron loss and electron-accepting
ability of the AEO-9 molecule was higher than the H2O molecule, which was effectively
combined with the bituminous coal molecule. Under an electrostatic interaction between
the H2O and AEO-9 molecules, the number of hydrogen bonds between the H2O molecules
was reduced, resulting in the hydrogen bond interaction between the water molecules being
weakened and the activity of the water molecules being enhanced. After AEO-9 was added
to water, the electrostatic energy and van der Waals energy among the molecules in the
system were enhanced, which improved the wetting ability of water on bituminous coal.
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